

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE CIENCIAS ESCUELA DE INGENIERÍA QUÍMICA

OPTIMIZACIÓN DEL PROCESO DE DISEÑO CONCEPTUAL DE OPERACIÓN DE PLANTAS DE TRATAMIENTOS DE AGUAS RESIDUALES PARA LA EMPRESA HETWEN

Trabajo de titulación para optar por el título de:

INGENIERA QUÍMICA

AUTORAS: JURADO LARA JENIFER AMANDA SARMIENTO JIMÉNEZ LIZBETH GABRIELA

TUTORA: ING. MABEL PARADA

Riobamba-Ecuador 2017

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE CIENCIAS ESCUELA DE INGENIERÍA QUÍMICA

El tribunal de trabajo de titulación certifica que el proyecto técnico "OPTIMIZACIÓN DEL PROCESO DE DISEÑO CONCEPTUAL DE OPERACIÓN DE PLANTAS DE TRATAMIENTOS DE AGUAS RESIDUALES PARA LA EMPRESA HETWEN", de responsabilidad de las señoritas Jenifer Amanda Jurado Lara y Lizbeth Gabriela Sarmiento Jiménez, ha sido prolijamente revisado por los Miembros del Tribunal de Trabajo de Titulación, quedando autorizado su presentación:

NOMBRE	FIRMA	FECHA
Ing. Mabel Parada		
DIRECTOR DE PROYECTO		
DE TITULACIÓN		
Ing. Daniel Chuquin		
MIEMBRO DEL TRIBUNAL		

DERECHOS INTELECTUALES

"Yo, Jenifer Amanda Jurado Lara y Lizbeth Gabriela Sarmiento Jiménez, soy responsable de las ideas, doctrinas y resultados expuestos en este trabajo de titulación y el patrimonio intelectual de la misma pertenece a la Escuela Superior Politécnica de Chimborazo."

Jenifer Amanda Jurado Lara

Lizbeth Gabriela Sarmiento Jiménez

DECLARACIÓN DE AUTENTICIDAD

Nosotras, Jenifer Amanda Jurado Lara y Lizbeth Gabriela Sarmiento Jiménez declaramos que el

presente trabajo de titulación es de mi autoría y que los resultados de los mismos son auténticos

y originales. Los textos constantes en el documento que provienen de otra fuente están

debidamente citados y referenciados.

Como autoras, asumimos la responsabilidad legal y académica de los contenidos de este trabajo

de titulación.

Riobamba, 19 de enero del2017

Jenifer Amanda Jurado Lara

Cedula de identidad: 060486219-3

Lizbeth Gabriela Sarmiento Jiménez

Cedula de identidad: 150084595-1

iv

DEDICATORIA

A Dios, a mi madre Orfa, que con su esfuerzo y dedicación a sabido hacer de mi la persona que hoy llega a alcanzar esta meta tan importante en la vida, gracias una vez más por ser la razón y el pilar fundamental para querer ser mejor cada día, tu ejemplo de trabajo duro me han enseñado que puedo logar todo lo que me proponga. A mis hermanas Rosana, Janeth Jeancarla y Doménica por ser un apoyo fundamental, sus constantes manifestaciones de motivación me impulsaron a seguir esforzándome. A mis preciosos sobrinos Johan, Mickaela y Jaden son una fuente constante de alegría y luz en mi vida, son el recordatorio del amor infinito que hay en mi familia. Por último a mis compañeros que compartieron conmigo el camino de este sueño y a mis amigos por tantos momentos de felicidad, diversión y tristeza que nos unieron a lo largo de estos años, no hubiera otras personas (Jessica, Criss, Darío, Jenifer, Carlos, María José, Santiago) con las cuales habría compartido estas historias.

Lizbeth Sarmiento

A Dios, a mi madre Mary Isabel, por todo su esfuerzo ,apoyo y confianza depositada en mí, por ser siempre la luz en mi vida, y mi amiga incondicional, por ser mi mayor ejemplo de superación y motivarme día a día para cumplir mis metas, por ser el pilar de mi vida. A mi padre Fausto, por tanto apoyo y comprensión, por todos sus sacrificios para darme siempre lo mejor, por estar siempre dispuesto a apoyarme, por ser el mejor padre que Dios me pudo dar, es el, él hombre de mi vida. A mi hermano, por haber estado en mis momentos difíciles, por todo su cariño y compañía, por esos pequeños detalles que te hacen el niño de mis ojos. Y a mis compañeros y amigos, que estuvieron conmigo en este recorrido, por cada uno de los momentos vividos a su lado, por ser tolerantes con mi carácter, por estar en mis mejores y perores momentos, por siempre tener la palabra indicada, por cada consejo y atención, con ustedes este camino se tornó más sencillo y me enseñaron que la vida que la vida está hecha de instantes.

Jenifer Jurado Lara.

AGRADECIMIENTO

Mi eterna gratitud a la Escuela Superior Politécnica de Chimborazo, a la Facultad de Ciencias y a la Escuela de Ingeniería Química por temerme en sus aulas y permitirme adquirir los conocimientos para empezar la vida profesional.

A la Ing. Mabel Parada Directora del trabajo de titulación por su acertada dirección, conocimientos prestados, sugerencias y por ser una gran motivadora durante la elaboración de este trabajo.

Al Ing. Daniel Chuquin y Ing. Paul Manobanda por su cooperación en le procesos de desarrollo del presente trabajo de titulación, además de brindarnos su apoyo y amistad.

A todas aquellas personas que de una u otra forma colaboraron para hacer este sueño realidad.

Jenifer Jurado Lizbeth Sarmiento

TABLA DE CONTENIDOS

		Páginas
RESUM	MEN	xix
SUMAF	RY	xx
CAPÍTU	U LO I	1
1 DL	AGNÓSTICO Y DEFINICIÓN DEL PROBLEMA	1
1.1	Identificación del problema.	1
1.2	Justificación	2
1.3	Línea Base del Proyecto.	3
AN	NTECEDENTES DE LA EMPRESA	3
MA	ARCO CONCEPTUAL	3
Tra	atamiento de aguas residuales	3
1.4	Beneficiarios directos e Indirectos	7
1.4	4.1 Beneficiarios directos.	7
1.4	Beneficiarios indirectos.	7
CAPITU	ULO II	8
2 OB	BJETIVOS DEL PROYECTO	8
2.1	Objetivo general.	8
2.2	Objetivos específicos.	8
CAPIT	ULO III	9
3 ES	TUDIO TÉCNICO	9
3.1	Localización del proyecto.	9
3.2	Ingeniería del proyecto	9
3.2	2.1 Cribado	10
3.2	2.2 Flotación	19
3.2	2.3 Aireación	44
3.2	2.4 Lodos activados	67
3.2	2.5 Zanjones de oxidación	112
3.2	2.6 Lagunas aireadas	124
3.2	2.7 Filtros biológicos	153
3.2	2.8 Biodiscos	188
3.2	2.9 Sedimentación de aguas residuales	199

3.2	2.10 Sistemas anaerobios	219
3.3	Proceso de producción	239
3.4	Requerimientos de Tecnología, equipos y maquinarias	242
3.5	Análisis de costo / Beneficio del proyecto	242
3.6	Cronograma de ejecución del Proyecto.	244
CAPIT	ULO IV	245
Conc	clusiones	245
BIBLIC	OGRAFÍA	246
ANEX	OS	249

ÍNDICE DE TABLAS

Tabla 1-3: Características de Rejillas de Barras	10
Tabla 2-3: Datos experimentales y resultado para pérdida de energía según Kirschmer	12
Tabla 3-3: Datos experimentales y resultados para pérdida de energía según modelo	
matemático alternativo	12
Tabla 4-3: Datos experimentales y resultados para pérdida de energía por expresión clásica	ı para
orificios	12
Tabla 5-3: Saturación del airea a una atmósfera	20
Tabla 6-3: Valores de a/s para diferentes presiones A 20 °C	20
Tabla 7-3: Parámetros de diseño de unidades FAD	21
Tabla 8-3: Datos experimentales y resultados para relación adimensional aire/sólido, sin in	ıcluir
	26
Tabla 9-3: Datos experimentales y resultados para relación adimensional aire/sólido,	
incluyendo recirculación.	26
Tabla 10-3: Datos experimentales y resultados para área horizontal mínima del separador d	le
aceite API	27
Tabla 11-3: Datos experimentales y resultados para velocidad de elevación del glóbulo de	
aceite del separador de aceite API	
Tabla 12-3: Datos experimentales y resultados para área de sección transversal del separado	or de
aceite AP	27
Tabla 13-3: Datos experiméntale y resultados para la longitud del tanque del separador de	
aceite API	
Tabla 14-3: Datos experimentales y resultados para altura de lámina sobre el vertedero del	
separador de aceite API	28
Tabla 15-3: Constante de la ley de Henry para diferentes gases solubles en agua	44
Tabla 16-3: Dimensiones típicas de tanques de aireación para aireadores mecánicos	
superficiales	
Tabla 17-3: Datos experimentales y resultados para el rendimiento de la unidad de aireació	
difusa	
Tabla 18-3: Datos experimentales y resultados para la concentración de saturación de OD e	
superficie de la unidad de aireación difusa	
Tabla 19-3: Datos experimentales y resultados para contenido de oxígeno en el aire de salid	
la unidad de aireación difusa	54
Tabla 20-3: Datos experimentales y resultados para rendimiento por unidad de aireación	
turbina	
Tabla 21-3: Datos experimentales y resultados relación de potencia óptima de la unidad de	
aireación turbina	
Tabla 22-3: Datos experimentales y resultados para eficiencia de transferencia de oxígeno o	
unidad de aireación turbina	
Tabla 23-3: Tipos de tratamientos por lodos activados	
Tabla 24-3: Coeficientes Cinéticos tínicos a 20 °C para el Proceso de Lodos Activados	70

Tabla 25-3: Tipo de organismo filamentoso dominante indicador de condiciones causantes	s de
hinchamiento de lodos	70
Tabla 26-3: Relación de la Carga Orgánica del Proceso de Lodos Activados con los Grupo	
Predominantes de Organismos Superiores	71
Tabla 27-3: Datos experimentales y resultados de DBO soluble del efluente para lodos	
activados	79
Tabla 28-3: Datos experimentales y resultados de biomasa del reactor para lodos activados	s79
Tabla 29-3: Datos experimentales y resultados de biomasa del reactor para lodos activados	s79
Tabla 30-3:Datos experimentales y resultados de producción de lodos para lodos activados	s80
Tabla 31-3: Datos experimentales y resultados de lodo seco, para lodos activados	80
Tabla 32-3: Datos experimentales y resultados de caudal de lodo de desecho, para lodos	
activados	80
Tabla 33-3: Datos experimentales y resultados de caudal de recirculación, para lodos activ	
Tabla 34-3:Datos experimentales y resultados de relación de recirculación, para lodos acti	vados
Tabla 35-3: Datos experimentales y resultados de cantidad de oxigeno requerido, para lodo	
activados	
Tabla 36-3: Datos experimentales y resultados de DBO aplicada al tanque de aireación	82
Tabla 37-3: Datos experimentales y resultados de carga orgánica volumétrica, para lodos	0.0
activados	
Tabla 38-3: Datos experimentales y resultados de relación A/M, para lodos activados	
Tabla 39-3: Datos experimentales y resultados de edad de lodos, para lodos activados	
Tabla 40-3: Datos experimentales y resultados de eficiencia de remoción de DBO total	
Tabla 41-3: Datos experimentales y resultados de eficiencia de remoción de DBO soluble	
Tabla 42-3: Parámetros de diseño para zanjones de oxidación	
Tabla 43-3: Características de un rotor de jaula	
Tabla 44-3: Diseños típicos de zanjones de oxidación	
Tabla 45-3: Datos experimentales y resultados de tasa real de transferencia de oxígeno	
Tabla 46-3: Datos experimentales y resultados para concentración de saturación de oxígen	
disuelto en el agua potable a la temperatura y altitud del lugar.	
Tabla 47-3: Valores de K en Lagunas Aireadas	
Tabla 48-3: Características de Aireadores Superficiales de Baja Velocidad (169)	
Tabla 49-3: Datos experimentales y resultados de tiempo de retención (invierno)	
Tabla 50-3: Datos experimentales y resultados de modelo típico para diseño de lagunas air	
Tabla 51-3: Datos experimentales y resultados de porcentaje de remoción de DBO en la la	iguna
Tabla 52-3: Datos experimentales y resultados de tiempo de retención en función al porcer	
de remoción	-
Tabla 53-3: Datos experimentales y resultados de cantidad de oxígeno requerida	
Tabla 54-3: Datos experimentales y resultados de la cantidad de oxígeno requerido en la	100
primera laguna aerobia	135
Tabla 55-3: Datos experimentales y resultados de la cantidad de oxígeno requerido para	100
lagunas facultativas	135

Tabla 56-3: Datos experimentales y resultados de la temperatura de diseño para lagunas	
aireadas	136
Tabla 57-3: Datos experimentales y resultados de la tasa real de transferencia de oxígeno	136
Tabla 58-3: Datos experimentales y resultados del nivel de potencia en lagunas aerobias	
superficiales de baja velocidad	137
Tabla 59-3: Datos experimentales y resultados del volumen de la laguna	137
Tabla 60-3: Datos experimentales y resultados del concentración de la biomasa en la laguna:	137
Tabla 61-3: Datos experimentales y resultados de la producción de lodos	138
Tabla 62-3: Datos experimentales y resultados de la concentración de sólidos suspendidos	
totales en el efluente de la laguna aireada	138
Tabla 63-3: Coeficientes de tratabilidad para la ecuación	154
Tabla 64-3: Relación de concentración de sustrato soluble efluente/afluente del modelo de	
Eckenfelder	160
Tabla 65-3: Datos experimentales y resultados para carga hidráulica superficial sin	
recirculación del modelo de Eckenfelder	160
Tabla 66-3: Datos experimentales y resultados para relación de concentración de sustrato	
soluble efluente/afluente con recirculación	160
Tabla 67-3: Datos experimentales y resultados para la carga hidráulica superficial, con	
recirculación	161
Tabla 68-3: Datos experimentales y resultados para el DBO soluble del efluente sedimentado	О
del filtro según el modelo de Bruce y Merkens	161
Tabla 69-3: Datos experimentales y resultados para DBO del afluente al filtro, incluyendo	
recirculación según el modelo de Bruce y Merkens	161
Tabla 70-3: Datos experimentales y resultados para carga hidráulica volumétrica según el	
modelo de Bruce y Merkens	162
Tabla 71-3: Datos experimentales y resultados para el volumen del filtro según el modelo de	;
Bruce y Merken	162
Tabla 72-3: Datos experimentales y resultados para la relación de DBO soluble del efluente	y
afluente según el modelo de Germain	162
Tabla 73-3: Datos experimentales y resultados para el DBO soluble del efluente según el	
modelo de Germain	163
Tabla 74-3: Datos experimentales y resultados para la carga hidráulica, sin incluir recirculac	ión
según el modelo de Germain	163
Tabla 75-3: Datos experimentales y resultados para Carga hidráulica, con recirculación. Segu	ún
el modelo de Germain	163
Tabla 76-3: Características típicas de los discos biológicos	189
Tabla 77-3: Microbiología de los Biodiscos	190
Tabla 78-3: Factores de correlación de caudal por población equivalente	190
Tabla 79-3: Factores de correlación de área por números de etapas	190
Tabla 80-3: Datos experimentales y resultados para la tasa de remoción de DBO por unidad	de
área de disco	193
Tabla 81-3: Datos experimentales para DBO del efluente según el modelo de Wu	193
Tabla 82-3:Estándares de Diseño para Sedimentadores Primarios	200
Tabla 83-3:Parámetros de Diseño de Sedimentadores Secundarios	201
Tabla 84-3:Datos experimentales y resultados de velocidad critica de arrastre	204
Tabla 85-3: Datos experimentales y resultados del área requerida para caudal promedio	

Tabla 86-3: Datos experimentales y resultados del área requerida para caudal pico	204
Tabla 87-3:Datos experimentales y resultados del diámetro del sedimentador	205
Tabla 88-3:Datos experimentales y resultados de longitud del vertedero perimetral	205
Tabla 89-3:Datos experimentales y resultados de volumen del sedimentador	205
Tabla 90-3:Datos experimentales y resultados de tiempo de retención	205
Tabla 91-3:Datos experimentales y resultados de área requerida para clarificación	205
Tabla 92-3:Datos experimentales y resultados de área requerida para espesamiento	206
Tabla 93-3:Datos experimentales y resultados de flujo de solidos	206
Tabla 94-3:Datos experimentales y resultados de carga hidráulica	206
Tabla 95-3: Procesos Anaerobios de Tratamiento de Aguas residuales y Biosólidos	221
Tabla 96-3: Rendimiento Típico de los Procesos Anaerobios	221
Tabla 97-3: Edades de Lodos para Diseño	222
Tabla 98-3:Factores de Capacidad Relativa	222
Tabla 99-3: Valores de tiempo de digestión en función a la temperatura	222
Tabla 100-3: Datos experimentales y resultados de caudal de diseño	226
Tabla 101-3:Datos experimentales y resultados de área del sedimentador	226
Tabla 102-3: Datos experimentales y resultados de volumen del sedimentador	226
Tabla 103-3:Datos experimentales y resultados de longitud máxima del vertedero de	salida .226
Tabla 104-3: Datos experimentales de volumen de almacenamiento y disgestión	227
Tabla 105-3:Datos experimentales y resultados de carga de sólidos que ingresa al sec	imentador
	227
Tabla 106-3:Datos experimentales y resultados de masa de sólidos que conforman lo	s lodos 227
Tabla 107-3: Datos experimentales de volumen diario de lodos digeridos	227
Tabla 108-3:Datos experimentales y resultados de volumen de lodos a extraerse del t	anque .228
Tabla 109-3:Datos experimentales y resultados de volumen diario de lodos digeridos	228
Tabla 110-3:Datos experimentales y resultados de volumen dario de lodos digeridos.	228
Tabla 111-3. Datos experimentales y resultados de área del lecho de secado	229

ÍNDICE DE GRÁFICOS

Gráfico 1-3: Automatización para factor de barras	13
Gráfico 2-3: Automatización para ancho máximo de barras	13
Gráfico 3-3 Automatización para separación mínima entre barras	14
Gráfico 4-3: Automatización de relación velocidad de flujo aproximación	14
Gráfico 5-3: Automatización de Relación Ángulo de la Rejilla con la Horizontal	15
Gráfico 6-3: Gráfico de la automatización de Relación Velocidad de Flujo a través de R	ejilla16
Gráfico 7-3: Automatización de relación velocidad de aproximación de flujo	16
Gráfico 8-3: Automatización de relación caudal de aproximación	17
Gráfico 9-3: Automatización de relación área efectiva de flujo	17
Gráfico 10-3: Automatización de Solubilidad de Saturación del Aire	
Gráfico 11-3: Automatización para densidad del Aire.	
Gráfico 12-3: Automatización para presión absoluta de operación.	30
Gráfico 13-3: Automatización para la presión de vapor de agua	30
Gráfico 14-3: Automatización para presión local atmosférica	31
Gráfico 15-3: Automatización para concentración de sólidos suspendidos del afluente	31
Gráfico 16-3: Automatización para solubilidad de saturación del aire	32
Gráfico 17-3: Automatización para densidad del aire sin recirculación	32
Gráfico 18-3: Automatización para caudal recirculado	33
Gráfico 19-3: Automatización para caudal afluente al sistema de flotación	33
Gráfico 20-3: Automatización para presión absoluta de operación incluyendo recirculac	ión34
Gráfico 21-3: Automatización para presión de vapor de agua a la temperatura de operac	ión
incluyendo recirculación	34
Gráfico 22.3: Automatización para presión local atmosférica, incluyendo recirculación.	35
Gráfico 23-3: Automatización de concentración de solidos suspendidos, incluyendo	
recirculación.	
Gráfico 24-3: Automatización para caudal de agua residual	
Gráfico 25-3: Automatización para factor de compensación de barras	
Gráfico 26-3: Automatización para velocidad de elevación del glóbulo de aceite	
Gráfico 27-3: Automatización para viscosidad absoluta	
Gráfico 28-3: Automatización para densidad del agua	
Gráfico 29-3: Automatización para densidad del aceite.	
Gráfico 30-3: Automatización para diámetro del glóbulo de aceite	
Gráfico 31-3: Automatización para caudal de agua residual	
Gráfico 32-3: Automatización para velocidad horizontal de flujo	
Gráfico 33-3: Automatización para profundidad del agua residual en el separador API	
Gráfico 34-3: Automatización para factor de compensación por cortocircuito y turbulen	
Gráfico 35-3: Automatización velocidad horizontal de flujo.	
Gráfico 36-3: Automatización para velocidad de elevación del glóbulo de aceite	
Gráfico 37-3: Automatización para caudal de agua residual	
Gráfico 38-3: Automatización para longitud del vertedero	
Gráfico 39-3: Automatización para flujo de aire en condiciones estándares	
Gráfico 40-3: Automatización para profundidad del agua	
Gráfico 41-3: Automatización para ancho del tanque de aireación	
Gráfico 42-3: Automatización para temperatura.	57

Gráfico 43-3: Automatización para la concentración de saturación de OD en el agua	
la profundidad mitad del tanque.	58
Gráfico 44-3: Automatización para concentración de oxígeno disuelto en el agua	58
Gráfico 45-3: Automatización para concentración de saturación de OD en la superfici	cie59
Gráfico 46-3: Automatización para presión absoluta a la profundidad del difusor	60
Gráfico 47-3: Automatización para presión barométrica	60
Gráfico 48-3: Automatización para contenido de oxígeno en el aire de salida	61
Gráfico 49-3: Automatización para fracción decimal de oxigeno transferida al agua.	61
Gráfico 50-3: Automatización para velocidad periférica del impulsor	62
Gráfico 51-3: Automatización para flujo de aire	62
Gráfico 52-3: Gráfico de la automatización para concentración de saturación de OD	en agua
residual	63
Gráfico 53-3: Automatización de concentración de OD en el agua	63
Gráfico 54-3: Automatización para temperatura.	64
Gráfico 55-3: Automatización para diámetro del impulsor	64
Gráfico 56-3: Automatización para potencia de turbina.	65
Gráfico 57-3: Automatización potencia de compresor	65
Gráfico 58-3: Automatización para oxigeno absorbido	
Gráfico 59-3: Automatización para flujo de aire en condiciones estándares para el so	
Gráfico 60-3: Automatización de relación DBO total deseada efluente	-
Gráfico 61-3: Automatización de relación sólidos suspendidos	
Gráfico 62-3: Automatización para la relación edad de lodos	
Gráfico 63-3: Automatización para relación concentración SSV/Concentración DBC	
Gráfico 64-3: Automatización para relación caudal afluente	
Gráfico 65-3: Automatización para relación concentración sustrato efluente	
Gráfico 66-3: Automatización para relación concentración de sustrato efluente	
Gráfico 67-3: Automatización para relación biomasa del reactor	
Gráfico 68-3: Automatización para relación concentración biomasa reactor	
Gráfico 69-3: Automatización para caudal afluente	
Gráfico 70-3: Automatización para concentración sustrato afluente	
Gráfico 71-3: Automatización para concentración de sustrato efluente	
Gráfico 72-3: Automatización para edad de lodos	
Gráfico 73-3: Automatización para producción de lodos	
Gráfico 74-3: Automatización para fracción de sólidos totales	
Gráfico 75-3: Automatización para sólidos totales de desecho	
Gráfico 76-3 : Automatización para concentración sólidos totales lodo sedimentado.	
Gráfico 77-3: Automatización para caudal del afluente	
Gráfico 78-3: Automatización para concentración de SSV en recirculación	
Gráfico 79-3: Automatización para concentración ST lodo sedimentado	
Gráfico 80-3: Automatización para caudal de recirculación	
Gráfico 81-3: Automatización para caudal del afluente	
Gráfico 82-3: Automatización para volumen del reactor	
Gráfico 83-3: Automatización para caudal del efluente	
Gráfico 84-3: Automatización para caudal de afluente	
Gráfico 85-3: Automatización para concentración DBO afluente	
Gráfico 86-3: Automatización para concentración DBO afluente	
Gráfico 87-3: Automatización para porción volátil de sólidos totales	
Gráfico 88-3: Automatización para caudal lodos de desecho	
Granco 66-5. Automatización para cauda fouos de desecho	

Gráfico 89-3: Automatización para oxígeno requerido	100
Gráfico 90-3: Automatización para caudal aire condiciones normales	100
Gráfico 91-3: Automatización para caudal real aire.	101
Gráfico 92-3: Automatización para DBO	101
Gráfico 93-3: Automatización para caudal real aire	102
Gráfico 94-3: Automatización para DBO removida	
Gráfico 95-3: Automatización para caudal Afluente.	
Gráfico 96-3: Automatización para concentración DBO afluente	
Gráfico 97-3: Automatización para volumen reactor.	
Gráfico 98-3: Automatización para caudal afluente.	
Gráfico 99-3: Automatización para concentración afluente	
Gráfico 100-3: Automatización para volumen de reactor	
Gráfico 101-3: Automatización para concentración	
Gráfico 102-3Automatización para concentración	
Gráfico 103-3: Automatización para tiempo de retención	
Gráfico 104-3: Automatización para concentración DBO afluente	
Gráfico 105-3: Automatización para concentración DBO efluente	
Gráfico 106-3: Automatización para Kd	
Gráfico 107-3: Automatización para concentración DBO afluente	
Gráfico 108-3: Automatización para concentración DBO efluente	
Gráfico 109-3: Automatización para concentración de DBO afluente	
Gráfico 110-3: Automatización para concentración DBO efluente	
Gráfico 111-3: Automatización de la concentración de OD en agua Potable a la temperatu	
altitud del lugar	-
Gráfico 112.3: Automatización de concentración promedio de OD en el zanjón	
Gráfico 113-3: Automatización de temperatura de diseño	
Gráfico 114-3: Automatización de la tasa nominal de transferencia de oxígeno en condici	
normales	
Gráfico 115-3: Automatización de la relación promedio de la transferencia de oxígeno en	
residual a la tasa de transferencia de oxígeno en agua potable	_
Gráfico 116-3: Automatización de la concentración de OD para la temperatura T y o msn	
agua potable	
Gráfico 117-3: Automatización de la presión barométrica del lugar	
Gráfico 118-3: Automatización de la altitud del lugar	
Gráfico 119-3: Automatización para volumen de la laguna	
Gráfico 120-3: Automatización para caudal de aguas residuales	
Gráfico 121-3: Automatización para tiempo de retención	
Gráfico 122-3: Automatización para tiempo de retención	
Gráfico 123-3: Automatización para porcentaje de remoción	
Gráfico 124-3: Automatización para DBO del afluente	
Gráfico 125-3: Automatización para eficiencia	
Gráfico 126-3: Automatización para caudal	
Gráfico 127-3: Automatización para caudal	
Gráfico 128-3: Automatización para DBO afluente	
Gráfico 129-3: Automatización para área del fondo de la laguna	
Gráfico 130-3: Automatización para demanda bental de oxígeno	
Gráfico 131-3: Automatización para la temperatura promedio semana más fría del año	145

Gráfico	132-3:		para la temperatura del afluente en la semana más fría del a	
			para tasa nominal de oxígeno	
			para la temperatura del lugar	
			para concentración de saturación de oxígeno disuelto en agu	
•				
			para sólidos suspendidos	
			para caudal de aguas residuales	
			para tiempo de retención	
			para concentración del sustrato en el afluente para concentración del sustrato en el efluente	
			para tiempo de retención	
			para concentración de biomasa en el reactor	
			para concentración de SS afluente	
			para concentración de biomasa en el reactor	
			para la constante de remocion	
			para el tiempo de contacto	
			para área superficial específica	
			para constante modificada de remoción de sustrato	
			para la profundidad del filtro.	
			para el área superficial específica	
			para carga hidráulica superficial	
			para la constante modificada de remoción	
			para área superficial especifica del medio	
			para profundidad del filtro	
			para la concentración de sustrato soluble del efluente	
			para la concentración de sustrato soluble de afluente	
			para la constante modificada de remoción, con recirculación	
		_	para área superficial especifica del medio, con recirculación	
			* * * * * * * * * * * * * * * * * * *	
Gráfico	159-3:	Automatización	para profundidad del filtro, con recirculación	171
Gráfico	160-3:	Automatización	para la recirculación	171
Gráfico	161-3:	Automatización	para concentración de sustrato soluble del efluente	172
Gráfico	162-3:	Automatización	para la concentración de sustrato soluble del afluente, con	
				172
Gráfico	163-3:	Automatización	para DBO de afluente al filtro del modelo de Bruce y Merke	ens
				173
Gráfico	164-3:	Automatización	para la constante de tratabilidad del modelo de Bruce Y	
Merkens	S			173
Gráfico	165-3:	Automatización	para el área superficial especifica del medio filtrante en el	
modelo	de Bruc	e y Merkens		174
Gráfico	166-3:	Automatización	para la carga hidráulica volumétrica del modelo de Bruce	y
Gráfico	167-3:	Automatización	para DBO del afluente sin recirculación del modelo de Bruce	e y
Merkens	S			175
Gráfico	168-3:	Automatización	para la relación de recirculación del modelo de Bruce y	
Merkens	s			175

Gráfico 169-3: Automatización del DBO del efluente sedimentado con recirculación del	
modelo de Bruce y Merkens1	76
Gráfico 170-3: Automatización para la constante de tratabilidad a la temperatura para el	
modelo De Bruce y Merkens1	76
Gráfico 171-3: Automatización del DBO del afluente al filtro incluyendo recirculación para	el
modelo de Bruce y Merkens1	77
Gráfico 172-3: Automatización del DBO del afluente al filtro incluyendo recirculación para	el
modelo de Bruce y Merkens1	77
Gráfico 173-3: Automatización del DBO del efluente sedimentado del filtro para el modelo del	le
Bruce Y Merkens1	78
Gráfico 174-3: Automatización del caudal afluente sin recirculación para el modelo de Bruce	e y
Merkens1	78
Gráfico 175-3: Automatización del DBO del afluente incluyendo el recirculación para el	
modelo de Bruce Y Merkens1	79
Gráfico 176-3: Automatización del DBO sedimentado del filtro para el modelo de Bruce y	
Merkens1	79
Gráfico 177-3: Automatización con el área superficial específica para el volumen del filtro	
según el modelo de Bruce y Mekens1	80
Gráfico 178-3: Automatización para la constante de tratabilidad, sin recirculación según el	
modelo de Germain1	81
Gráfico 179-3: Automatización para la profundidad del filtro, sin recirculación para el model	
de Germain1	
Gráfico 180-3: Automatización para la carga hidráulica, sin recirculación según el modelo d	
Germain1	
Gráfico 181-3: Automatización de la constante de tratabilidad para la carga hidráulica, sin	
recirculación según el modelo de Germain.	82
Gráfico 182-3: Automatización para la profundidad del filtro, sin recirculación según el	
modelo de Germain1	83
Gráfico 183-3: Automatización del DBO del afluente al filtro, sin recirculación según el	
modelo de Germain1	83
Gráfico 184-3: Automatización del DBO soluble del efluente, sin recirculación según el	
modelo de Germain1	84
Gráfico 185-3: Automatización del DBO afluente al filtro, con recirculación según el modelo)
de Germain1	84
Gráfico 186-3 : Automatización para la constante de tratabilidad, con recirculación según el	
modelo de Germain1	85
Gráfico 187-3: Automatización para la profundidad del filtro, con recirculación según el	
modelo de Germain	85
Gráfico 188-3: Automatización de la carga hidráulica, con recirculación según el modelo de	
Germain1	86
Gráfico 189-3: Automatización del DBO del afluente sin incluir recirculación según el mode	lo
de Germain1	
Gráfico 190-3: Automatización para la relación de recirculación, según el modelo de Germai	
Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016	
Gráfico 191-3: Automatización del caudal de agua residual, según el modelo cinético1	
Gráfico 192-3: Automatización del DBO del afluente, según el modelo cinético	
Gráfico 193-3: Automatización del DBO del efluente, según el modelo Cinético	
Gráfico 194-3: Automatización del área del disco, según el modelo cinético	

Gráfico 195-3: Automatización	para carga hidráulica según el modelo de Wu	196
Gráfico 196-3: Automatización	del DBO soluble del afluente, según el modelo Wu	197
Gráfico 197-3: Automatización	número de etapas del biodisco, según el modelo de Wu	197
Gráfico 198-3: Automatización	de la temperatura, según el modelo de Wu	198
Gráfico 199-3: Automatización	para densidad relativa de partículas	207
Gráfico 200-3: Automatización	para diámetro de partícula	207
	para caudal promedio	
	para carga superficial promedio	
Gráfico 203-3: Automatización	para caudal pico	209
Gráfico 204-3: Automatización	para factor de relación	209
	para carga superficial máxima	
	para área del sedimentador	
	pata diámetro del sedimentador	
	para área de sedimentación	
	para profundidad del agua	
	para volumen del sedimentador	
	para carga superficial promedio	
	para caudal	
	para tasa de clarificación	
	para velocidad de asentamiento	
	para caudal afluente al Tanque	
	para tiempo requerido	
	para altura inicial interfaz	
	omatización para concentración Inicial sólidos	
	para caudal	
	para caudal	
	para área de diseño	
	para población	
	para dotación	
	para contribución	
	para área del sedimentador	
	para caudal de diseño	
	para periodo de retención hidráulica	
	para caudal máximo	
	para carga hidráulica vertedero	
	para población	
	para factor de capacidad relativa	
	para población	
	para contribución percapita	
	para carga de sólidos que ingresa al sedimentador	
	para masa de sólidos que conforman lodos	
	para volumen de lodos a extraerse del tanque	
	para tiempo de digestión	
	para volumen de lodos a extraerse del tanque	
	de tratamiento de agua residual para plantas de tratamien	
•	de tratamento de agua residuar para prantas de tratamien	
	s biológicas por vía aerobia.	
Gráfico 241-3: Cronograma de a		244

RESUMEN

La optimización del proceso de diseño conceptual de operación de plantas de tratamiento de aguas residuales para la empresa HETWEN Cía. Ltda., ubicada en la ciudad de Ambato, el diseño se realizó a través de la selección de los modelos matemáticos empleados en las operaciones para tratamiento de aguas residuales mediante una metodología deductiva, los cuales fueron programados en un software informático Visual Basic, los datos numéricos proporcionados por la empresa fueron ingresados en la plataforma de cálculo, posteriormente las variables que intervienen en cada modelo matemático fueron analizadas y estudiadas para comprender el comportamiento de estas, finalmente se hizo la comprobación y validación de esta herramienta utilizando el método Delphi, donde se obtuvieron los siguientes resultados: Fácil uso 90%, interface agradable, 75%, comprensión del programa 70%, comprensión de los resultados que proporciona el módulo de cálculo 90%, exactitud de los resultados 80%, proporcionados por diez técnicos con experiencia en la elaboración de software que fueron designados por la empresa auspiciante. Concluyendo en la obtención de una plataforma de automatización de cálculo de los diferentes modelos matemáticos empleados para el tratamiento de agua residual, de un fácil uso lo que conlleva a una disminución del tiempo de diseño de este tipo de plantas de tratamiento; se recomienda a la empresa HETWEN y al personal, la implementación inmediata de esta herramienta de cálculo, como un instrumento tecnológico que les permitan tener una ventaja competitiva y puedan ofertar a sus clientes un servicio más eficaz.

PALABRAS CLAVE: <INGENIERÍA QUÍMICA> <TRATAMIENTO DE AGUAS RESIDUALES> <AUTOMATIZACIÓN DE MODELOS MATEMÁTICOS> <OPTIMIZACIÓN DEL PROCESO > <EMPRESA HETWEN> < VISUAL BASIC (SOFTWARE)> <RIOBAMBA (CANTÓN) >

ABSTRACT

The optimization of the conceptual design process of wastewater treatment plants management for the company HETWEN Cia.Ltda. located in Ambato city, it was carried out through the selection of mathematical models used in operations for wastewater treatment by deductive methodology which were programmed in a Visual Basic computer software, also the numerical data provided by the company were entered in the calculation platform, later the variables that join in each mathematical model were analyzed and studied to understand the behavior of each them. Finally, it was done the verification and validation of this tool using the Delphi method where it was achieved the following: easy use 90%, good interface 75%, program comprehension 70%, understanding the results provided by the calculation module 90%, accuracy of results 80%, these data are provided by ten technicians with experience in software development who were selected by the sponsoring company. It is concluded that it must acquire an automation platform of different mathematical models used for wastewater treatment, easy to use which leads to a decrease in the design time of this type of treatment plants management; it is recommended that HETWEN company and its staff implement this calculation tool immediately as a technological tool that allows them to have a competitive advantage and it can provide a more efficient service to its customers.

KEYWORDS: <CHEMISTRY ENGINEERING>, <WASTEWATER TREATMENT>, <MATHEMATICAL MODELS AUTOMATION>, <PROCESS OPTIMIZATION>, <HETWEN COMPANY>, <VISUAL BASIC (SOFTWARE) >, <RIOBAMBA (CANTON)>

CAPÍTULO I

1 DIAGNÓSTICO Y DEFINICIÓN DEL PROBLEMA

1.1 Identificación del problema.

La empresa HETWEN ejecuta varios proyectos para diferentes empresas, la misma que se especializa en el diseño, simulación y estudios de prefactibilidad de proyectos industriales y todos sus procesos inherentes a los mismos.

El proyecto surge como respuesta a la necesidad de cumplir los objetivos empresariales propuestos para el año 2016; en los que se encuentra la optimización del proceso de diseño conceptual y operación de plantas de tratamiento de aguas residuales.

La disminución de errores humanos de cálculo en este tipo de proyectos, el ahorro del tiempo que se emplea para ejecutar el diseño, así como la optimización de los diseños específicos, lo cual desemboca en altos costos de realización de este proceso son las razones importantes de la existencia del presente trabajo.

En la actualidad existe una creciente importancia en la implementación de la simulación a los diferentes procesos u operaciones en el sector industrial. Así los procesos a simular se transforman en el escenario para convertirse en una ventaja competitiva ante la competencia, disminuir riesgos de diseño y permitir un desarrollo sustentable, pero sobre todo denota en un uso máximo de recursos para obtener niveles altos de calidad y servicio.

1.2 Justificación

La empresa HETWEN lleva a cabo proyectos para un gran número de empresas, por medio de contratación directa, la misma que se especializa en diseño, simulación, y estudios de prefactibilidad de proyectos.

A nivel nacional no existe el cumplimiento del 100% de la normativa ambiental la misma que, exige que las aguas residuales ya sean industriales o domésticas, sean tratadas antes de ser descargadas hacia cuerpos de agua directamente o a través de descarga hacia el alcantarillado público.

El presente proyecto pretende ser pionero en el país, al obtener una herramienta fácil de usar para optimizar el proceso de diseño conceptual y operación de plantas de tratamiento de aguas residuales en general, el mismo que, deberá ser totalmente funcional e interactivo.

Esta herramienta que será desarrollada para la empresa HETWEN, quién es la auspiciante del proyecto, permitirá automatizar el proceso en mención, en el que se presentan cálculos de ingeniería y automatización de tratamientos físicos y biológicos para aguas residuales de diferente índole.

Además, el proyecto puede presentarse, como una guía en el campo de diseño y automatización para los estudiantes de la carrera de Ingeniería Química en la Escuela Superior Politécnica de Chimborazo, permitiéndoles familiarizarse con los diferentes sistemas de tratamiento de aguas residuales, y contribuir directamente con la disminución de costos y tiempo en el proceso de diseño de plantas de tratamiento de aguas residuales en empresas públicas y privadas.

Tanto el diseño como los reportes de las pruebas de automatización deberán estar listos para su validación como plazo máximo hasta el último trimestre del año 2016, lo cual se llevará a cabo con el personal de la empresa auspiciante.

1.3 Línea Base del Proyecto.

ANTECEDENTES DE LA EMPRESA

HETWEN Cia. Ltda. tiene su casa matriz en la provincia de Tungurahua, cantón Ambato Calle Oscar Efren Reyes Y Benjamin Carrion 5, Miñarica Ii. Nace en el 2012 como una empresa dedicada a prestar servicios de asesoría en el diseño y construcción de plantas de tratamientos de agua residual, así como el diseño de equipos y procesos industriales a nivel nacional tanto para el sector público como para el sector privado.

Hetwen Cia. Ltda. está especializada en dedica a investigaciones y desarrollo experimental en el campo de la técnica de procesos biotecnológicos: fermentación mediante el uso de biorreactores, procesado biológico, biodecantación, biopulping, bioblanqueo, biodesulfurización, biorremediación, biofiltración y fitorremediación.

MARCO CONCEPTUAL

Tratamiento de aguas residuales

Alrededor del 7% de agua es de gasto doméstico, el 88% es destinado a consumo agrícola y el 5 % restante destina para actividades industriales a nivel de Latinoamérica y el Caribe, según se constata en el segundo informe de las Naciones Unidas sobre el desarrollo de los recursos hídricos, Agua, una responsabilidad compartida (2006). Es importante el correcto uso del recurso hídrico, y el tratamiento de las aguas residuales generadas en las actividades humanas.

Es por ello que se proponen límites de vertidos a través de legislaciones en la disposición final de las aguas residuales, para cuidar las zonas donde se realiza el vertimiento. Por ende para lograr llegar a estos límites de vertidos propuestas en las legislaciones es necesaria la instalación de una Estación Depuradora de Agua Residual (EDAR).

En la actualidad una EDAR consta de muchas posibilidades (tecnologías y/o componentes) para realizar el tratamiento del agua residual que serán seleccionados según la calidad y cantidad del agua residual, la disponibilidad económica, disponibilidad de espacio, el tipo de uso final del efluente de la EDAR.

ETAPAS DE TRATAMIENTO

El tren de tratamiento de una EDAR consta de un conjunto de componentes que dependiendo de factores como: la calidad de agua residual a tratar, el uso del efluente tratado, costos de operación y mantenimiento, disponibilidad de espacio, flexibilidad de la instalación y de los límites de vertidos final, etc. pueden ser más o menos apropiado la selección de ellos.

Por lo tanto, no siempre es trascendental llegar hasta las últimas etapas de tratamiento. Pero sí existen etapas en las que es casi obligatoria la instalación de ciertos componentes.

A continuación, se presentan los siguientes tratamientos:

a) Pretratamiento

Antes de realizar un tratamiento de las aguas residuales es importante realizar un pretratamiento o acondicionamiento de las aguas a tratar.

Dentro de los componentes o instalaciones más importantes e imprescindibles se encuentran:

• Sistema de rejas, cribado o desbaste

Es un sistema que se utiliza para retener la materia de mayores tamaños (gruesos) y no dejarlos pasar al tratamiento posterior. La abertura depende del objetivo que se desea remover y la materia sólida recogida se suele clasificar en finos y gruesos.

El sistema de rejas en una EDAR es importante debido a que no permite el paso de la materia que no es apta para el tratamiento posterior, ya sea de un proceso físico - químico o biológico, reteniendo el paso de material como, por ejemplo: zapatos, plásticos, cabellos, etc.

Desarenador

Los desarenadores son utilizados generalmente para remover material inorgánico tales como arena, grava, partículas u otro material sólido pesado que tenga velocidades de asentamiento o peso específico bastante mayor que el del material orgánico degradable de las aguas residuales.

b) Tratamiento

Luego del acondicionamiento del agua problema, habiendo retirado el material pertinente, el agua pasa por distintos niveles de tratamiento que se describen brevemente a continuación.

• Tratamiento primario: El mecanismo predominante en esta etapa es el proceso físico, encargado de remover los sólidos en suspensión presentes en el agua residual.

Entre los principales sistemas de tratamiento primario se puede encontrar:

- ✓ Floculación.
- ✓ Sedimentación.
- ✓ Flotación.
- ✓ Neutralización.
- ✓ Precipitación química.
- ✓ Etc.
- Tratamiento secundario: El mecanismo predominante en este nivel es el proceso biológico. En este nivel de tratamiento se pueden eliminar principalmente contaminantes como materia orgánica remanente del tratamiento primario.

El tratamiento secundario es el nivel de tratamiento más completo eliminando el material orgánico en un EDAR.

Entre los principales sistemas de tratamiento se pueden mencionar:

- ✓ Fangos activados.
- ✓ Lagunas aireadas.
- ✓ Sistemas de lagunaje.
- ✓ Filtros biológicos.
- ✓ Discos biológicos.
- ✓ Digestión anaerobia.
- ✓ Otros.
- Tratamiento Terciario o "avanzado": Este nivel generalmente se utiliza cuando el
 efluente se desea reutilizar o se tiene un agua problema con mucha contaminación en
 parámetros como nutrientes, microrganismos patógenos, compuestos no biodegradables,
 sólidos inorgánicos disueltos. Siendo necesario este nivel de tratamiento para cumplir
 con la normativa de vertido exigida.

Entre los principales sistemas de tratamiento terciario se pueden mencionar:

- ✓ Micro tamizado
- ✓ Filtración (lechos de arena, antracita, etc.)
- ✓ Cloración y ozonización
- ✓ Humedales artificiales
- ✓ Otros

Los criterios de calidad de aguas manejados de acuerdo a su uso, y las normas generales de descarga de efluentes a cuerpos de agua dulce y al alcantarillado, serán evaluados según la normativa ambiental vigente, que se refiere en este caso al ANEXO I del TULSMA.

Diseño conceptual

Horvatz (2005) indica que no existe una definición precisa carente de ambigüedades acerca de lo que es el diseño conceptual, dado que éste tiene diferentes fines y aparece de diferentes maneras en varias subdisciplinas, como la arquitectura, el diseño mecánico, diseño de interiores o diseño industrial. No obstante, todos estos poseen elementos comunes, y por tanto podemos resumir el proceso de diseño conceptual, como el conjunto de tareas encaminadas a obtener una solución a un problema planteado a partir de las especificaciones, requisitos y necesidades. El diseño conceptual sintetiza dicha solución en forma de conceptos, expresados en forma de esquemas.

French (1985) afirma que "es la fase donde la ciencia de ingeniería, el conocimiento práctico, los métodos de producción y los temas comerciales necesitan unirse y donde se toman las decisiones más importantes." Se trata de hecho de una etapa crítica, donde las decisiones tomadas tienen una importancia enorme, cuyo impacto determina el coste, fiabilidad y prestaciones finales del producto en un grado muy alto. El impacto de las decisiones de diseño a lo largo del proceso de desarrollo del producto es inicialmente muy alto, por lo que, como señala Wang (2002), las oportunidades de obtener un diseño óptimo se dan en la fase conceptual.

1.4 Beneficiarios directos e Indirectos.

1.4.1 Beneficiarios directos.

El principal beneficiario tras la ejecución del proyecto es la empresa auspiciante HETWEN, debido a que implementación de la herramienta de diseño de tratamientos de aguas residuales, permitirá a la misma tener, una ventaja competitiva en el mercado en el cual, se desempeña la empresa.

1.4.2 Beneficiarios indirectos.

La comunidad, municipalidades y entes de control se verían favorecidos de forma indirecta en aspectos como: el desarrollo en un ambiente sano y estable, así como, una correcta evaluación ambiental y gestión ambiental en sectores públicos y privados, al disminuir los costos en el proceso de diseño, lo que, permitirá presentar proyectos de tratamiento de aguas residuales mucho más accesibles, desde el punto de vista técnico y financiero.

Otro beneficiario indirecto serán los estudiantes de la carrera de ingeniería química de la ESPOCH, debido a que, conocerán el funcionamiento de herramientas de este tipo puesto que contarán con una herramienta que les facilitará abordar el tema de tratamiento de aguas residuales.

CAPITULO II

2 OBJETIVOS DEL PROYECTO

2.1 Objetivo general.

Optimizar el proceso de diseño conceptual de operación de plantas de tratamientos de aguas residuales para la empresa HETWEN.

2.2 Objetivos específicos.

- Elaborar y levantar un método interactivo y flexible para el diseño, simulación y evaluación de las operaciones básicas requeridas para el tratamiento de aguas residuales.
- Utilizar conocimientos en leguaje de programación, visual Basic, y modulación de procesos para obtener una plataforma de automatización de diseño de tecnología PTAR.
- Implementar módulos de cálculo que permitan diseñar y automatizar las operaciones básicas requeridas en las plantas de tratamiento de agua residual.

CAPITULO III

3 ESTUDIO TÉCNICO

3.1 Localización del proyecto.

La empresa HETWEN se encuentra ubicada en la ciudad de Ambato, provincia de Tungurahua, Ecuador. En las calles Oscar Efrén Reyes y Benjamín Carrión; Ciudadela La Alborada.

La parte práctica en cuanto a los datos de campo y laboratorio fueron tomados de diferentes empresas y entidades públicas de Tungurahua, que son clientes de la misma empresa.

3.2 Ingeniería del proyecto

Para el desarrollo de este proyecto, se trabajó en forma ordenada y sistemática, se partió de la recopilación de fuentes bibliográficas y normas relacionadas con el tema, para establecer conceptos, condiciones del proceso, especificaciones técnicas de diseño, y selección de los modelos matemáticos. Posteriormente se utilizaron los datos proporcionados por la empresa HETWEN (Ver ANEXO V), para realizar los cálculos de ingeniería y crear la automatización de cada uno de los modelos matemáticos.

La finalidad del proyecto es utilizar la automatización de los modelos matemáticos, como herramienta para la optimización del proceso de diseño conceptual de operación de plantas de tratamiento de aguas residuales, como se indica en esta sección.

Con el levantamiento de los modelos matemáticos para los diferentes módulos de tratamiento de agua residual, se procede a realizar la programación en Visual Basic. Así se tiene como resultado la automatización de estaciones depuradoras de aguas residuales urbanas (Ver ANEXO II y III).

A continuación se detalla cada una de las operaciones básicas para el tratamiento de aguas residuales:

3.2.1 Cribado

Descripción

El cribado es una operación que se utiliza para separar el material grueso del agua, a través del paso de ella por una criba o rejilla.

En el tratamiento de aguas residuales se usan rejillas gruesas, principalmente de barras o varillas de acero, para proteger bombas, válvulas, tuberías y equipos, etc.

La pérdida de energía a través de rejilla es una función de la forma de las barras y de la altura o energía de velocidad de flujo entre barras. (Romero, A., 2002, p.287)

Especificaciones técnicas de diseño para cribado

Tabla 1-3: Características de Rejillas de Barras

Característica	De limpieza manual	De limpieza mecánica
Ancho de las barras	0,5-1,5 cm	0,5-1,5 cm
Profundidad de las barras	2,5-7,5 cm	2,5-7,5 cm
Abertura o espaciamiento	2,5-5,0 cm	1,5-7,5 cm
Pendiente con la vertical	30°-45°	0°-30°
Velocidad de acercamiento	0,3-0,6 m/s	0,6-1 m/s
Perdida de energía	15cm	15cm
Permisible		

Fuente: METCALF & EDDY, Inc. Wastewater Engineering: Treatment Systems, McGrawHill, 1979.

Modelos matemáticos de diseño para cribado

Modelo matemático según Kirschmer

$$H = \beta \left(\frac{w}{b}\right) h_v Ec. 1-3$$

Donde:

 β = factor de forma de barras

w = ancho máximo de la sección transversal de las barras, en dirección del flujo, m.

b = espaciamiento o separación mínima entre las barras, m.

h_v = altura o energía de velocidad de flujo de aproximación, m.

 θ = ángulo de la rejilla con la horizontal.

H = perdida de energía, m.

Modelo matemático alternativo para calcular perdidas en rejillas

$$H = \frac{V^2 - v^2}{2g} \left(\frac{1}{0.7}\right) Ec. \ 2-3$$

Donde:

V = velocidad de flujo a través de la rejilla, m/s.

v = velocidad de aproximación de flujo, m/s.

 $g = aceleración de la gravedad, m/s^2$.

H = perdida de energía, m.

Modelo matemático utilizando la expresión clásica para orificios

$$H = \frac{1}{2g} \left(\frac{Q}{CA}\right)^2 Ec. \ 3-3$$

Donde:

Q = caudal de aproximación, m³/s.

C = coeficiente de descarga.

A = área efectiva de flujo de la rejilla, m².

H = perdida de energía, m.

Tabla 2-3: Datos experimentales y resultado para pérdida de energía según Kirschmer

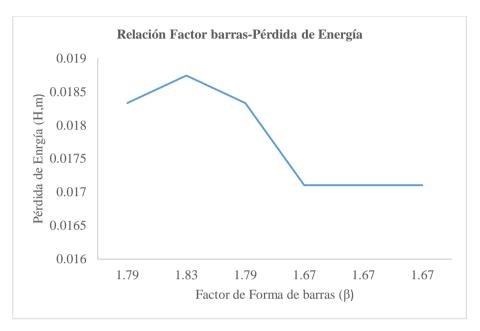
Características	Unidades	Valor	Ecuación
Factor de forma de		1,79	
$barras(\beta)$			
Ancho máximo de barras	m	2	
(w)			
Separación mínima entre	m	2,5	
barras (b)			
Energía de velocidad de	m/s	0,018	
flujo de aproximación (hv)			
Ángulo de la rejilla con la	radianes	0,872664626	
horizontal (Θ)			
Pérdida de energía (H)	m	0,018330156	Ec. 4-3

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

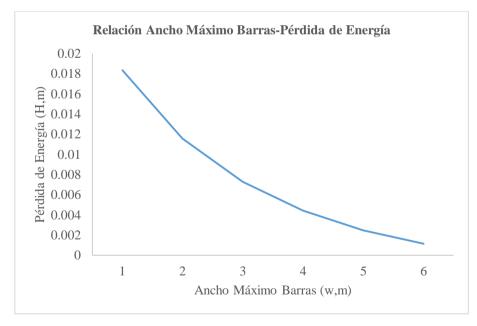
Tabla 3-3: Datos experimentales y resultados para pérdida de energía según modelo matemático alternativo

Característica	Unidades	Valor	Ecuación
Velocidad de flujo a	m/s	0,91	
través de la rejilla (V ²)			
Velocidad de	m/s	0,6	
aproximación de flujo			
(v^2)			
Pérdida de energía (H)	m	0,034118076	Ec. 5-3

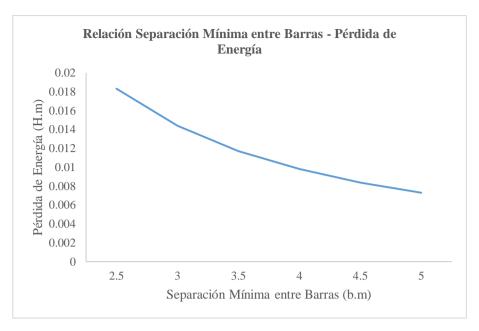
Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

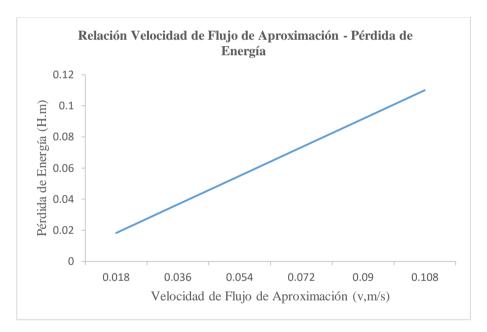

Tabla 4-3: Datos experimentales y resultados para pérdida de energía por expresión clásica para orificios

Característica	Unidades	Valor	Ecuación
Caudal de aproximación	m^3/s	0,1	
(Q)			
Coeficiente de descarga ©		0,6	
Área efectiva de flujo de la	m^2	0,19	
rejilla (A)			
Pérdida de energía (H)	m	0,004913611	Ec. 6-3


Realizado por: Jenifer Jurado; Lizbeth Sarmiento. 2016

MODELO MATEMÁTICO SEGÚN KIRSCHMER


Pérdida de energía


Gráfico 1-3: Automatización para factor de barras **Realizado por:** Jurado Jenifer; Sarmiento Lizbeth.2016

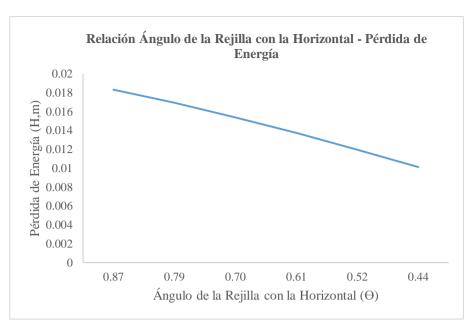
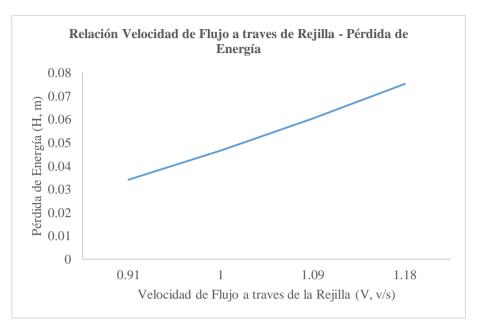

Gráfico 2-3: Automatización para ancho máximo de barras **Realizado por:** Jurado Jenifer; Sarmiento Lizbeth.2016

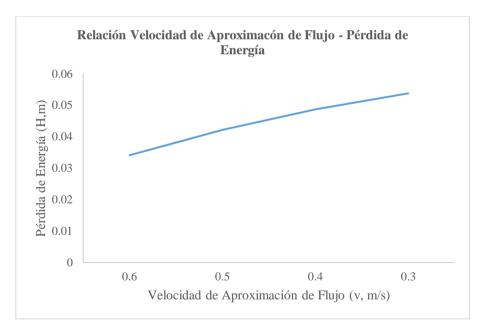
Gráfico 3-3 Automatización para separación mínima entre barras **Realizado por:** Jurado Jenifer; Sarmiento Lizbeth.2016

Gráfico 4-3: Automatización de relación velocidad de flujo aproximación **Realizado por:** Jurado Jenifer; Sarmiento Lizbeth.2016


Gráfico 5-3: Automatización de Relación Ángulo de la Rejilla con la Horizontal

Realizado por: Jurado Jenifer; Sarmiento Lizbeth.2016

En el modelo matemático según Kirschmer la pérdida de energía de una rejilla, depende de las formas de las barras y de la energía de velocidad de flujo entre barras.


En la Figura 1-3, se tiene la relación entre el factor de forma de las barras y la pérdida de energía, en donde el valor de β correspondiente a 1,67 ,utilizado para barras rectangulares con cara semicircular aguas arriba y abajo representa la menor pérdida, en la automatización de este modelo también se evaluaron parámetros como w (ancho máximo de la sección transversal entre barras),que como se indica en la Figura 2-3, es directamente proporcional a la pérdida de energía, y b (separación mínima entre barras) que en la Figura 3-3 muestra que la relación con la pérdida es por el contrario inversa, la relación h_v VS H indicada en la Figura 4-3, dice que mientras más bajo sea el valor de la energía de velocidad de flujo de aproximación, habría una menor pérdida de energía en el sistema, finalmente en la Figura 5-3, mientras el ángulo que forma la rejilla con la horizontal sea más bajo, la pérdida de energía en las rejillas sería menor. Se verifico que al utilizar los datos de las muestras proporcionadas por la empresa HETWEN, la pérdida de energía utilizando este modelo, se encuentra dentro de los límites permisibles de hasta 15 cm.

MODELO MATEMÁTICO ALTERNATIVO PARA CALCULAR PERDIDAS EN REJILLAS **Pérdida de energía**

Gráfico 6-3: Gráfico de la automatización de Relación Velocidad de Flujo a través de Rejilla

Realizado por: Jurado Jenifer; Sarmiento Lizbeth.2016

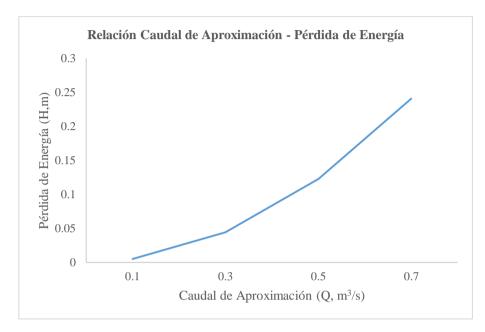
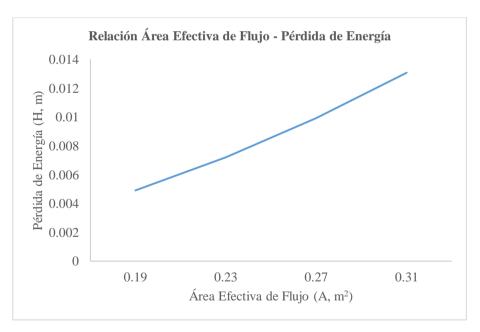


Gráfico 7-3: Automatización de relación velocidad de aproximación de flujo **Realizado por:** Jurado Jenifer; Sarmiento Lizbeth.2016


Este modelo se ve representado en la Figura 6-3 y 7-3, en donde se evalúan respectivamente, la relaciones V vs H y v vs H, y se observa que en el primer caso existe una relación directamente proporcional, mientras que en el segundo a menor velocidad de aproximación de flujo mayor es la pérdida de energía en las rejillas.

Para este caso se obtuvieron valores de H, que cumplen con lo requerido en la Tabla 1-3.

MODELO MATEMÁTICO UTILIZANDO LA EXPRESIÓN CLÁSICA PARA ORIFICIOS **Pérdida de energía**

Gráfico 8-3: Automatización de relación caudal de aproximación **Realizado por:** Jurado Jenifer; Sarmiento Lizbeth.2016

Gráfico 9-3: Automatización de relación área efectiva de flujo **Realizado por:** Jurado Jenifer; Sarmiento Lizbeth.2016

Al trabajar con los datos de muestras proporcionadas para este modelo, en las Figuras 8-3 y 9-3, el caudal de aproximación tanto como el área efectiva de flujo de la rejilla son directamente proporcionales a la variación de la pérdida de energía.

En este modelo en particular, en la figura 8-3, existe una pérdida de energía de 0,24 cm, dato que se encuentra fuera del límite permisible de 0,15cm, al haber identificado esta anomalía mediante la automatización, se pueden realizar las respectivas correcciones para realizar un diseño óptimo. En este caso se observa que el último par de datos el caudal que ingresa es de 0,7 m³/ s, esto en un área de 0,19 m², arrojando como resultado 0,24 cm correspondientes a la pérdida de energía, como solución se deberá disminuir el área efectiva de flujo para dicho caudal, para que así alcance el valor máximo permitido establecido en la Tabla 1-3.

Nota: Tomándose en cuenta cada uno de los parámetros analizados mediante automatización para los tres modelos presentados y los antecedentes previos en cada caso, para el diseño de un sistema de cribado, se podría llegar a una mínima pérdida de energía en las rejillas, mejorando así la función para la cual serán implementadas.

3.2.2 Flotación

Descripción

Esta operación de separación de sólidos se fundamenta en la ley de Henry-Dalton, el tanque de flotación se diseña en base a la carga hidráulica superficial, tanto para la flotación por aire disuelto como para la flotación por aire inducido.

La flotación por aire disuelto se logra introduciendo agua residual en un tanque de retención cerrado, al cual se le agrega aire para su presurización, posteriormente se le permite salir a presión atmosférica y liberar el gas en exceso del de saturación. Reduciendo de esta manera la densidad de los materiales en suspensión, por el contacto con gotas ínfimas de aire (Edzwald, J., 1995, pp. 1-23)

Según la Ley de Henry, la concentración de un gas disuelto es función de su presión relativa.

En sistemas de tratamientos de agua, la flotación se puede añadir al esquema de las maneras siguientes:

- Como unidad de pretratamiento antes de la unidad de sedimentación primaria.
- Como unidad de tratamiento primario.
- Como unidad de pretratamiento de aguas residuales industriales, antes de la descarga al alcantarillado sanitario municipal.
- Como unidad de tratamiento de efluentes de lagunas de estabilización para remoción de algas.
- Como unidad específica de flotación, para remover material suspendido no removido en otros procesos.
- Para flotación de lagunas coaguladas.
- Para flotación de floc liviano.

Entre las notables ventajas del proceso de flotación se señalan:

- Grasas sólidas livianos y sólidos pesados, se remueven todos en una sola unidad.
- Las tasas altas de flujo, mayores cargas superficiales y períodos de retención más cortos permiten la construcción de tanques más pequeños con menores requerimientos de espacio y menor costo.
- En muchos casos se reduce la presencia de olores, debido a los períodos cortos de retención y a la presencia de oxígeno disuelto en el efluente.
- La mayoría de casos se obtiene lodos más espesos que los producidos en unidades de sedimentación por gravedad.
- En procesos de coagulación es posible que se requieran menos coagulantes pues la flotación no exige un floc pesado.

Tabla 5-3: Saturación del airea a una atmósfera

Temperatura	Solubilidad, C	
°C	mL aire/ L de agua.	
0	29,2	
5	25,7	
10	22,8	
15	20,6	
20	18,7	
25	17,1	
30	15,7	

Fuente: TRATAMIENTOS DE AGUAS RESIDUALES: TEORÍAS Y PRINCIPIOS DE DISEÑO, 2002

Tabla 6-3: Valores de a/s para diferentes presiones A 20 °C

Sólidos	Presión manométrica suministrada por el compresor P_T							
suspendidos	40	50	60	70	80	90	100	Psi
S_o	276	345	414	483	552	621	690	KPa
Mg/L	2068	2585	3102	3619	4136	4653	2170	mmHg
1000	0,017	0,023	0,029	0,034	0,040	0,046	0,052	
900	0,019	0,025	0,032	0,038	0,045	0,051	0,057	
800	0,021	0,029	0,036	0,043	0,050	0,057	0,065	
700	0,024	0,033	0,041	0,049	0,057	0,066	0,074	
600	0.028	0,038	0,048	0,057	0,067	0,076	0,086	
500	0,034	0,046	0,057	0,069	0,080	0,092	0,103	
400	0,043	0,057	0,071	0,086	0,100	0,115	0,129	
300	0,057	0,076	0,095	0,114	0,134	0,153	0,172	
200	0,085	0,114	0,143	0,172	0,201	0,229	0,258	
100	0,170	0,226	0,286	0,343	0,401	0,459	0,517	

Fuente: TRATAMIENTOS DE AGUAS RESIDUALES: TEORÍAS Y PRINCIPIOS DE DISEÑO, 2002

Tabla 7-3: Parámetros de diseño de unidades FAD

Intervalo Según ensayo de jarras 5 – 30 10 – 150	Típico 20 70
5 – 30 10 – 150	
5 – 30 10 – 150	
10 – 150	70
5 - 15	10
1 - 3,2	2,4
120 – 360	192
0,1-0,4	0,3
350 – 620	485
50 – 90	70
6 – 30	6 - 12
10 – 120	40 - 50
0.2 6	3
	120 - 360 $0,1 - 0,4$ $350 - 620$ $50 - 90$ $6 - 30$

Fuente: TRATAMIENTOS DE AGUAS RESIDUALES: TEORÍAS Y PRINCIPIOS DE DISEÑO, 2002

Modelo matemático de diseño para flotación

Modelo basado en la ecuación de Henry

$$C' = C \left(\frac{P' - P_V}{760 - P_V} \right) Ec. 7-3$$

Donde:

P'= Presión absoluta del aire; mm de Hg.

C = Solubilidad del aire en agua a la presión de una atmósfera, mL de aire/L de agua.

 P_V = Presión del vapor de agua; mm de Hg.

C'= Solubilidad del aire en el agua, a la presión absoluta P'; mL aire/ L de agua.

Cantidad de aire liberado:

$$C_T - C_L = C \left[\frac{f(P_T - P_V) - (P_L - P_V)}{760 - P_V} \right] Ec. 8-3$$

Donde:

 P_T = Presión de operación del tanque, mm de Hg.

 P_L = Presión local atmosférica mm de Hg.

C = Solubilidad de saturación del aire a una atmósfera de presión, mL de aire/L de agua.

 P_V = Presión del vapor de agua a la temperatura del ensayo; mm de Hg.

f = Fracción de saturación alcanzada en el tanque de presurización, generalmente, 0,5 a 0,8.

 C_T = Solubilidad de saturación del aire, a la presión de operación del tanque; mL aire/ L.

 C_L = Solubilidad de saturación del aire, a la presión local atmosférica; mL aire/ L.

Relación adimensional aire/sólidos (A/S)

$$\frac{A}{S} = \frac{mg/L \text{ de aire liberado por la despresurización.}}{mg/L \text{ desolidos en el afluente}} \quad Ec. 9-3$$

$$\frac{A}{S} = \frac{C \text{ d} \left[f(P_T - P_V) - (P_L - P_V)\right]}{S_0(760 - P_V)} \quad Ec. 10-3$$

Donde:

d= Densidad del aire a las condiciones del problema mg/mL.

 S_0 = concentración de sólidos suspendidos en el afluente mg/mL.

C = Solubilidad de saturación del aire a una atmósfera de presión, mL de aire/L de agua.

 P_T = Presión absoluta de operación, mm de Hg.

 P_L = Presión local atmosférica, mm de Hg.

 P_V = Presión de vapor de agua a la temperatura de operación, mm de Hg.

f = Fracción de aire disuelto a la presión P_T , generalmente 0,5.

A/S = Relación a dimensional aire/sólido.

Para residuos que requieren recirculación, se tiene:

$$\frac{A}{S} = \frac{C d Q_R [f(P_T - P_V) - (P_L - P_V)]}{S_0 Q (760 - P_V)} Ec. 11-3$$

Donde:

 Q_R = caudal recirculado presurizado; L/s

Q= caudal afluente al sistema de flotación; L/s.

A/S = Relación a dimensional aire/sólido.

Calcular la densidad del aire:

$$d = \frac{1,293}{1+0.00367 T} \left(\frac{H}{76}\right) Ec. 12-3$$

Separador de aceite API

El área horizontal mínima

$$A_H = \frac{QF}{V_t} Ec. 13-3$$

Donde:

 $Q = \text{caudal de agua residual}, m^3/s$

F= factor de compensación para cortocircuito y turbulencia.

 V_t = velocidad de elevación del glóbulo de aceite de diámetro 0,015cm; m/s

 A_H = área horizontal mínima, m^2

$$F = F_1 F_2 Ec. 14-3$$

Donde:

 F_1 = factor de compensación para cortocircuito, generalmente igual a 1,2.

 F_2 = factor de compensación para turbulencia, el cual depende del valor de la reacción entre la velocidad horizontal de flujo y la velocidad de elevación del glóbulo de aceite.

F= factor de compensación para cortocircuito y turbulencia.

La velocidad de elevación del glóbulo

$$V_t = \frac{g(\rho_W - \rho_0)D^2}{18\mu} Ec. 15-3$$

Donde:

g= aceleración de la fuerza de la gravedad; m/s^2

 μ = viscosidad absoluta del agua residual, Ns/ m^2 .

 ρ_w = densidad del agua residual, Kg/ m^3 .

 ρ_0 = densidad del aceite, Kg/ m^3 .

D= diámetro del aceite, m.

 V_t = velocidad de elevación del glóbulo de aceite; m/s

Velocidad horizontal máxima

$$V_H \le 15V_t$$

 $V_H \le 0.0015 \, {}^m/_S \, Ec. \, 16-3$

El área de sección transversal del tanque

$$A_C = \frac{Q}{V_H} Ec. 17-3$$

Donde:

 $Q = \text{caudal de agua residual}, m^3/s$

 V_H = velocidad horizontal de flujo, m/s

 A_C = área de sección transversal del flujo, m^2 .

La relación mínima de profundidad/ ancho es de 0,3 máxima 0,5.

$$0.3 \le \frac{d}{8} \le 0.5 Ec. 18-3$$

$$0.9 \ m \le d \le 2.4 \ m$$

$$1.8 m \le B \le 6.0 m$$

La longitud del tanque separador API

$$L = \frac{FV_H d}{V_t} Ec. 19-3$$

Donde:

F= factor de compensación para cortocircuito y turbulencia.

 V_H = velocidad horizontal de flujo, m/s.

 V_t = velocidad de elevación del glóbulo de aceite; m/s

L = la longitud del tanque separador API, m.

Modelo de Francis para perdidas sobre l vertedero:

$$H = \left(\frac{Q}{1,84 L}\right)^{2/3} Ec. \ 20-3$$

Donde:

 $Q = \text{caudal de agua residual } m^3/s.$

L= longitud del vertedero, m.

H= altura de lámina de agua sobre el vertedero, m.

Resultados para flotación: Diseño Conceptual

Tabla 8-3: Datos experimentales y resultados para relación adimensional aire/sólido, sin incluir recirculación.

Características	Unidades	Valor	Ecuación
Solubilidad de saturación; C	mL/L	18,7	
Densidad del aire en condiciones del problema; d	mg/mL	1,205	
Concentración de sólidos suspendidos del afluente;	mg/L	3000	
So	mm de Hg	5730	
Presión absoluta de operación PT		0.5	
Fracción de aire disuelto a la presión PT	mm de Hg	560	
Presión local atmosférica PL	mm de Hg	17,6	
Presión de vapor de agua a temperatura de			
operación, Pv.		0.037	
Relación adimensional aire/solido			7-3

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 9-3: Datos experimentales y resultados para relación adimensional aire/sólido, incluyendo recirculación.

Características	Unidades	Valor	Ecuación
Solubilidad de saturación; C	mL/L	18,5	
Densidad del aire en condiciones del problema; d	mg/mL	1,205	
Concentración de sólidos suspendidos del afluente;	mg/L	3000	
So	mm de Hg	2828	
Presión absoluta de operación Pr		0.5	
Fracción de aire disuelto a la presión PT	mm de Hg	760	
Presión local atmosférica PL	mm de Hg	17,6	
Presión de vapor de agua a temperatura de	L/s	596	
operación.	L/s	400	
Caudal recirculado presurizado, QR.		0,0159	
Caudal afluente al sistema de flotación, Q.			
Relación adimensional aire/solido			8-3

Tabla 10-3: Datos experimentales y resultados para área horizontal mínima del separador de aceite API

Características	Unidades	Valor	Ecuación
Caudal de agua residual, Q	m³/s	0,018	
Factor de compensación para cortocircuito y		1,64	
turbulencia, F			
Velocidad de elevación del glóbulo de aceite, Vt	m/s	0,000899	
Área horizontal mínima	m^2	32,84	16-3

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 11-3: Datos experimentales y resultados para velocidad de elevación del glóbulo de aceite del separador de aceite API

Características	Unidades	Valor	Ecuación
Aceleración de la fuerza de gravedad, g	m/s ²	9,81	
Viscosidad absoluta del agua residual, μ	Ns/m ²	0,0006	
Densidad del agua residual, ρ_w	Kg/m ³	990	
Densidad del aceite, ρ_o	Kg/m ³	946	
Diámetro del glóbulo de aceite, D	m	0,00015	
Velocidad de elevación del glóbulo de aceite	m/s	0,000899	12-3

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 12-3: Datos experimentales y resultados para área de sección transversal del separador de aceite AP

Características	Unidades	Valor	Ecuación
Caudal de agua residual, Q	m³/s	0,018	
Velocidad horizontal de flujo, Vн	m/s	0,0135	
Área de sección transversal	m^2	370,37	14-3

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 13-3: Datos experiméntale y resultados para la longitud del tanque del separador de aceite API

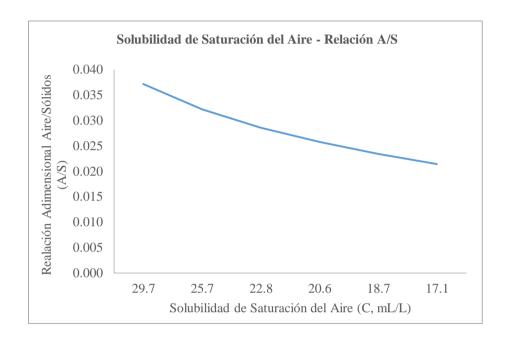

Características	Unidades	Valor	Ecuación
Factor de compensación para cortocircuito y		1,64	
turbulencia, F.			
Velocidad horizontal de flujo, VH.	m/s	0,0135	
Velocidad de elevación del glóbulo de aceite, Vt.	m/s	0,000899	
Profundidad del agua residual en el separador, d.	m	1	
Longitud del tanque	m	24.63	16-3

Tabla 14-3: Datos experimentales y resultados para altura de lámina sobre el vertedero del separador de aceite API

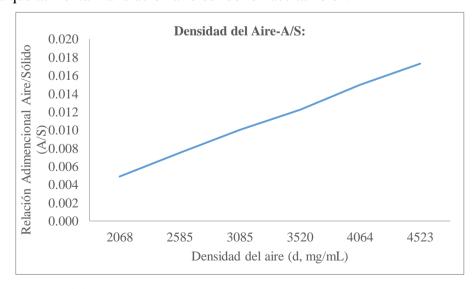
Características	Unidades	Valor	Ecuación
Caudal de agua residual, Q.	m ³ /s	0,018	
Longitud del vertedero, L.	m	24,66	
Altura de lámina sobre el vertedero	m	0,005	17-3

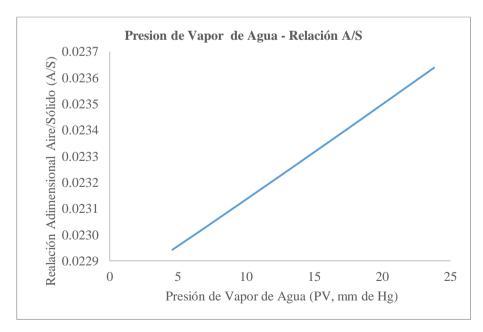
MODELO BASADO EN LA ECUACIÓN DE HENRY

Relación Óptima de Aire Sin Recirculación

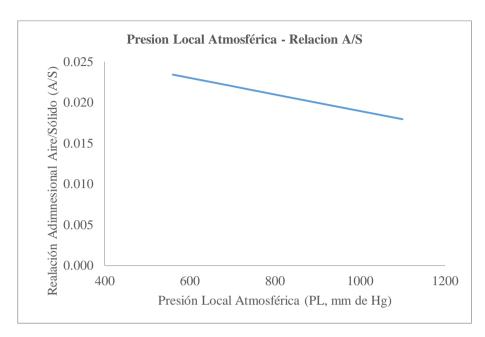
Gráfico 10-3: Automatización de Solubilidad de Saturación del Aire **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En la gráfica 10-3 el efecto de la solubilidad de saturación del aire tiene un efecto directamente proporcional sobre la relación adimensional de aire solido; es decir a medida que aumentan la relación aire-sólido lo hace también.

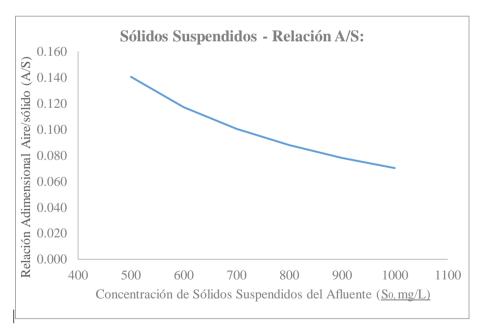



Gráfico 11-3: Automatización para densidad del Aire. Realizado por: Jenifer Jurado; Lizbeth Sarmiento. 2016

La figura 11-3 la densidad de aire a condiciones de operación provoca un efecto que un aumento en esta ocasiona un incremento en esta relación.


Gráfico 12-3: Automatización para presión absoluta de operación. **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

La relación aire sólido es directamente proporcional a la presión absoluta P_T , al incrementar la presión incrementa también esta relación.


Gráfico 13-3: Automatización para la presión de vapor de agua. **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En la figura 13-3 se ve como que el efecto de la presión de vapor respectivamente tiene un efecto directamente proporcional sobre la relación adimensional de aire sólido.

Gráfico 14-3: Automatización para presión local atmosférica **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

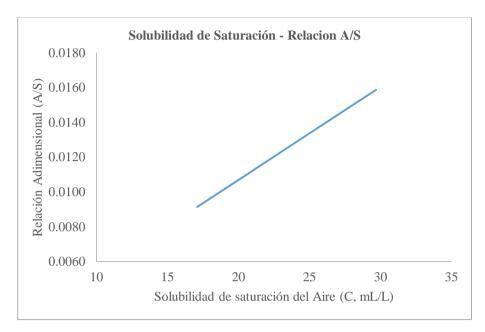
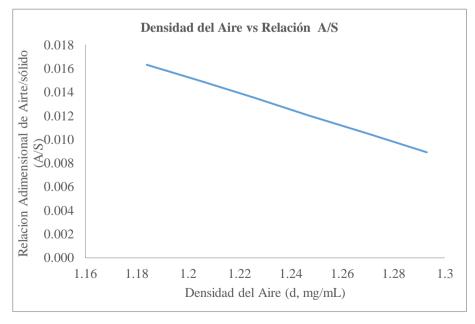
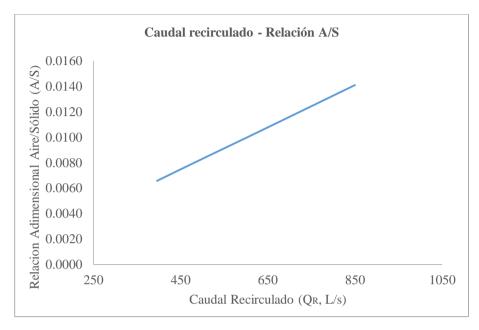

La figura 14-3 presenta una proporción inversa ya que a medida que crece la presión local atmosférica en el efluente la relación aire-sólido disminuye.

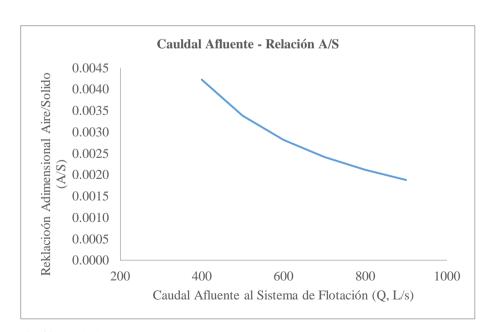
Gráfico 15-3: Automatización para concentración de sólidos suspendidos del afluente


La figura 15-3 es inversamente proporcional, ya que a medida que crece la concentración de solidos suspendidos en el efluente la relación aire-solido disminuye.

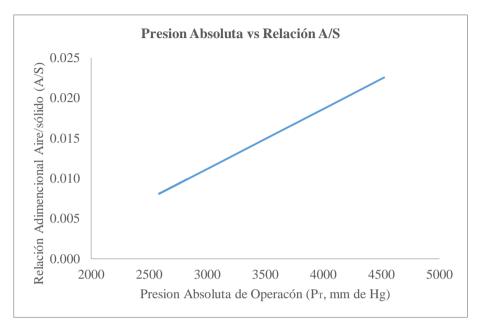
RELACIÓN ÓPTIMA DE AIRE CON RECIRCULACIÓN


Gráfico 16-3: Automatización para solubilidad de saturación del aire **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

El comportamiento para la relación A/S cuando se tiene recirculación es similar para la solubilidad de saturación C, cuando no se tiene recirculación, es decir, directamente proporcional.


Gráfico 17-3: Automatización para densidad del aire sin recirculación **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En la figura 17-3 la densidad muestra un comportamiento inverso al de la ecuación sin recirculación, esto debido a la inclusión de un caudal de recirculación en el modelo matemático.


Gráfico 18-3: Automatización para caudal recirculado **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Al subir el caudal recirculado presurizado Q_R , lo hace también la relación A/S, es decir son directamente proporcionales.

Gráfico 19-3: Automatización para caudal afluente al sistema de flotación. **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

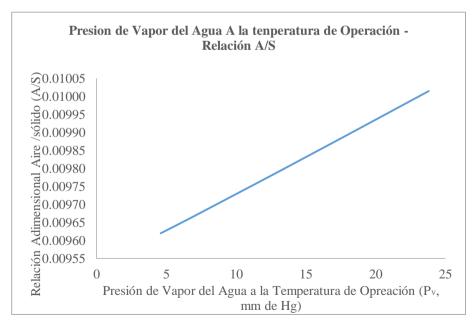
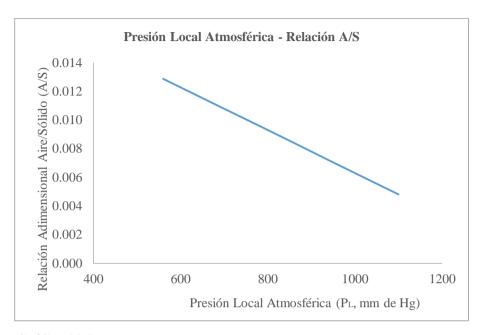

Cuando el caudal afluente al sistema de flotación Q es muy elevado la relación aire-sólidos disminuye. Cuando se diseña unidades de flotación por aire disuelto con recirculación se debe tener cuidado con la presión optima de trabajo.

Gráfico 20-3: Automatización para presión absoluta de operación incluyendo recirculación.


Realizado por: Jenifer Jurado; Lizbeth Sarmiento. 2016

Un incremento de la presión absoluta de operación P_T resulta en un aumento proporcional en la relación A/S.

Gráfico 21-3: Automatización para presión de vapor de agua a la temperatura de operación incluyendo recirculación **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

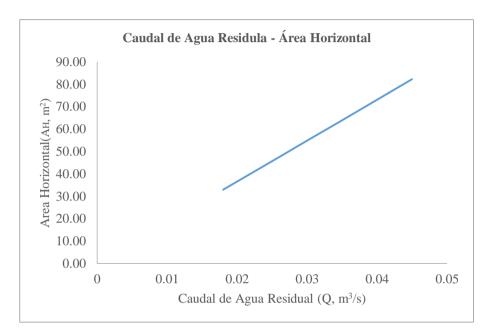
El comportamiento para la relación A/S en esta gráfica es directamente proporcional a la presión de vapor de agua P_V .

Gráfico 22.3: Automatización para presión local atmosférica, incluyendo recirculación

Realizado por: Jenifer Jurado; Lizbeth Sarmiento. 2016

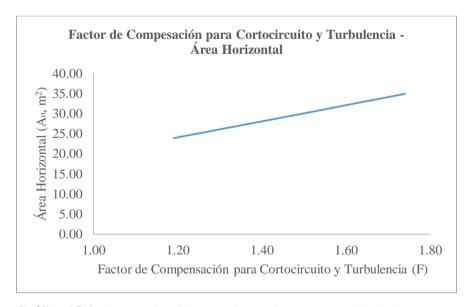
La presión local atmosférica P_L es inversamente proporcional a la relación aire-sólido.

Gráfico 23-3: Automatización de concentración de solidos suspendidos, incluyendo recirculación.

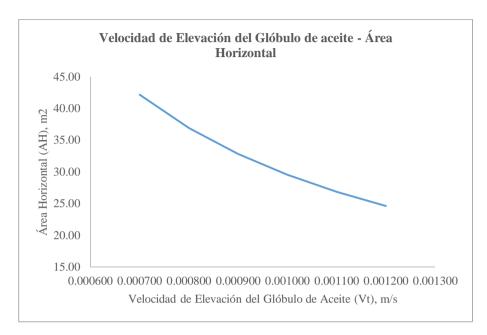

Realizado por: Jenifer Jurado; Lizbeth Sarmiento. 2016

Los valores concentración de solidos suspendidos S_o , altos cuando hay recirculación tienen un efecto de disminución en la relación A/S. La concentración de sólidos suspendidos juega un

papel importante ya que al tener aguas residuales menos contaminadas la eficiencia requerida para lograr un mayor grado de clarificación aumenta.


SEPARADOR DE ACEITE API

Área Horizontal


Gráfico 24-3: Automatización para caudal de agua residual **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

El área horizontal A_H , es afectada por el caudal de agua residual Q, de tal manera que al incrementar este también lo hará el área horizontal del separador.

Gráfico 25-3: Automatización para factor de compensación de barras **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Al aumentar el factor de compensación para cortocircuito y turbulencia F, el área horizontal del separador será mayor. El factor F depende de la relación que existe entre V_H , y V_t .

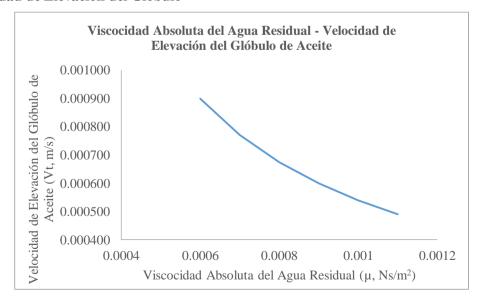
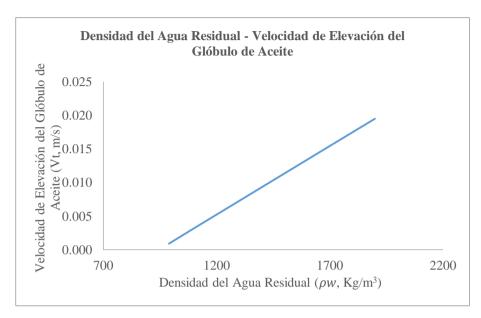
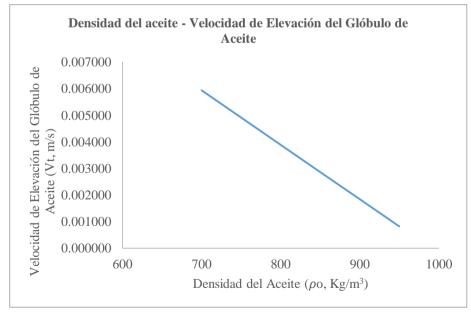


Gráfico 26-3: Automatización para velocidad de elevación del glóbulo de aceite.

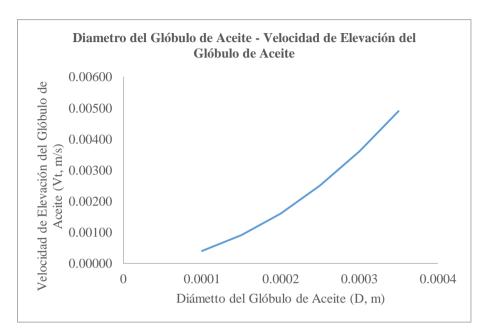
Realizado por: Jenifer Jurado; Lizbeth Sarmiento. 2016


La velocidad de elevación del glóbulo de aceite V_t al incrementarse provoca una disminución en esta variable a que a mayor velocidad de elevación se requiere una menor área para la elevación del glóbulo de aceite.

Velocidad de Elevación del Glóbulo


Gráfico 27-3: Automatización para viscosidad absoluta **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

La velocidad de elevación del glóbulo de aceite V_t en el agua residual disminuye cuando aumenta la viscosidad absoluta del agua residual μ .


Gráfico 28-3: Automatización para densidad del agua **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

La velocidad de elevación del glóbulo de aceite V_t aumenta conforme también aumenta la densidad del agua residual ρ_w , hay mayor cantidad de sustancias en el volumen de agua.

Gráfico 29-3: Automatización para densidad del aceite. **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

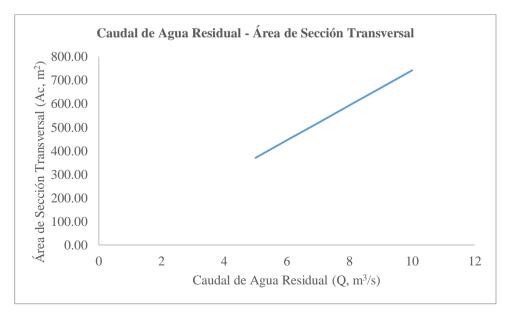
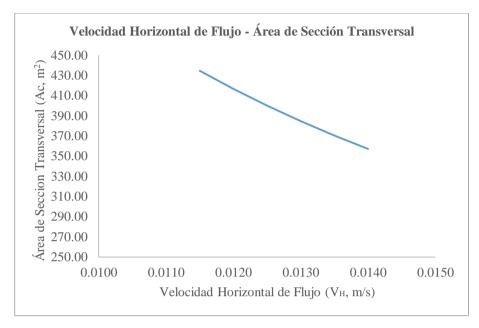

La velocidad de elevación del glóbulo de aceite V_t es inversamente proporcional a la densidad del aceite, cuando la densidad del aceite es mayor la dificultad que tiene para elevarse en el agua residual.

Gráfico 30-3: Automatización para diámetro del glóbulo de aceite **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


La velocidad de elevación del glóbulo de aceite V_t es directamente proporcional al diámetro del glóbulo de aceite D.

Área de Sección Transversal

Gráfico 31-3: Automatización para caudal de agua residual **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

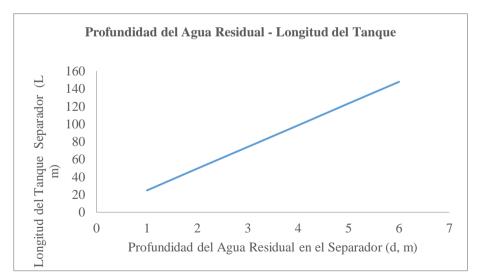
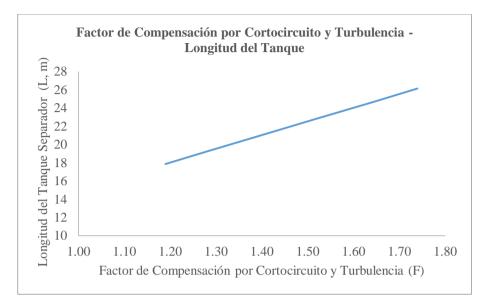
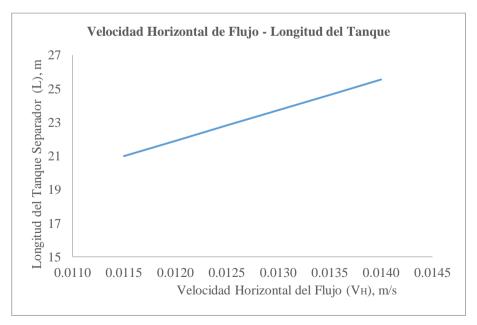

El área de sección transversal se incrementa cuando lo hace el caudal de agua residual, ya que es necesaria una mayor área para poder realizar la separación.

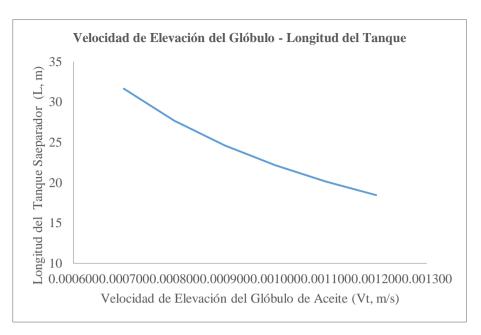
Gráfico 32-3: Automatización para velocidad horizontal de flujo **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


La velocidad d flujo horizontal V_H , es inversamente proporcional al área de sección transversal; la velocidad horizontal debe ser menor a 0,015 m/s, hallada por medio de la ecuación 13.

Longitud del Tanque

Gráfico 33-3: Automatización para profundidad del agua residual en el separador API


Cuando se tiene una profundidad del agua en el tanque separador d es necesario un tanque con mayor longitud, la profundidad del tanque para una mayor eficiencia va de 0.9 m a 2.4 m.


Gráfico 34-3: Automatización para factor de compensación por cortocircuito y turbulencia

Realizado por: Jenifer Jurado; Lizbeth Sarmiento. 2016

El factor de compensación por cortocircuito y turbulencia, junto con la velocidad horizontal máxima aumentan la longitud de tanque requerida para el diseño necesita ser mayor, es decir tiene una relación directamente proporcional.

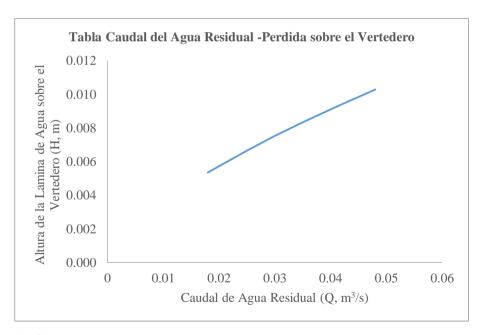
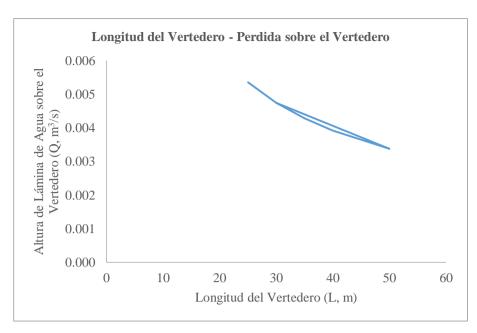

Gráfico 35-3: Automatización velocidad horizontal de flujo. **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento. 2016

Gráfico 36-3: Automatización para velocidad de elevación del glóbulo de aceite. **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


La velocidad de elevación del glóbulo V_t es inversamente proporcional a la longitud del tanque.

Perdidas Sobre el Vertedero

Gráfico 37-3: Automatización para caudal de agua residual. **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento. 2016

El caudal de agua residual Q, es directamente proporcional a las perdidas sobre el vertedero rectangular, con caudales elevados la velocidad de flujo es alta y la altura de lámina sobre el vertedero es mayor.

Gráfico 38-3: Automatización para longitud del vertedero **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Las pérdidas sobre el vertedero rectangular disminuyen cuando se tiene una mayor longitud del vertedero, sí las pérdidas alcanzan los valores mayores de 1,5 es recomendable utilizar otro tipo de vertedero o diseñar la salida con un perfil de caída.

3.2.3 Aireación

Descripción

El proceso de aireación tiene como finalidad en los tratamientos de agua residual es suministrar mezcla y oxígeno para los procesos biológicos aerobios.

Esta operación se fundamenta en la teoría de doble capa de Lewis y Whitman supone que la interfaz gas - líquido consiste en una película de gas y una película de líquido a través de la cual se transfiere el gas por difusión molecular (Ramalho, 2003, pp 146-147)

Las funciones más importantes son:

- Transferencia de oxígeno disuelto.
- Remoción de sustancias volátiles.
- Remoción de dióxido de carbono.
- Remoción de anhídrido sulfuroso.
- Remoción de hierro y magnesio.
- Remoción de metano, cloro y amoniaco.
- Remoción de compuestos orgánicos volátiles.

Especificaciones técnicas de diseño para aireación

Tabla 15-3: Constante de la ley de Henry para diferentes gases solubles en agua

Temperatura	$Hx10^{-4}$, $atm/fraccionde\ mol$							
°C	Aire	CO_2	CO	H_2	H_2S	CH ₄	N_2	02
0	4,32	0,0728	3,52	5,79	0,0268	2,24	5,29	2,55
10	5,49	0,104	4,42	6,36	0,0367	2,97	6,68	3,27
20	6,64	0,142	5,36	6,83	0,0483	3,76	8,04	4,01
30	7,71	0,186	6,20	7,29	0,0609	4,49	9,24	4,75
40	8,70	0,223	6,96	7,51	0,0745	5,20	10,4	5,35
50	9,46	0,283	7,61	7,65	0,0884	5,77	11,3	5,88
60	10,10	0,341	8,21	7,65	0,103	6,26	12,0	6,29

Fuente: METCALF & EDDY, INC. Wastewater Engineering: Treatment, Disposal, Reuse, 1979

Tabla 16-3: Dimensiones típicas de tanques de aireación para aireadores mecánicos superficiales

POTENCIA I	DEL AIREADOR	PROFUNDIDAD DEL TANQUE	ANCHO DEL TANQUE
HP	KW	m	M
10	7.5	3,0 - 3,7	9,1 - 12,2
20	15	3,7 - 4,3	10,7 - 15,2
30	22	4,0 - 4,6	12,2 - 18,3
40	30	3,7 - 5,2	13,7 - 19,8
50	37	4,6 - 5,5	13,7 - 22,9
75	56	4,6 -6,1	15,2 - 25,9
100	75	4,6 -6,1	18,3 - 27,4

Fuente: CULP, R.L Y CULP, G.L, Advance Wastewater Treatment, 1978.

Modelo matemático de diseño para aireación

La teoría de Fick:

$$N = \frac{dm}{dt} = KA(C_S - C) Ec. 21-3$$

$$\frac{N}{V} = \frac{dC}{dt} = K \frac{A}{V} (C_S - C) Ec. 22-3$$

Donde:

K= coeficiente de/saturación del gas en solución, g/m^3

C= concentración del gas en la fase liquida para el tiempo t, g/m^3

V= volumen de la fase líquida, m^3 .

 $N=\frac{dm}{dt}=$ tasa másica der transferencia de gas por difusión, g/s

 $\frac{dC}{dt}$ = tasa de cambio de la concentración del gas, g/m^3

$$K_L a = K \frac{A}{V} Ec. 23-3$$

$$\frac{dC}{dt} = K_L a (C_S - C) Ec. 24-3$$

Donde:

K= coeficiente de/saturación del gas en solución, g/m^3

C= concentración del gas en la fase liquida para el tiempo t, g/m^3

V= volumen de la fase líquida, m^3 .

 C_s = concentración de gas en la fase liquida para el tiempo t, g/m^3

a= área específica o área interfacial por unidad de volumen, m^2/m^3

 $K_L a =$ coeficiente global de transferencia del gas m^3/ms .

Ley de Henry:

$$P = H X Ec. 25-3$$

Donde:

H= contante de la ley de Henry para el gas a la temperatura de cálculo.

X= fracción molar de equilibrio del gas disuelto.

P= presión parcial de gases, atm.

$$X = \frac{n_g}{n_g + n_w} Ec. 26-3$$

Donde:

 n_q = moles de gas.

 n_w = moles de agua.

X= fracción molar de equilibrio del gas disuelto

El valor de corrección:

$$\alpha = \frac{K_L a \text{ del agua residual}}{K_L a \text{ del agua limpia}} Ec. 27-3$$

Donde:

 $K_L a$ = coeficiente global de transferencia del agua residual

 $K_L a$ = coeficiente global de transferencia del agua limpia

 α = relación de la tasa de transferencia de oxígeno en agua residual a agua potable, a la misma temperatura.

El factor de corrección de la concentración de saturación de OD, en aguas residuales

$$\beta = \frac{C_s(agua\ residual)}{C_s(agua\ limpia)} = \frac{C_{sw}}{C_s} Ec.\ 28-3$$

Donde:

 C_s = concentración de gas en el agua residual para el tiempo t, g/m^3

 C_s = concentración de gas en el agua limpia para el tiempo t, g/m^3

 β = Relación de concentración de saturación de OD, en el agua residual a la del agua potable o destilada, generalmente 0,8 a 1,0.

Efecto de la temperatura sobre la difusividad y viscosidad se tiene en cuenta por:

$$K_L a_{(T)} = K_L a_{(20)} \theta^{T-20} Ec. 29-3$$

 $\theta = 1,020$ para sistemas de burbujas

 $\theta = 1,024$ para sistemas de aireación mecanica.

 $K_L a_{(T)} = \text{coeficiente de tranferencia del gas a T °C}$

 $K_L a_{(20)} = \text{coeficiente de tranferencia del gas a 20°C}$

Diseño de un sistema de aireación

(Tasa de cambio en la concentración del gas) = (Coeficiente global de transferencia del gas) (Fuerza impulsora)

La capacidad de oxigenación está dada por:

$$N = K_L a (C_s - C_L) Ec. 30-3$$

Donde:

 $K_L a =$ coeficiente de transferencia de oxígeno, h^{-1}

N= tasa de transferencia de oxígeno en condiciones de operación; Kg/KW h o Kg/h o hg/MJ

Para condiciones estándares de °C, 0 msnm y agua potable:

$$N_0 = K_L a_{20}(C_{s_{20}}) Ec. 31-3$$

Donde:

 $C_{s_{20}}$ = concentración de saturación en agua potable en condiciones estándar, 20°C, nivel de mar, mg/L.

 $K_L a_{20}$ = coeficiente de transferencia de oxígeno en condiciones estándares, h^{-1}

N₀= tasa nominal de transferencia del oxígeno del aireador, Kg/KWh o Kg/h o hg/MJ.

Para el agua residual, condiciones reales:

$$N = K_L a_{(W,T)} (C_{sw} - C_L) Ec. 32-3$$

Donde:

 $K_L a_{(W,T)}$ = coeficiente de transferencia de oxígeno en el agua residual, a la temperatura T °C, h^{-1}

 C_{sw} = concentración de saturación de oxígeno para el agua residual a su temperatura y altitud, mg/L.

 C_L = concentración de la operación del oxígeno disuelto, mg/L.

N= tasa de transferencia de oxígeno en condiciones de operación; Kg/KWh o Kg/h o hg/MJ.

La relación de las capacidades de oxigenación según las ecuaciones:

$$\frac{N}{N_0} = \frac{K_L a_{(W,T)}(C_{SW} - C_L)}{K_L a_{20}(C_{S20})} Ec. 33-3$$

Transformando:

$$N = N_0 \frac{K_L a_{(W,T)}(C_{sw} - C_L)}{K_L a_{20}(C_{s_{20}})} Ec. 34-3$$

Reemplazando lo de ecuaciones anteriores:

$$N = N_0 a \theta^{T-20} \frac{(\beta C_{S(T,A)} - C_L)}{(C_{S_{20}})} Ec. 35-3$$

Donde:

 N_0 = tasa nominal de transferencia del oxígeno del aireador, Kg/KWh o Kg/h o hg/MJ.

a= relación de la tasa de transferencia de oxígeno en agua residual a la del agua potable.

β= relación de concentración de saturación de OD en el agua residual a la del agua potable.

 θ =coeficiente de temperatura.

 $C_{S(T,A)}$ =concentración de saturación de oxígeno a la temperatura y altitud correspondiente, mg/L.

N= tasa de transferencia de oxígeno en condiciones de operación; Kg/KWh o Kg/h o hg/MJ.

$$C_{S(T,A)} = \frac{C_{S(T,0)}P_A}{760} Ec. 36-3$$

Donde:

 P_A = Presión barométrica del lugar, mm Hg.

 $C_{s(T,0)}$ =concentración de saturación de OD, para la temperatura T y 0 msnm, en agua

 $C_{s(T,A)}$ =concentración de saturación de oxígeno a la temperatura y altitud correspondiente, mg/L.

$$P_A = 760 \left(1 - \frac{A}{9450} \right) Ec. 37-3$$

Donde:

A= altitud del lugar, m.

 P_A = presión barométrica del lugar, mm Hg.

$$C_{s(T,A)} = C_{s(T,0)} \left(1 - \frac{A}{9450}\right) Ec. 38-3$$

Donde:

A= altitud del lugar, m.

 $C_{s(T,0)}$ = concentración de saturación de OD, para la temperatura T y 0 msnm, en agua potable; mg/L. los valores de $C_{s(T,0)}$ se encuentran tabulados en el apéndice C

 $C_{s(T,A)}$ = concentración de saturación de oxígeno a la temperatura y altitud correspondiente, mg/L.

Diseño de sistema aireación difusa

Rendimiento de la unidad de difusión de aire:

$$N = CG^{n}x \frac{H^{m}}{W^{p}} \alpha (1,02)^{T-20} (\beta C_{sm} - C_{L}) Ec. 39-3$$

Donde:

C, n, m, p = constantes características del equipo de aireación, generalmente para unidades inglesas.

G= flujo de airepie³/min en condiciones estándar, por unidad de aireación.

H= profundidad del agua, pie.

W= ancho del tanque de aireación, pie.

 α = relación de la tasa de transferencia de oxígeno del agua residual a agua potable.

T= temperatura, °C.

 C_{sm} = concentración de saturación de OD en agua residual a la profundidad mitad del tanque, mg/L.

 C_L = concentración del OD en el agua, mg/L.

N= rendimiento, $lb O_2/h$

Unidad de aireación.

Solubilidad de oxigeno por la ecuación de Oldshue

$$C_{sm} = \frac{C_s}{2} \left(\frac{P_b}{P} + \frac{O_t}{20.9} \right) Ec. \ 40-3$$

$$C_{sm} = \frac{C_s}{2} \left(\frac{P+0.433h}{P} + \frac{O_t}{20.9} \right) Ec. \ 41-3$$

$$O_t = \frac{21(1-E)100}{79+21(1-E)} Ec. \ 42-3$$

Donde:

 C_s = concentración de saturación de OD, en la superficie, mg/L.

 P_b = presión absoluta a la profundidad del difusor, psia.

P= presión barométrica ambiental, psia.

h= sumergencia del difusor, pie.

E= fracción decimal de oxígeno transferido al agua.

 O_t = contenido de oxígeno en el aire de salida, % de volumen.

La potencia requerida de un compresor para suministrar aire comprimido para difusión se pude calcular por la ecuación deducida para condiciones de compresiones adiabática reversible de un gas ideal:

$$P = \frac{WRT_1}{8,41E} \left[\left(\frac{P_2}{P_1} \right)^{0,283} - 1 \right] Ec. 43-3$$

Donde:

 T_1 = temperatura absoluta de entrada, K.

R= constante de los gases para aire: 8,314 KJ/Kmol K

 P_1 = presión absoluta de entrada, atm.

 P_2 = presión absoluta de salida, atm.

E= eficiencia fraccional del compresor, generalmente de 0,70 a 0,90.

W= caudal másico del aire, Kg/s.

La densidad del aire en función de la temperatura y presión:

$$\rho_a = \frac{1,293}{1+0,00367T} \left(\frac{H}{76}\right) Ec. 44-3$$

Donde:

T= temperatura, °C.

H= presión, atm.

 ρ_a = densidad del aire, Kg/m^3

Diseño de aireación turbia

Ecuación de Eckenfelder:

$$N = CR^{x}G^{n}d^{y}(\beta C_{sm} - C_{L})(1.02)^{T-20}\alpha Ec. 45-3$$

Donde:

C, x, n, y= constantes características del equipo de aireación generalmente en unidades inglesas,

R= velocidad periférica del impulsor, pies/s.

d= diámetro del impulsor, pie.

 $N = lb \ de \ O_2 \ transferido / HP.h$

Elación optima de potencia entre el rotor y el compresor:

$$P_d = \frac{P_r}{P_c} Ec. 46-3$$

Donde:

 P_r = potencia de la turbina o rotor.

 P_c = potencia del compresor o soplador.

 P_d = relación de potencia óptima.

Eficiencia de transferencia de oxígeno para equipos de aireación difusa y turbinas:

$$E_0 = \frac{oxigeno \ absorbudo}{oxigeno \ suministrado} = \frac{OA}{1,05G_0} Ec. \ 47-3$$

Donde:

 E_0 = eficiencia de transferencia de oxígeno

OA= oxigeno absorbido, lb/h.

 G_0 =flujo de aire (pie^3/min) en condiciones estándar para el soplador o compresor.

Tabla 17-3: Datos experimentales y resultados para el rendimiento de la unidad de aireación difusa

Características	Unidades	Valor	Ecuación
Constantes características del equipo de	•		
aireación, generalmente para unidades inglesas:			
C	lbO_2/h	0,0081	
n	lbO_2/h	1,02	
m	lbO_2/h	0,72	
p	lbO_2/h	0,35	
Flujo de aire en condiciones estándar, por unidad	pie ³ /min	7	
de aireación, G.			
Profundidad del agua, H.	pie	27,5	
Ancho del tanque, W.	pie	30	
Relación de tasa de transferencia de oxígeno del		0,8	
agua residual a agua potable, α .			
Relación de concentración de saturación de OD		0,9	
en el agua residual a la del agua potable o			
destilad, β.	°C	27	
Temperatura, T.	mg/L	9,57	
Concentración de saturación de OD en agua			
residual a la profundidad mitad del tanque, $\ensuremath{C_{sm}}.$	mg/L	1,5	
Concentración de OD en el agua, C_L .	$lb\ O_2\ transferid$	0,96	36-3
Rendimiento de la unidad de aireación difusa	/HP.h		

Tabla 18-3: Datos experimentales y resultados para la concentración de saturación de OD en la superficie de la unidad de aireación difusa

Características	Unidades	Valor	Ecuación
Concentración de saturación de OD en la	mg/L	8	_
superficie, C _s			
Presión absoluta a la profundidad del difusor, P _b	psia	0,50	
Contenido de oxígeno en el aire de salida, O _t	% en volumen	16.90	
Presión barométrica ambiental, P.	psia	0,43	
Concentración de saturación de OD en la superficie		9,57	
de la unidad de aireación difusa, C _{sm}	mg/L		37-3

Tabla 19-3: Datos experimentales y resultados para contenido de oxígeno en el aire de salida de la unidad de aireación difusa

Características	Unidades	Valor	Ecuación
Fracción decimal de oxigeno transferido al agua, E.		0,103	
Contenido de oxígeno en el aire de salida de la		16,90	
unidad de aireación difusa			39-3

Tabla 20-3: Datos experimentales y resultados para rendimiento por unidad de aireación turbina

Características	Unidades	Valor	Ecuación
Constantes características del equipo de			
aireación, generalmente para unidades inglesas;			
C	lbO_2/h	0,0081	
X	lbO_2/h	0,72	
n	lbO_2/h	1,02	
y	lbO_2/h	0,35	
Flujo de aire en condiciones estándar, por	pie ³ /min	7	
unidad de aireación, G.			
Profundidad del agua, H.	pie	27,5	
Ancho del tanque, W.	pie	30	
Relación de tasa de transferencia de oxígeno del		0,8	
agua residual a agua potable, α.			
Relación de concentración de saturación de OD		0,9	
en el agua residual a la del agua potable o			
destilad, β.	°C	27	
Temperatura, T.	mg/L	8,46	
Concentración de saturación de OD en agua			
residual a la profundidad mitad del tanque, C_{sm} .	mg/L	1,5	
Concentración de OD en el agua, C _L	pies/s	15	
Velocidad periférica del impulsor, R.	pie	3	
Diámetro del impulsor, d.	$lb\ O_2\ transferid/HP.\ h$	0.513	
Rendimiento de la unidad de aireación			42-3

Tabla 21-3: Datos experimentales y resultados relación de potencia óptima de la unidad de aireación turbina

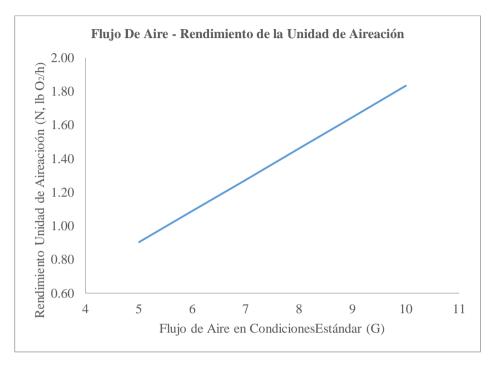
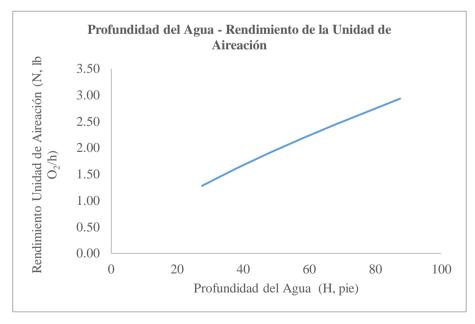
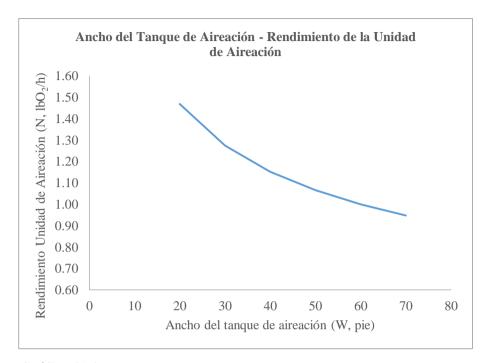

Características	Unidades	Valor	Ecuación
Potencia de turbina o rotor, P _r		310,65	
Potencia del compresor o soplador, P _c		327,0	
Relación de potencia óptima de la unidad de aireación turbina P_d		0,95	43-3

Tabla 22-3: Datos experimentales y resultados para eficiencia de transferencia de oxígeno de la unidad de aireación turbina

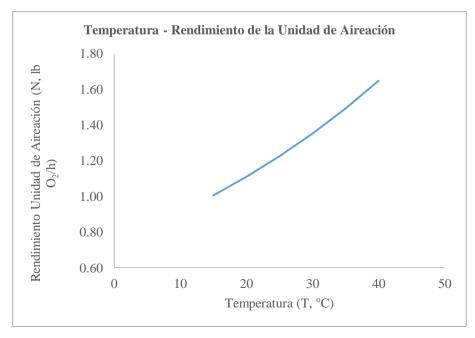
Características	Unidades	Valor	Ecuación
Oxigeno absorbido, OA.	lb/h	1,375	
Flujo de aire, G _o	pie ³ /min	6,65	
Eficiencia de transferencia de oxígeno de la unidad		0,20	
de aireación turbina			44-3


UNIDAD DE AIREACIÓN DIFUSA

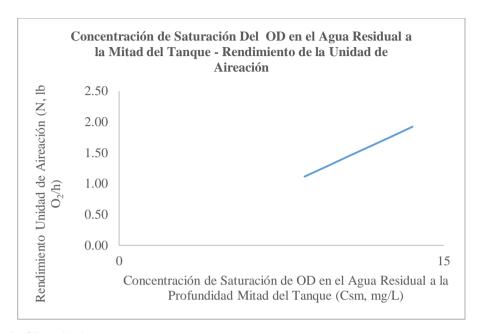
Rendimiento de la Unidad de aireación


Gráfico 39-3: Automatización para flujo de aire en condiciones estándares **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

El rendimiento o tasa de transferencia del gas por difusión aumenta cuando hay un mayor flujo de aire G.


Gráfico 40-3: Automatización para profundidad del agua **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

A mayor profundidad H del agua el rendimiento de la unidad de aireación aumenta proporcionalmente.


Gráfico 41-3: Automatización para ancho del tanque de aireación **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

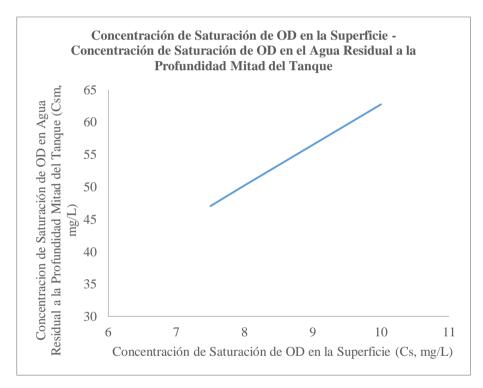
El rendimiento o tasa de transferencia del gas por difusión disminuye si aumentan los siguientes parámetros ancho del tanque W, la difusión no se realiza homogéneamente cuando el ancho del tanque es grande.

Gráfico 42-3: Automatización para temperatura. **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

La Temperatura *T*, es directamente proporcional al rendimiento, ya que depende de un valor constante en la ecuación.

Gráfico 43-3: Automatización para la concentración de saturación de OD en el agua residual a la profundidad mitad del tanque. **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

La tasa de transferencia del gas por difusión aumenta con la concentración de saturación de oxígeno disuelto en el agua residual a la mitad profundidad del tanque C_{sm} , este valor medido


indica si existe una difusión adecuada del aire por parte de la unidad de aireación.

Concentración del OD en el Agua - Rendimiento de la Unidad de Aireación Rendimiento Unidad de Aireación (N, 1b 1.60 1.40 1.20 1.00 0.80 0.60 0.40 0.20 0.00 0 0.5 1.5 2 2.5 3.5 Concentración del oxígeno disuelto en el agua (CL, mg/L)

Gráfico 44-3: Automatización para concentración de oxígeno disuelto en el agua

La concentración de oxígeno disuelto en el agua C_L es inversamente proporcional a la tasa de transferencia de oxígeno. El término $CG^nx\frac{H^m}{W^p}\alpha(1,02)^{T-20}$ representa en este modelo el coeficiente global de transferencia del gas K_La , el cual viene a ser una función de la resistencia de que presentan la fase líquida y gaseosa. Cuando el coeficiente K_La es grande quiere decir que la resistencia a la transferencia deles pequeña y viceversa. En la gráfica la tasa de transferencia de oxigeno está dominada por la geometría del tanque aireador.

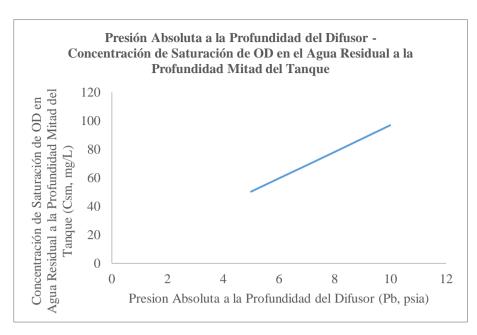
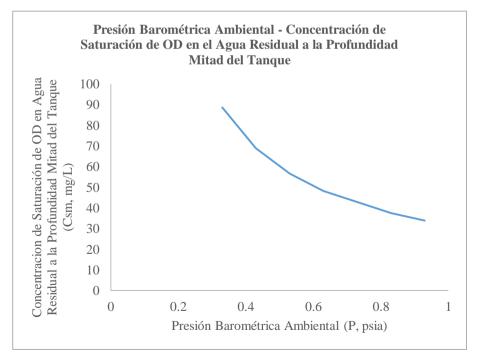
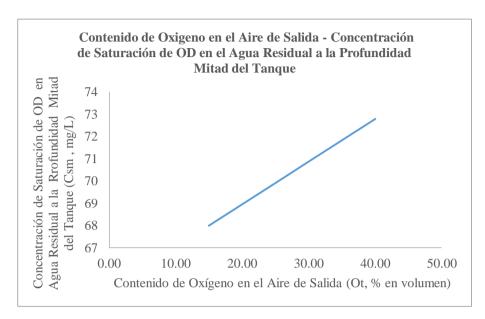

Concentración de Saturación de OD en el Agua Residual a la Profundidad Mitad Del Tanque

Gráfico 45-3: Automatización para concentración de saturación de OD en la superficie


Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

La concentración de saturación de oxígeno disuelto varía con la presión, por lo que se hace necesario calcular mediante el modelo de Oldshue para las condiciones de operación. A medida que el contenido de oxígeno en el aire de salida C_s se incrementa la concentración de saturación de OD a un punto medio de la profundidad del tanque también lo hace.


Gráfico 46-3: Automatización para presión absoluta a la profundidad del difusor **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

La presión absoluta a la profundidad del difusor P_b es directamente proporcional a la concentración de saturación de oxígeno disuelto en el agua residual a la mitad del tanque. P_b , es igual al valor de la presión en la descarga del compresor cuando se le suman las pérdidas de carga en las tuberías de aire.

Gráfico 47-3: Automatización para presión barométrica **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

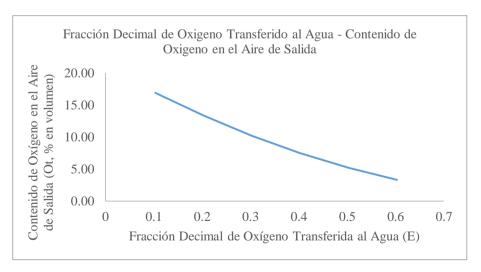

La presión absoluta a la profundidad P del difusor se incrementan la concentración de saturación de OD a un punto medio de la profundidad del tanque disminuye.

Gráfico 48-3: Automatización para contenido de oxígeno en el aire de salida **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

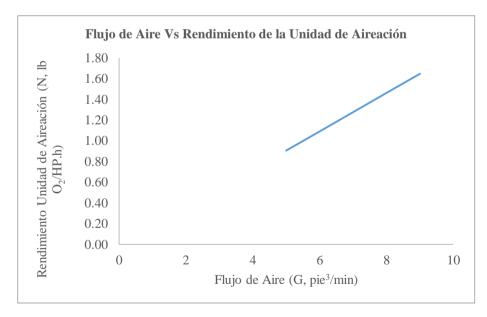
A medida que el contenido de oxígeno en el aire de salida O_t, y la presión absoluta a la profundidad h del difusor se incrementan la concentración de saturación de OD a un punto medio de la profundidad del tanque también lo hace.

Contenido de Oxigeno en el Aire de Salida

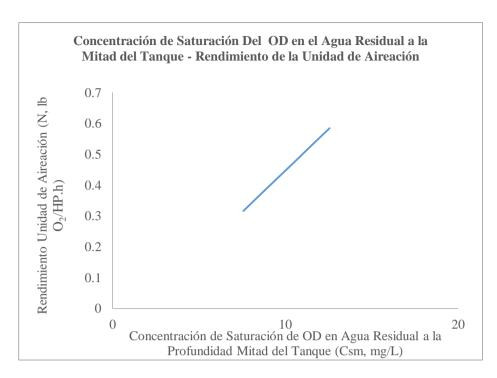


Gráfico 49-3: Automatización para fracción decimal de oxigeno transferida al agua. **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

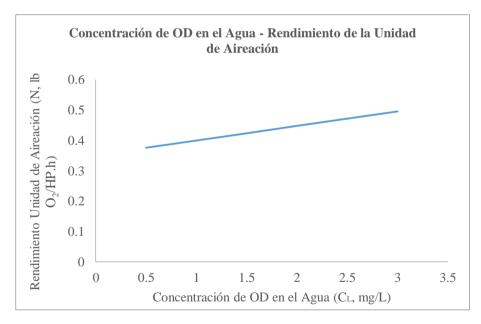
El contenido de oxígeno en el aire de salida disminuye al aumentar la fracción o porcentaje de oxígeno que es transferido al agua.


DISEÑO DE SISTEMAS DE AIREACIÓN TURBINA

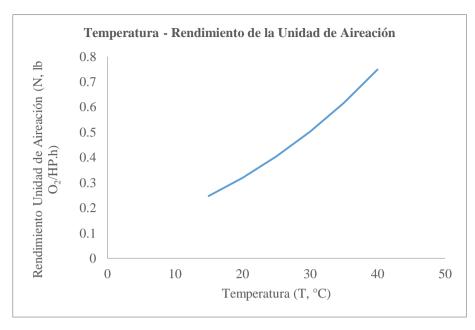
Rendimiento de Unidad de Aireación


Gráfico 50-3: Automatización para velocidad periférica del impulsor. **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

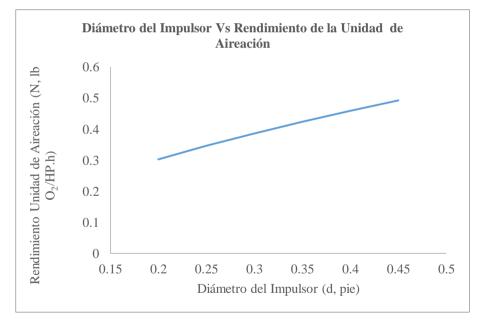
Un aumento en la velocidad periférica del impulso provoca el incremento del rendimiento de la unidad de aireación.


Gráfico 51-3: Automatización para flujo de aire **Realizado por**: Jenifer Jurado; Lizbeth Sarmiento.2016

El flujo de aire G que ingresa a la unidad de aireación es directamente proporcional al rendimiento de esta.


Gráfico 52-3: Gráfico de la automatización para concentración de saturación de OD en agua residual

La tasa de transferencia de oxigeno se incrementa cuando la concentración de oxígeno disuelto presente en el agua residual.


Gráfico 53-3: Automatización de concentración de OD en el agua **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Que exista una alta concentración de oxígeno disuelto en el agua residual indica que la aireación de turbina tiene una eficiencia elevada.

Gráfico 54-3: Automatización para temperatura. **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

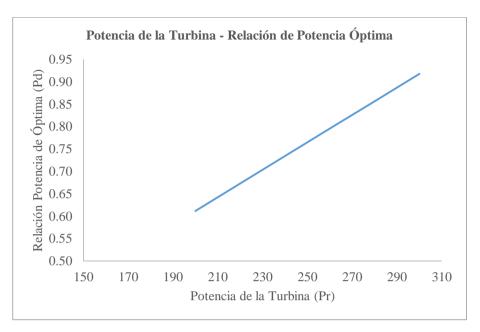
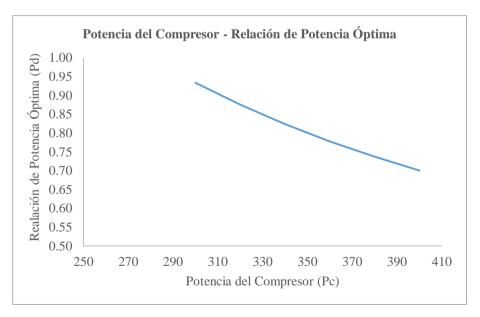

La tasa de transferencia de oxígeno en la unidad de aireación es directamente proporcional a la temperatura *T* en el modelo de aireación por turbina.

Gráfico 55-3: Automatización para diámetro del impulsor **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


Cuando se tiene un diámetro mayor del impulsor de la turbina el rendimiento aumenta proporcionalmente; existe una mayor dispersión del aire en el agua.

Relación de potencia óptima

Gráfico 56-3: Automatización para potencia de turbina. **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento. 2016

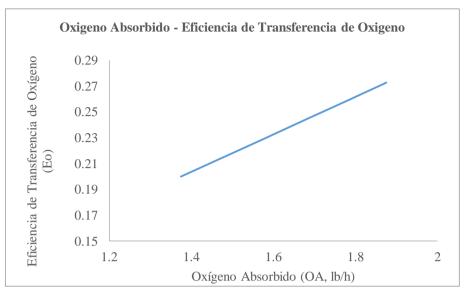
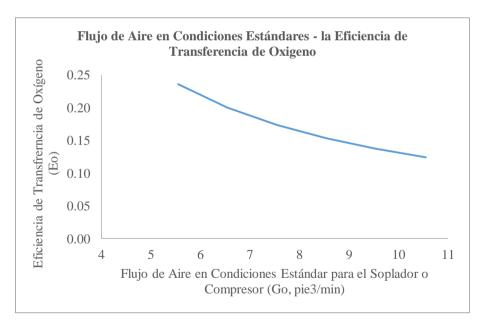

La relación de potencia se está incrementa conforme lo hace la potencia del rotor o turbina.

Gráfico 57-3: Automatización potencia de compresor **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


La relación de potencia óptima es inversamente proporcional a la potencia del compresor.

Eficiencia de transferencia de oxigeno

Gráfico 58-3: Automatización para oxigeno absorbido **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

La eficiencia de transferencia de oxigeno es directamente proporcional al oxigeno absorbido durante la operación.

Gráfico 59-3: Automatización para flujo de aire en condiciones estándares para el soplador

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

La eficiencia de transferencia de oxigeno se reduce considerablemente cuando el flujo de aire se incrementa exageradamente, los rangos de operación según varios autores oscilan entre 200 y 1500 pie³/min en condiciones estándares.

3.2.4 Lodos activados

Descripción

"El lodo activado consiste en una masa floculenta de microorganismos, materia orgánica muerta y materiales inorgánicos; tiene la propiedad de poseer una superficie altamente activa para la adsorción de materiales coloidales y suspendidos a la cual debe su nombre de activado. El resultado final es una porción de materia orgánica, susceptible de descomposición biológica, convertida en compuestos inorgánicos, y el resto transformada en lodo activo adicional.

Las bacterias constituyen el grupo más importante de microorganismos, en el proceso de lodos activados, por su función en la estabilización del material orgánico y en la formación del floc de lodo activo.

Uno de los problemas más comunes en los procesos de tratamiento biológico aerobio es la sedimentabilidad pobre de los lodos activados asociados con crecimientos filamentosos, los cuales producen un floc biológico flotante. La presencia de bacterias filamentosas es adversa a las buenas características de sedimentabilidad del floc de lodos activados, y debe reprimirse. Los hongos normalmente no abundan en lodos activados; se presentan en condiciones poco comunes, como cuando se trata de agua residual con contenido deficiente de nitróeno.

Así pueden dominar la comunidad y ser los responsables de la mayor parte del tratamiento; sin embargo, aunque son tan efectivos como las bacterias para la estabilización del material orgánico, su asentamiento es más difícil, pues producen también floc biológico flotante. El problema del floc biológico flotante de hongos, en lodos activados, surge también en el tratamiento de residuos ácidos, donde los mohos, hongos filamentosos, crecen mejor y pueden conducir a la formación de floc biológico de pobre asentamiento.

En general, aunque se introducen algas con las aguas residuales, la ausencia de luz adecuada y la mezcla intensa hace que normalmente no se encuentren algas en los lodos activados.

Los protozoos son, con las bacterias, los organismos más abundantes en lodos activados. Algunos so completa o parcialmente saprobicos y compiten con las bacterias por el material orgánico; otros son los holozoicos y usan material orgánico sólido como alimento, al igual que las bacterias y otros protozoos, proveyendo un enlace vital en la cadena alimenticia y en el proceso de tratamiento. Los más comunes, posiblemente, sean los protozoos flagelados; también se han encontrado amibas en las paredes de los tanques de aireación. Los metazoos, formas

superiores, animales, son usualmente raros en lodos activados; algunas veces se encuentran rotíferos, sobre todo en procesos de aireación prolongada con carga orgánica baja." (Romero, A., 2002, pp. 421-422-423)

Básicamente, la comunidad de lodos activados puede ser muy variable y depende de:

- Naturaleza del suministro alimenticio
- Concentración del alimento
- Turbulencia
- Temperatura
- Tiempo de aireación
- Concentración de lodos

 Tabla 23-3: Tipos de tratamientos por lodos activados

Proceso	Período de aireación O,horas	Carga volumétric a g DBO / m³.d	A/M g DBO / g SSVLM.d	X SSLM mg /L	Edad de lodos θc d	Tasa de recirculación R,%	Eficie ncia DBO %	Observacion es
Convenciona l	4-8	300-600	0,2-0,4	1500- 3000	5-15	25-75	85-95	Sensible a cargas súbitas.
Aireación gradual	4-8	300-600	0,2-0,4	1500- 3000	5-15	25-50	85-95	Uso general.
Mezcla completa	3-5	800-2400	0,2-0,6	2500- 4000	5-15	25-100	85-95	Resistente a cargas choque
Aireación escalonada	3-5	600-1000	0,2-0,4	2000- 3500	5-15	25-75	85-95	Uso general. Flujo en pistón
Aireación corta	1,5-3	1200-2400	1,5-5,0	200- 1000	0,2- 0,5	5-25	60-75	Efluente de baja calidad
Estabilizació n y contacto	(0,5- 0,1)+(3- 6)+	1000-1200	0,2-0,6	(1000- 3000)+ (4000- 10000)+ +	5-15	50-150	80-90	Operación felxible.Usa do para ampliar plantas existentes.
Aireación prolongada	18-36	100-400	0,05-0,15	3000- 6000	20- 30	50-150	75-95	Usado en plantas pequeña, operación felxible.Fluj o en pistón
Krauss	4-8	600-1600	0,3-0,8	2000- 3000	5-15	50-100	85-95	Usado en residuos fuertes, bajos en N

Tasa alta	2-4	1600- 16000	0,4-1,5	4000- 10000	5-10	100-500	75-90	Uso general. Mezcla completa
Oxígeno puro	1-3	1600-3300	0,25-1	2000- 5000	3-10	25-50	85-95	Usado para reducir volumen, requerido para tratamiento mezcla completa
Zanjón de oxidación	8-36	80-480	0,05-0,3	3000- 6000	10- 30	75-150	15-95	Usado en ciudades pequeñas

Fuente: METCALF & EDDY Inc. Wastewater Engineering: Treatment, Disposal. Reuse, 3ª ed., McGraw Hill, 1991.

Tabla 24-3: Coeficientes Cinéticos típicos a 20 °C, para el Proceso de Lodos Activados

Parámetro	Valor intervalo	Valor típico
Y,mg SSV/mg DBO	0,4-0,8	0,6
Y, mg SSV/mg DQO	0,25-0,4	0,4
K_d, d^{-1}	0,04-0,075	0,06

Fuente: METCALF & EDDY, Inc.Wastewater Engineering: Treatment Systems, McGrawHill, 1979.

Tabla 25-3: Tipo de organismo filamentoso dominante indicador de condiciones causantes de hinchamiento de lodos

Condición causativa	Tipo de organismo filamentoso indicador
OD bajo para la carga orgánica aplicada	Tipo 1701,S.Natans,H.Hydrossis
Relación A/M baja	M.parvicella, Nocardia spp. H. hydrossis
Residuo séptico / sulfuros	Thiotrix spp. Beggiatoa spp,tipo 0,21N
Déficit de nutrientes (N o P)	Thiotrix spp,tipos 0,21N,0041
pH bajo(pH, menor de 6)	Hongos

Fuente: RICHARD, M. Activated Sludge Microbiology, WPCF, 1989

Tabla 26-3: Relación de la Carga Orgánica del Proceso de Lodos Activados con los Grupos Predominantes de Organismos Superiores

Condiciones	Grupos predominantes		
Carga orgánica baja	Ciliados adheridos, rotíferos e invertebrados		
	superiores, especialmente nematodos		
Carga orgánica óptima	Buena diversidad de organismos; dominan los		
	ciliados libres y adheridos		
Carga orgánica alta	Flagelados, amibas y ciliados pequeños libres		

Fuente: RICHARD, M. Activated Sludge Microbiology, WPCF, 1989

Modelo matemático de diseño para lodos activados

$$R = K (\beta C_S - C_t) Ec. 48-3$$

Donde:

K= coeficiente de transferencia, el cual depende del equipo de aireación y de las características de agua residual, hora ⁻¹.

 β = coeficiente de saturación de oxigeno del agua residual, usualmente 0,8 – 0,9.

C_S = concentración de saturación de OD para agua limpia, mg/L.

 C_t = concentración de OD existente en la mezcla de agua residual, mg /L.

 $(\beta C_S - C_t) = \text{déficit de OD, mg / L.}$

R = tasa de transferencia de oxígeno de aire en OD, mg/L. hora.

Parámetros de diseño para procesos de lodos activados

$$\theta = \frac{v}{o} Ec. 49-3$$

Donde:

 θ = tiempo de retención hidráulica o tiempo de aireación.

V = volumen del tanque de aireación.

Q = caudal de aguas residuales, sin incluir el caudal de recirculación.

$$CO = S_0 \ Q \ Ec. \ 50-3$$

Donde:

CO = carga orgánica del proceso.

 S_0 = concentración del DBO.

Q = caudal del efluente.

$$COV = \frac{S_0 Q}{V} Ec. 51-3$$

Donde:

COV = carga orgánica volumétrico.

 S_0 = concentración del DBO.

Q = caudal del efluente.

V = volumen del tanque de aireación.

$$\frac{A}{M} = \frac{S_0 Q}{V X} Ec. 52-3$$

Donde:

 $\frac{A}{M}$ = Relación alimento / microorganismos, g DBO por día por gramo de SSVLM, d⁻¹.

 S_0 = concentración del DBO del agua residual cruda, m³/L.

 $Q = \text{caudal de aguas residuales crudas, m}^3 / d.$

V = volumen del líquido en el tanque de aireación, m³.

X= SSVLM, concentración de sólidos suspendidos volátiles en el tanque de aireación, mg/L.

$$\theta_C = \frac{masa\ celular\ en\ el\ reactor}{masa\ celular\ extraida\ por\ dia} Ec.\ 53-3$$

Es decir

$$\theta c = \frac{VX}{Q_W X_R + Q_e X_e} Ec. 54-3$$

Donde:

 θc = tiempo promedio de retención celular con base en el volumen del tanque de aireación, d.

V = volumen del tanque de aireación, m³.

X= SSVLM, concentración de sólidos suspendidos volátiles en el tanque de aireación, mg /L.

 Q_W = caudal de lodo dispuesto, m³/d.

X_R = concentración de SSV en el lodo dispuesto, mg/ L.

 Q_e = caudal efluente tratado, m³/d.

X_e = concentración de SSV en el efluente tratado, mg/ L.

Si se supone que la concentración de sólidos en el efluente del tanque de sedimentación es baja, la ecuación anterior puede simplificarse a:

$$\theta c \approx \frac{VX}{Q_WX_R} Ec. 55-3$$

Además, cuando el lodo se dispone directamente del efluente del reactor $X = X_R$

$$\theta c \approx \frac{V}{Q_W} Ec. 56-3$$

$$Q_W = \frac{V}{\theta c} Ec. 57-3$$

Donde:

 Q_W = caudal del lodo dispuesto, extraído de la recirculación, mg/ L.

 X_R = concentración de SSV en la recirculación, mg /L.

La tasa de recirculación de lodos, del sedimentador secundario al tanque de aireación, se acostumbra a expresarla como un porcentaje del caudal de aguas residuales crudas, según la ecuación.

$$R = \frac{Q_R}{Q} X 100 Ec. 58-3$$

Lawrence y McCarty, Metcalf & Eddy, entre otros, utilizan la ecuación 56-3 para calcular la masa microbial total en el reactor.

$$X V = \frac{Y Q (S_0 - S_e)\theta_C}{1 + K_d \theta_C} Ec. 59-3$$

$$X = \frac{\theta_C}{\theta} \frac{Y (S_0 - S_e)\theta_C}{1 + K_d\theta_C} Ec. 60-3$$

Donde:

Y = coeficiente de producción de crecimiento o relación de la masa de células formadas a la masa de sustrato consumido.

 $S_0 = DBO del afluente, mg/L.$

 $S_e = \text{DBO del efluente, mg} / \text{L}.$

 θ = tiempo de retención hidráulica, d.

 K_d = coeficiente de declinación endógena, d⁻¹.

Suponiendo que un 65% de los SS del efluente son biodegradables y que la relación entre la DBO₅ y la DBO última carbonácea es igual a 0,68.

$$S_e = DBO_e - (0,65)(0,68)(1,42)SS Ec. 61-3$$

 $S_e = DBO_e - 0,63(SS) Ec. 62-3$

Donde:

 $S_e = DBO del efluente, mg / L.$

 $DBO_e = DBO$ total deseada del efluente, mg/L.

SS = sólidos suspendidos del efluente, mg / L.

La demanda de oxígeno para aguas residuales domésticas.

DO = DBOUC estabilizada — DBOUC de la biomasa extraida. Ec. 63-3

Donde:

DBO estabilizada =
$$Q(S_0 - S_e)$$
 Ec. 64-3
DBOUC estabilizada = 1,5 $Q(S_0 - S_e)$ Ec. 65-3

La DBOUC de la biomasa extraída se calcula, con base en la composición típica molecular de las células microbiales, por la ecuación:

$$C_5H_7NO_2 + 5O_2 = 5CO_2 + 2H_2O + NH_3 Ec. 66-3$$

Por tanto reemplazando la ecuación () se obtiene la ecuación ()

$$DO = 1.5 Q (S_0 - S_e) - 1.42 X_R Q_W Ec. 67-3$$

Modelo de mezcla completa sin recirculación

El balance de masa para los microorganismos sería:

$$QX_0 - QX + Vr_g' = V \frac{dX}{dt} Ec. 68-3$$

Entradas:

 $Q = \text{caudal}, \text{ m}^3/\text{d}.$

 X_0 = biomasa del afluente, mg SSV/L.

X = biomasa en el reactor, mg SSV/L.

 $r_g^{'}$ = tasa neta de crecimiento de microorganismos, mg SSV/L d.

Salidas:

V= volumen del reactor, m³.

 $\frac{dX}{dt}$ = tasa de crecimiento de microrganismos, mg SSV/L.

Reemplazando el valor de $r_q^{'}()$

$$V\frac{dX}{dt} = QX_0 - QX + \left(\frac{\mu_m XS}{K_c + S} - K_d X\right) Ec. 69-3$$

Suponiendo que la concentración de microrganismos en el afluente es despreciable, $X_0 \approx 0$, y para estado permanente, $\frac{dX}{dt} = 0$, la ecuación anterior se transforma en la ecuación:

$$\frac{Q}{V} = \frac{1}{\theta} = \frac{\mu_m S}{K_S + S} - k_d Ec. 70-3$$

Donde:

 θ = tiempo de retención hidráulico, d.

La ecuación anterior también puede escribirse como la siguiente ecuación:

$$\frac{Q}{V} = \frac{1}{\theta} = \mu - k_d = \mu Ec. 71-3$$

Ahora reemplazando la siguiente ecuación en la 67-3 se obtiene la ecuación 69-3.

$$\frac{Q}{V} = \frac{1}{\theta} = -Y \frac{r_s}{X} - k_d E c. 72-3$$

La edad de lodos o tiempo promedio de retención celular está definida por la relación.

$$\theta_C = \frac{biomasa\ en\ el\ reactor}{biomasa\ disuesta\ por\ dia} = \frac{VX}{OX}\ Ec.\ 73-3$$

Donde:

 θ_C = tiempo promedio de retención celular o edad de lodos, d

V= volumen del reactor, m³

X= biomasa en el reactor, mg SSV/L

Q= caudal del afluente, m³/ d

De la ecuación 70-3 puede concluirse que, en el modelo de mezcla completa sin recirculación de lodos, la edad de lodos es igual al tiempo de retención hidráulico.

$$\theta_C = \frac{V}{O} = \theta \ Ec. 74-3$$

Sustituyendo la ecuación 70-3 en la 69-3, se obtiene la ecuación.

$$\frac{1}{\theta_C} = -Y \frac{r_s}{X} - k_d Ec. 75-3$$

Definiendo como lo hace Metcalf y Eddy ⁽⁴⁾, el termino (-r_s/X) como igual a la tasa específica de utilización de sustrato (U), se obtiene la ecuación.

$$U = \frac{r_S}{X} = \frac{\frac{dS}{dt}}{X} Ec. 76-3$$

El valor de r_s se determina por la relación

$$r_S = -\frac{Q}{V}(S_0 - S) = \frac{(S_0 - S)}{\theta} Ec. 77-3$$

Reemplazando la ecuación 73-3 en la 74-3 se obtiene la ecuación.

$$U = \frac{S_0 - S}{\theta X} = \frac{Q(S_0 - S)}{VX} Ec. 78-3$$

Donde:

U= tasa especifica de utilización de sustrato, d-1

S₀= concentración de sustrato en el afluente, mg/ L

S= concentración de sustrato en el efluente, mg/ L

X= biomasa en el reactor, mg SSV/L

V= volumen del reactor, m³

Sustituyendo la ecuación 73-3 en la 72-3, se obtiene la ecuación.

$$\frac{1}{\theta_C} = YU - k_d Ec. 79-3$$

El coeficiente de crecimiento observado se expresa según la ecuación.

$$Y_{OBS} = -\frac{r_g'}{r_S} Ec. 80-3$$

Sustituyendo r_g' por su valor, en la ecuación 77-3 se deduce la relación.

$$Y_{OBS} = Y + k_d \frac{X}{r_s} Ec. 81-3$$

Reemplazando U por su valor se obtiene:

$$Y_{OBS} = Y - \frac{k_d}{U} Ec. 82-3$$

$$Y_{OBS} = \frac{YU - k_d}{U} Ec. 83-3$$

$$Y_{OBS} = \frac{Y}{1 + \theta_C k_d} Ec. 84-3$$

El balance de masa para el sustrato, según el esquema previo propuesto, conduce a la ecuación.

AFLUENTE-EFLUENTE + GENERACIÓN = ACUMULACIÓN Ec. 85-3

O sea.

$$QS_0 - QS + Vr_S = V \frac{dS}{dt} Ec. 86-3$$

$$V\frac{dS}{dt} = QS_0 - QS - V\frac{kXS}{K_S + S}Ec. 87-3$$

Repitiendo:

V= volumen del reactor, m³

 $\frac{dS}{dt}$ = tasa de acumulación de sustrato, mg / L.d

 S_0 = concentración de sustrato en el afluente, mg/ L

S= concentración de sustrato en el efluente, mg/ L

k=tasa máxima de utilización de sustrato por unidad de masa de microorganismos, d⁻¹

X = biomasa del reactor, mg/L

K_s= constante de saturación del sustrato, mg/L

La concentración de sustrato o nutriente limitante se expresa generalmente en términos de DBO o de DQO. Para estado permanente, dS/dt = 0, por tanto,

$$0 = S_0 - S - \theta \frac{kXS}{K_S + S} Ec. 88-3$$

$$\frac{S}{K_S + S} = \frac{1}{\mu_m} \left(k_d + \frac{1}{\theta} \right) Ec. 89-3$$

Reemplazando la ecuación se obtiene la ecuación.

$$0 = S_0 - S - \theta k X \frac{1}{\mu_m} \left(k_d + \frac{1}{\theta} \right) Ec. 90-3$$

$$0 = S_0 - S - \frac{kX}{\mu_m} (\theta k_d + 1) Ec. 91-3$$

$$0 = S_0 - S - \frac{X}{V} (\theta k_d + 1) Ec. 92-3$$

Simplificando y despejando en las ecuaciones

$$X = \frac{\mu_m(S_0 - S)}{k(1 + \theta k_d)} = \frac{Y(S_0 - S)}{1 + \theta k_d} Ec. 93-3$$

$$S = \frac{K_s(1+\theta k_d)}{\theta(\mu_m - k_d) - 1} Ec. 94-3$$

O, reemplazando, a μ_m por su valor se obtiene la ecuación.

$$S = \frac{K_s(1+\theta k_d)}{(YK-k_d)-1} Ec. 95-3$$

En diseño se utiliza mucho la relación alimento/ microorganismos (A/M), la cual cuantifica por la relación.

$$\frac{A}{M} = \frac{QS_0}{VX} = \frac{S_0}{\theta X} Ec. 96-3$$

Donde:

 $\frac{A}{M}$ = relación alimentos/ microorganismos, d⁻¹

 $Q = \text{caudal afluentes, m}^3 / d$

 S_0 = concentración de sustrato en el afluente, mg/ L

V = volumen del reactor, m³

X = biomasa del reactor, mg/L

 θ = tiempo de retención hidráulico, d.

La eficiencia del proceso estará dada por la ecuación.

$$E = \frac{S_{0} - S}{S_{0}} Ec. 97-3$$

Donde:

E= eficiencia tradicional del proceso

 $S_0 = concentración de sustrato en el afluente, mg/L$

S= concentración de sustrato en el efluente, mg/ L

Transformando la ecuación se obtiene la relación.

$$U = \frac{S_0 - S}{\theta X} \left(\frac{S_0}{S_0} \right) = \frac{S_0}{\theta X} \frac{S_0 - S}{S_0} Ec. 98-3$$

$$U = \left(\frac{A}{M} \right) E Ec. 99-3$$

$$\frac{1}{\theta} = \frac{\mu_m S}{K_S + S} - k_d Ec. 100-3$$

$$\frac{1}{\theta c} = \frac{\mu_m S}{K_S + S} - k_d Ec. 101-3$$

$$\frac{1}{\theta c} = \frac{YkS}{K_S + S} - k_d Ec. 102-3$$

$$\frac{1}{\theta cc} = \frac{YkS_0}{K_S + S_0} - k_d Ec. 103-3$$

$$S = \frac{K_S(1 + \theta k_d)}{\theta (Yk - k_d) - 1} Ec. 104-3$$

$$FS = \frac{\theta cd}{\theta cc} Ec. 105-3$$

Tabla 27-3: Datos experimentales y resultados de DBO soluble del efluente para lodos activados

Característica	Unidades	Valor	Ecuación
DBO deseada del	mg/L	20	
efluente (DBOe)			
Sólidos Suspendidos	mg/L	20	
Totales (SST)			
DBO soluble del	mg/L	7,4472	Ec. 106-3
Efluente (Se)			
Enuente (Se)			

Tabla 28-3: Datos experimentales y resultados de biomasa del reactor para lodos activados

Característica	Unidades	Valor	Ecuación
Edad de lodos (θc)	d	10	
Relación SSV/DBO (Y)		0,65	
Caudal Afluente (Q)	L/s	17280	
Concentración DBO	mg/L	200	
afluente (So)			
Concentración DBO	mg/L	7	
efluente (S)			
Coeficiente cinético kd	d ⁻¹	0,05	
Biomasa en el reactor	Gssv	14451840	Ec. 107-3
(XV)			

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 29-3: Datos experimentales y resultados de biomasa del reactor para lodos activados

Característica	Unidades	Valor	Ecuación
Biomasa en el reactor	mg/L	14451840	
(XV)			
Concentración de	mg/L	2500	
SSVLM (X)			
Volumen del reactor	L	5780,736	Ec. 108-3
(V)			

Tabla 30-3: Datos experimentales y resultados de producción de lodos para lodos activados

Característica	Unidades	Valor	Ecuación
Relación SSV/DBO		0,65	
(Y)			
Caudal (Q)	L/s	17280	
Concentración DBO	mg/L	200	
afluente (So)			
Concentración DBO	mg/L	7	
efluente (S)			
Edad de Lodos (θc)	d	10	
Producción de lodos	gSSV/d	1445184,0	Ec. 109-3
(Px)			

Tabla 31-3: Datos experimentales y resultados de lodo seco, para lodos activados

Característica	Unidades	Valor	Ecuación
Producción de lodos	kg SSV/d	1445	
(Px)			
Porción Volátil de		0,8	
sólidos totales (ST)			
Lodo Seco	kg/d	1806,25	Ec. 110-3

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 32-3: Datos experimentales y resultados de caudal de lodo de desecho, para lodos activados

Característica	Unidades	Valor	Ecuación
sólidos totales de desecho	Kg/d	1807000	
concentración de sólidos totales de lodo	mg/L	15000	
sedimentado			
Caudal de lodo de desecho (Qw)	m^3/d	120,466667	Ec. 111-3

Tabla 33-3: Datos experimentales y resultados de caudal de recirculación, para lodos activados

Característica	Unidades	Valor	Ecuación
Caudal (Q)	m^3/s	0,2	
Concentración de	e mg/L	12000	
Recirculación ($X_{R)}$			
Concentración de	e mg/L	2500	
sólidos totales de lodo)		
sedimentado (X)			
Caudal de	$e m^3/s$	0,052631579	Ec. 112-3
Recirculación (Q _R)			

Tabla 34-3: Datos experimentales y resultados de relación de recirculación, para lodos activados

Característica		Unidades	Valor	Ecuación
Caudal	de	m ³ /d	4.547	
recirculación (Q _R)				
Caudal (Q)		m^3/d	17280	
Relación	de		0,263136574	Ec. 113-3
recirculación ®				

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 35-3: Datos experimentales y resultados de cantidad de oxigeno requerido, para lodos activados

Característica	Unidades	Valor	Ecuación
Caudal (Q)	m ³ /d	17280	
Concentración DBO	mg/L	200	
afluente (So)			
Concentración DBO	mg/L	7	
efluente (Se)			
Concentración de	mg/L	12000	
recirculación (X _R)			
Caudal de recirculación	$m^{3/}d$	120	
$(Q_{w)}$			
Cantidad de oxígeno	kg O ₂ /d	2957,76	Ec. 114-3
requerido (DO9			

Tabla 36-3: Datos experimentales y resultados de DBO aplicada al tanque de aireación

Característica	Unidades	Valor	Ecuación
Caudal de aire (Qaire)	m^3/d	132802	
DBO	Kg/d	3456000	
Volumen de aire	m^3/Kg	38,42650463	-
requerido por unidad			
de DBO aplicada al			
tanque de aireación			
(Qaire/DBO)			

Tabla 37-3: Datos experimentales y resultados de carga orgánica volumétrica, para lodos activados

Característica	Unidades	Valor	Ecuación
	2		
Caudal (Q)	m^3/d	17280	
Concentración DBO	mg/L	200	
afluente (So)			
Volumen (V)	m^3	5781	
Carga orgánica	$gDBO/m^3d$	597,8204463	Ec. 115-3
volumétrica (COV)			

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 38-3: Datos experimentales y resultados de relación A/M, para lodos activados

Unidades	Valor	Ecuación
m ³ /d	17280	
mg/L	200	
m^3	5781	
mg/L	2500	
d^{-1}	0,239128179	Ec. 116-3
	mg/L m³ mg/L	mg/L 200 m ³ 5781 mg/L 2500

Tabla 39-3: Datos experimentales y resultados de edad de lodos, para lodos activados

Característica	Unidades	Valor	Ecuación
Concentración de	mg/L	2500	
SSVLM (X)			
Tiempo de retención	d	0,335	
(Θ)			
Coeficiente cinético (Y)		0,65	
Concentración DBO	mg/L	200	
afluente (So)			
Concentración DBO	mg/L	7	
efluente (Se)			
Coeficiente cinético		0,05	
(kd)			
Edad de lodos (θc)	d	10,02093928	Ec. 117-3

Tabla 40-3: Datos experimentales y resultados de eficiencia de remoción de DBO total

Característica		Unidades	Valor	Ecuación
Concentración	DBO	mg/L	200	
afluente (So)				
Concentración	DBO	mg/L	20	
efluente (S)				
Eficiencia (E9			0,9	Ec. 118-3

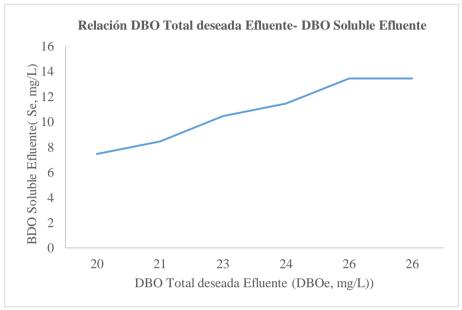

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 41-3: Datos experimentales y resultados de eficiencia de remoción de DBO soluble

Característica		Unidades	Valor	Ecuación
Concentración	DBO	mg/L	200	
afluente (So)				
Concentración	DBO	mg/L	7	
efluente (S)				
Eficiencia (E9			0,96	Ec. 119-3

DISEÑO DE PROCESOS DE LODOS ACTIVADOS

DBO soluble del efluente

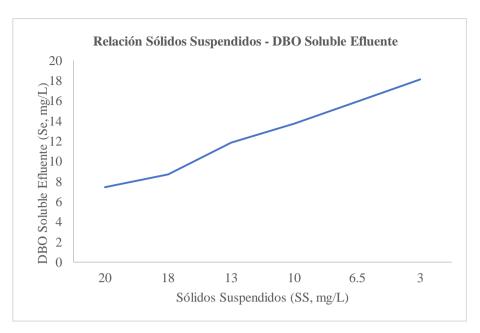
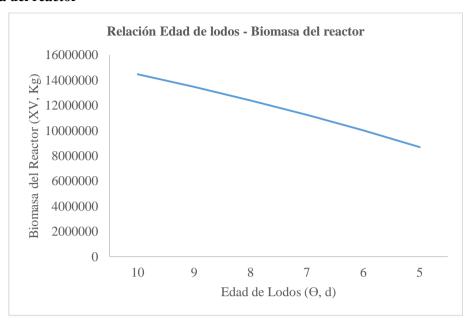


Gráfico 60-3: Automatización de relación DBO total deseada efluente

Realizado por: Jenifer Jurado; Lizbeth Sarmiento. 2016

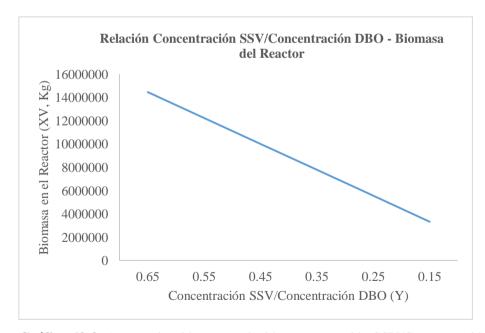
En la Figura 60-3, la DBO soluble del efluente (Se) se ve representada por un valor más bajo a medida que la DBO total deseada del efluente tiene a descender, para el caso de aplicación estos valores corresponden a 7 y 20 mg/ respectivamente.

Nota: estos valores se encuentran dentro del límite para el proceso convencional de lodos activados, que provee efluentes con DBO soluble menor a 15 mg/L y DBO total de hasta 20 mg/L.

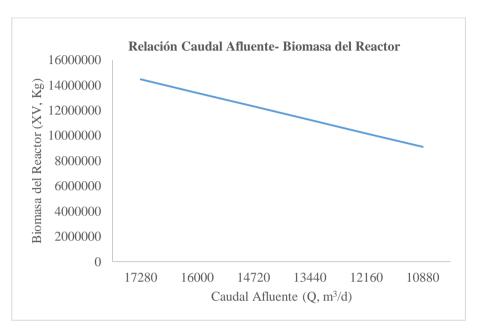

Gráfico 61-3: Automatización de relación sólidos suspendidos **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En la Figura 61-3, se indica una tendencia contraria a la gráfica anterior, ya que mientras menor cantidad de sólidos suspendidos (SS) contenga el efluente, mayor será la DBO soluble del efluente (Se).

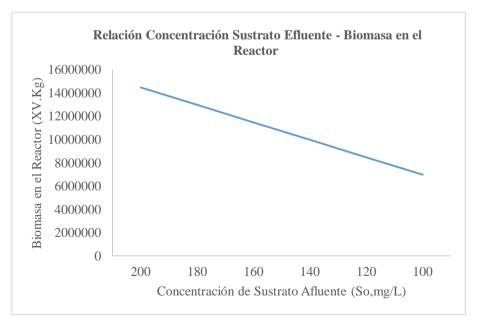
Nota: si el DBO Y SS en el efluente aumentan simultáneamente fuera del límite, este fenómeno puede ser atribuido a un floc pobre, liviano, o flotante de crecimiento filamentoso, pobre en sedimentabilidad.


La modelo de diseño utilizado en las 2 gráficas, sirve para corregir la DBO total del efluente por la contribución de la DBO de sólidos suspendidos que se escapan del sedimentador.

Biomasa del reactor


Gráfico 62-3: Automatización para la relación edad de lodos **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En la Figura 62-3, la relación entre el tiempo de retención celular o edad de lodos, con la biomasa presente en el reactor se muestra directamente proporcional; es decir a mayor biomasa mayor tiempo de retención celular deberá emplearse para obtener buenos resultados del tratamiento.


Gráfico 63-3: Automatización para relación concentración SSV/Concentración DBO **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En la Figura 63-3, se tiene un valor del coeficiente cinético (Y) más alto, en este caso el valor típico utilizado a 20 °C para el proceso de lodos activados, indica que la biomasa en el reactor (VX) está presente en mayor proporción.

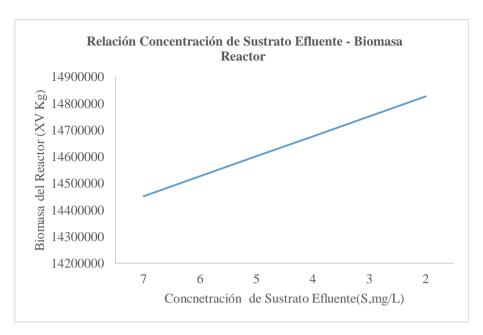
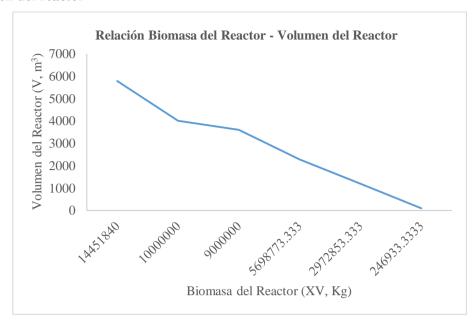


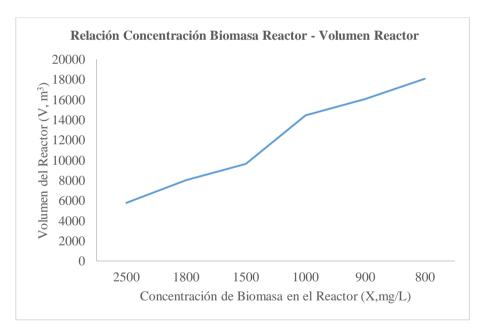
Gráfico 64-3: Automatización para relación caudal afluente **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En la Figura 64-3, a mayor sea el caudal (Q), que ingresa del afluente, mayor será la biomasa presente en el reactor

Gráfico 65-3: Automatización para relación concentración sustrato efluente **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

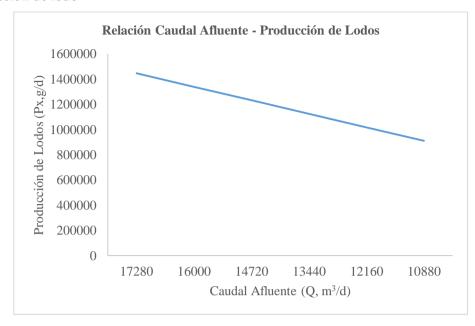

Gráfico 66-3: Automatización para relación concentración de sustrato efluente **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

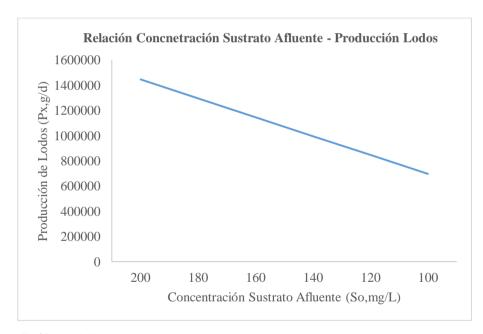
En las Figuras 65-3 y 66-3, se muestra la relación existente entre la concentración de DBO del afluente, y la concentración de DBO del efluente con la biomasa presente en el reactor, y las figuras indican que; mientras menor es So la biomasa en el reactor disminuye, y cuando S es mayor la biomasa presente en el reactor disminuye.


Nota: la concentración de biomasa en el reactor, es de mucha importancia para mantener una buena concentración de microorganismos, pero al mismo tiempo se deberá tener mucho cuidado en exceder esta concentración, ya que podría alterar los tiempos de retención celular.

Estos problemas de inestabilidad suelen reducirse cuando se trabaja con caudales mayores a $2000 \text{ m}^3/\text{d}$.

Volumen del reactor


Gráfico 67-3: Automatización para relación biomasa del reactor **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


Gráfico 68-3: Automatización para relación concentración biomasa reactor **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En la Figura 67-3 se puede notar que entre mayor biomasa en el reactor, mayor volumen del reactor, en la Figura 68-3 se indica que mientras menor es la cantidad de microrganismos presentes, mayor volumen del reactor, esto se debe a que entre ambas variables XV y X existe una relación de consumo.

Producción de lodo

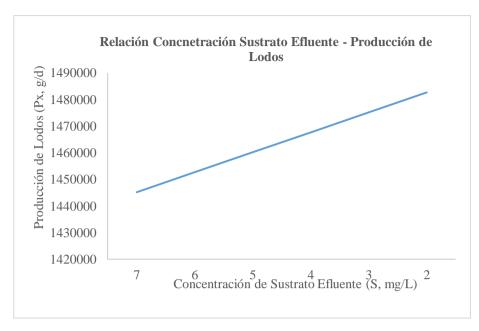


Gráfico 69-3: Automatización para caudal afluente **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

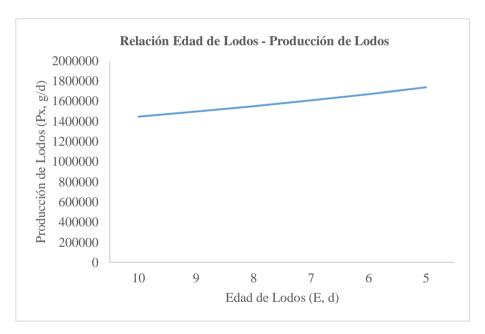


Gráfico 70-3: Automatización para concentración sustrato afluente **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En las Figuras 69-3 y70-3, el caudal y la concentración de DBO del afluente, tienen una relación directamente proporcional con la producción de lodos.

Gráfico 71-3: Automatización para concentración de sustrato efluente **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

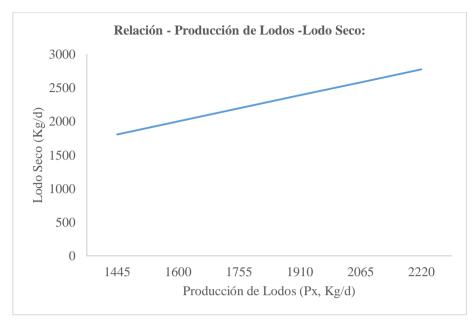
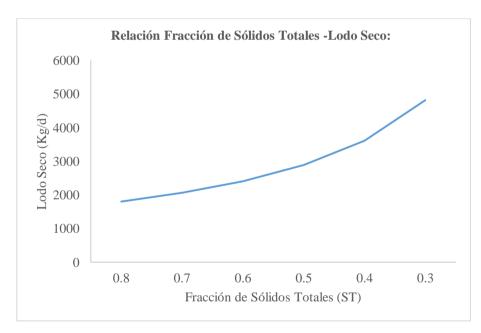


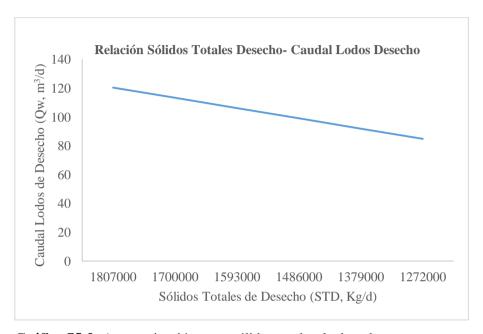
Gráfico 72-3: Automatización para edad de lodos **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


En las Figuras 71-3 y 72-3, tanto la concentración de DBO del efluente y la edad de lodos, tienen una relación inversamente proporcional con la producción de lodos.

Nota: en general un valor alto de edad de lodos, obtener un mejor factor de seguridad, mejor producción de lodo, mejores propiedades de sedimentabilidad, y un mínimo IVL. Así mismo para caudales con amplias variaciones se recomienda valores más prolongados de tiempo de retención.

Sólidos totales de desecho

Gráfico 73-3: Automatización para producción de lodos **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

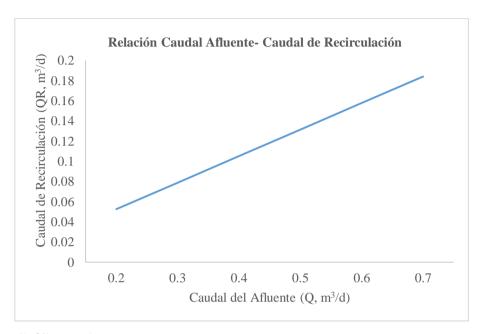

Gráfico 74-3: Automatización para fracción de sólidos totales **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

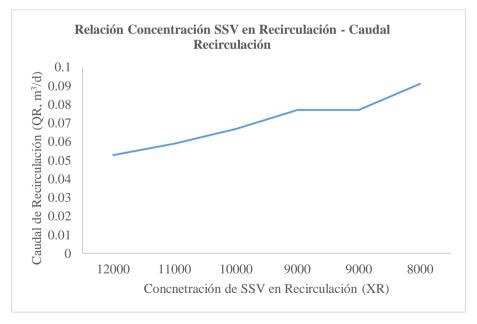
En las figuras 73-3 y 74-3, la producción de lodos, tiene una relación directamente proporcional con los sólidos totales de desecho y que el porcentaje volátil de solidos totales influye en una relación inversa con los sólidos totales de desecho.


Nota: si la cantidad de lodos de desecho es muy baja, la concentración de biomasa en el reactor aumenta hasta exceder la concentración máxima aceptable para una sedimentación aceptable.

Los lodos de desecho deberán ser sometidos a un tratamiento posterior, o ser utilizados para acondicionamiento de suelos.

Caudal de lodos de desecho


Gráfico 75-3: Automatización para sólidos totales de desecho **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


Gráfico 76-3: Automatización para concentración sólidos totales lodo sedimentado **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En las Figuras 75-3 y 76-3, los sólidos totales de desecho tienen una relación directamente proporcional con el caudal de lodos de desecho, mientras que con la concentración de solidos totales de lodo sedimentado el tipo de relación es inversa.

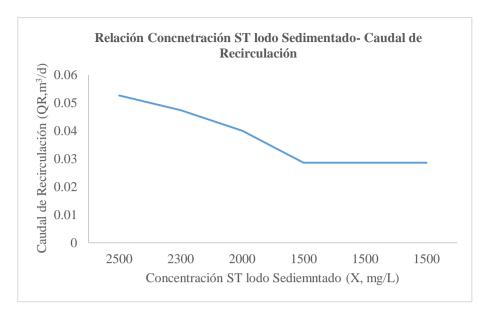

Caudal de recirculación

Gráfico 77-3: Automatización para caudal del afluente **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Gráfico 78-3: Automatización para concentración de SSV en recirculación **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

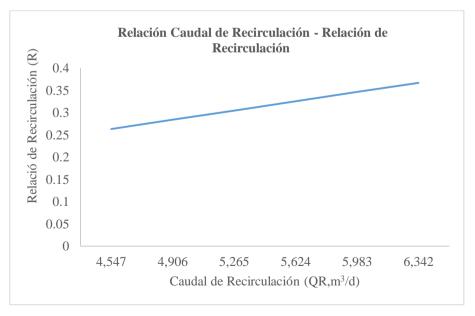
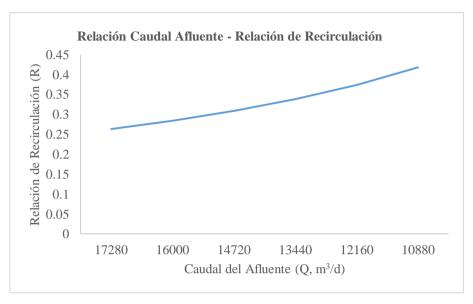


Gráfico 79-3: Automatización para concentración ST lodo sedimentado **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En las Figuras 77-3 y 78-3 se observó que el caudal y la concentración de SSVLM, tienen una relación directamente proporcional con el caudal de recirculación, mientras que en la Figura 79-3, entre la concentración de SSV en la recirculación y el caudal de recirculación se establece una relación inversa.


Nota: los valores de X en un proceso convencional, oscilan entre 1500-3000 mg/ indicado en la Tabla 23.3 L, los SSV representaran un porcentaje de los SS.

Relación de recirculación

Gráfico 80-3: Automatización para caudal de recirculación **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016.

Caudal de lodos de desecho

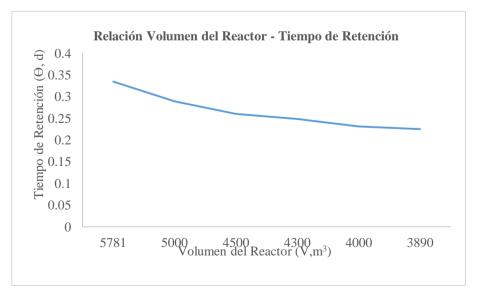
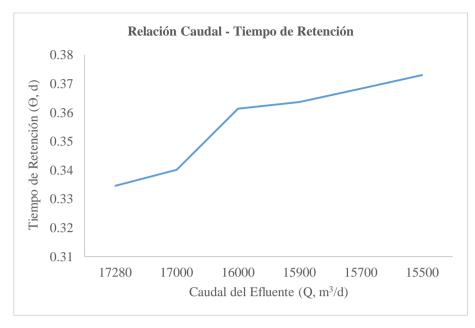
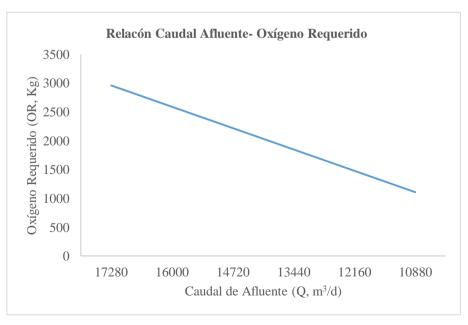


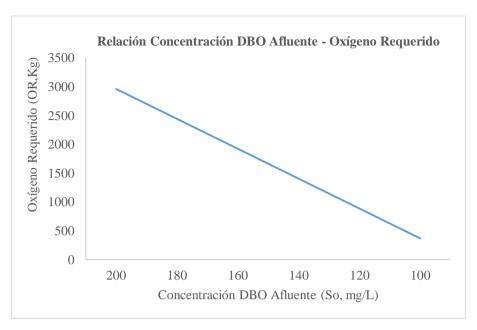
Gráfico 81-3: Automatización para caudal del afluente (Q) **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


La relación de recirculación varía directamente en función del caudal de recirculación y que entre el caudal y la relación de recirculación existe una dependencia inversa, es decir a mayor caudal menor es la relación de recirculación, esto indicado en las Figuras 80-3 y 81-3 respectivamente.

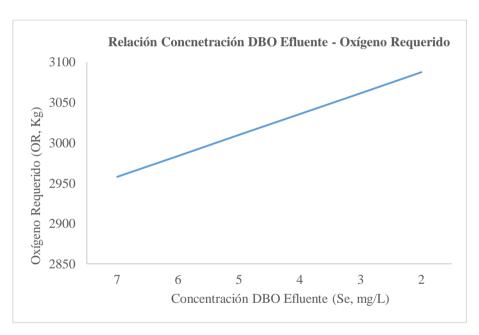
Nota: la tasa de recirculación para un proceso normal está comprendida entre el 25 y 75% indicado en la Tabla 23.3

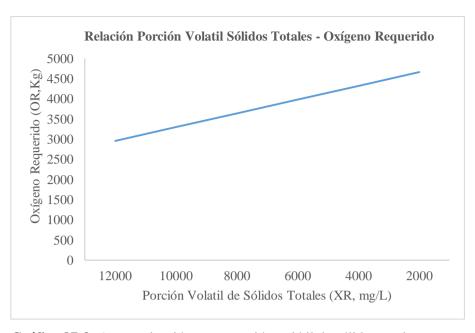
Tiempo de retención


Gráfico 82-3: Automatización para volumen del reactor **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


Gráfico 83-3: Automatización para caudal del efluente (Q) **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En las Figuras 82-3 y 83-3, el tiempo de retención tiene una relación directamente proporcional con el volumen y que a medida que el caudal decrece el tiempo de retención incrementa. Nota: el tiempo de retención o periodo de aireación para un proceso convencional esta entre 4-8 horas, indicado en la Tabla 23.3.


Cantidad de oxígeno requerido


Gráfico 84-3: Automatización para caudal de afluente **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.201

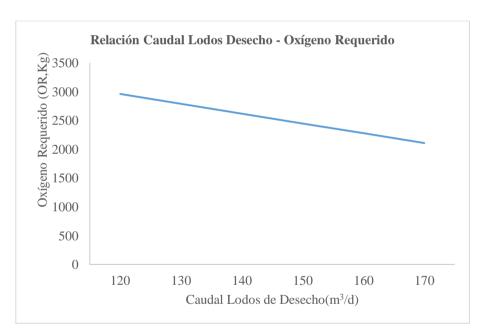

Gráfico 85-3: Automatización para concentración DBO afluente **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Gráfico 86-3: Automatización para concentración DBO efluente **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Gráfico 87-3: Automatización para porción volátil de sólidos totales **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.201L

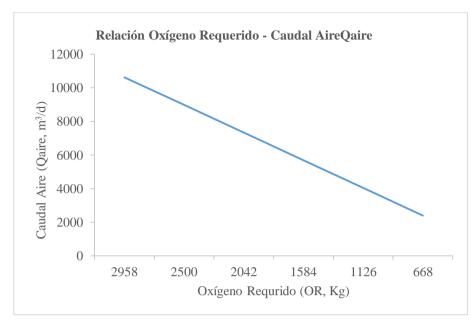


Gráfico 88-3: Automatización para caudal lodos de desecho **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

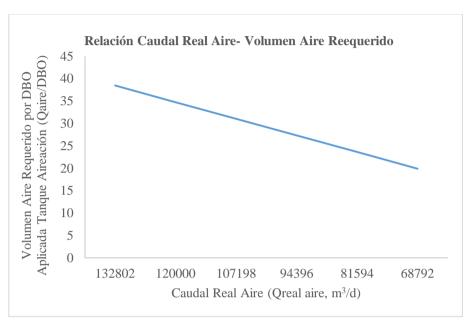
En las Figuras 84-3,85-3,86-3,87-3, y 88-3 se indica que la cantidad de oxígeno requerido es directamente proporcional, al caudal y a la concentración de DBO del afluente, e inversamente proporcional a la concentración de DBO del efluente, la concentración de SSV en el efluente y al caudal de lodo dispuesto.

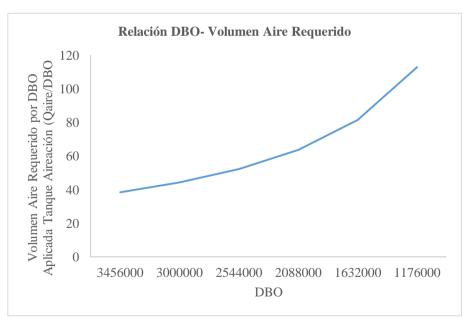
Nota: el proceso de lodos activados es aerobio y es necesario mantener esa condición en todo el tanque de aireación, por lo que será necesario mantener un OD mínimo de 0,5 mg/l en todo punto del tanque.

Caudal del aire en condiciones normales

Gráfico 89-3: Automatización para oxígeno requerido **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En la Figura 89-3, Se indica que el caudal del aire en condiciones normales tiene una relación directamente proporcional con la cantidad de oxígeno requerido

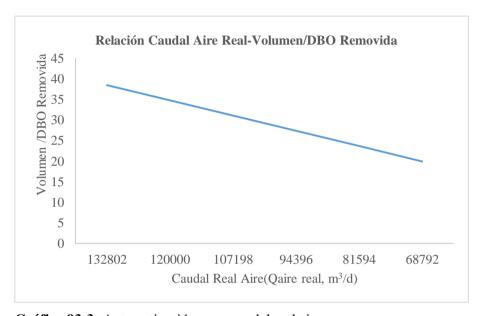

Caudal real del aire


Gráfico 90-3: Automatización para caudal aire condiciones normales. **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento. 2016

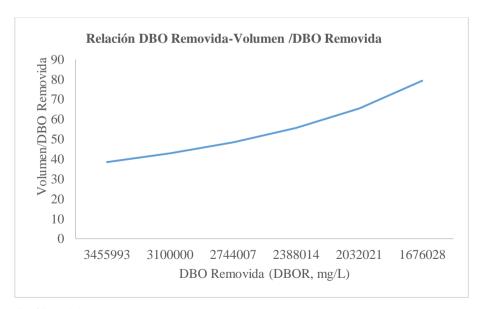
En la Figura 90-3, el caudal real del aire depende, totalmente de la eficiencia de la transferencia de oxígeno y del caudal del aire en condiciones normales.

Volumen de aire requerido por unidad de DBO aplicada al tanque de aireación

Gráfico 91-3: Automatización para caudal real aire. **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


Gráfico 92-3: Automatización para DBO **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En las Figuras 91-3 y 92-3, el volumen de aire requerido por unidad de DBO aplicada al tanque de aireación, es directamente proporcional al caudal de aire, y que la relación entre el volumen


de aire requerido por unidad de DBO en el tanque de aireación y la concentración de DBO es inversamente proporcional.

Nota: para proceso convencional el valor del volumen de aire requerido por unidad de DBO aplicada al tanque de aireación según la Tabla 23.3, está dada por valores mayores a 95 m³ de aire aplicado /Kg de carga de DBO al tanque de aireación.

Volumen de aire requerido por unidad de DBO removida

Gráfico 93-3: Automatización para caudal real aire **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Gráfico 94-3: Automatización para DBO removida **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En las Figuras 93-3 y 94-3, se repite la misma relación que en el caso anterior.

Carga orgánica volumétrica

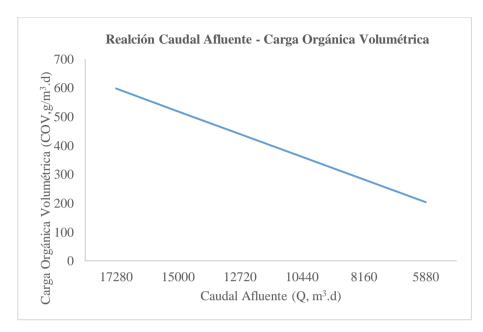
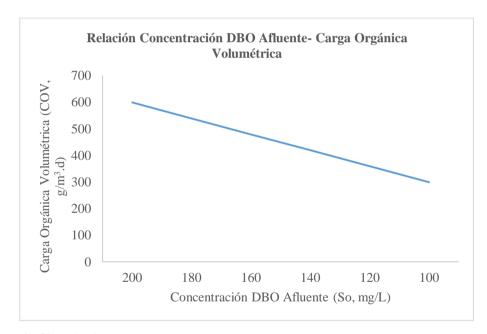
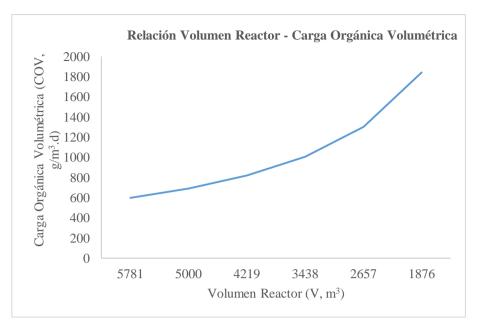
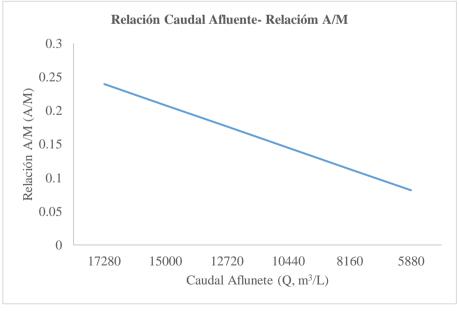
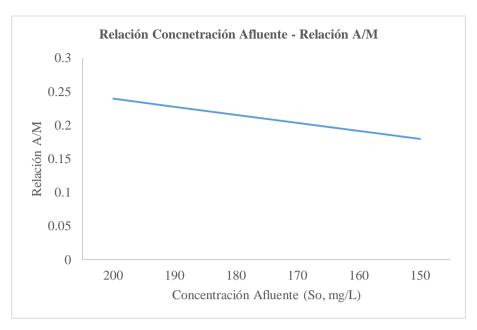




Gráfico 95-3: Automatización para caudal Afluente.

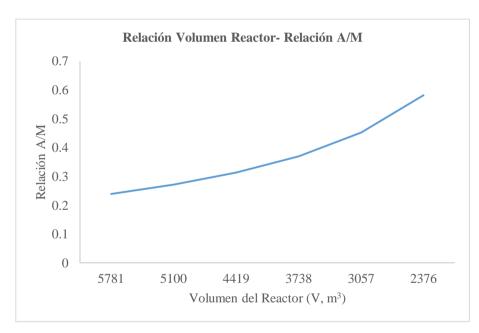
Gráfico 96-3: Automatización para concentración DBO afluente. **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento. 2016


Gráfico 97-3: Automatización para volumen reactor. **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En las Figuras 95-3,96-3 y 97-3, la carga orgánica volumétrica disminuye a medida que el caudal y la concentración de DBO afluente disminuyen, mientras que con que al al incrementar


Nota: para un proceso convencional la carga orgánica volumétrica varía entre 300-600 gDBO/m³.d, según la Tabla 23.3

Relación A/M


el volumen la carga volumétrica disminuye.

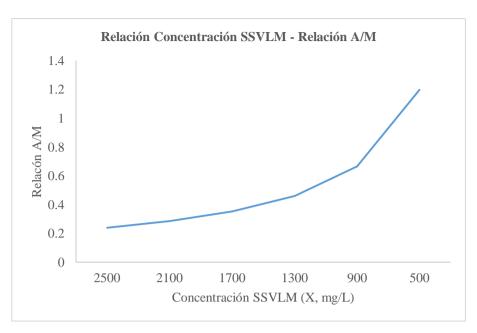

Gráfico 98-3: Automatización para caudal afluente. **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Gráfico 99-3: Automatización para concentración afluente **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

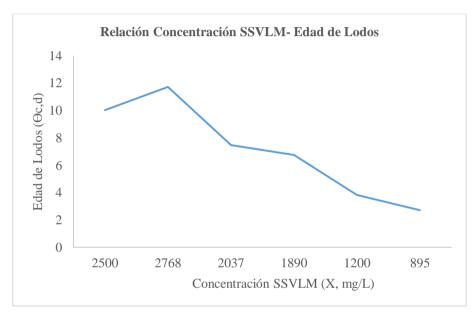
Gráfico 100-3: Automatización para volumen de reactor **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Gráfico 101-3: Automatización para concentración SSVLM **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

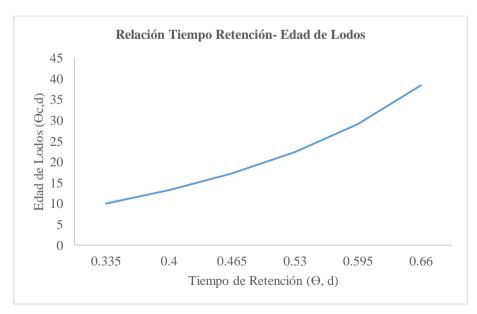
En las Figuras 98-3,99-3,100-3 y 101-3, la relación alimento/microorganismos tiene una relación directamente proporcional con el caudal de las aguas residuales y el DBO del agua residual cruda, mientras que con el volumen del líquido del tanque de aireación y la concentración de sólidos suspendidos volátiles en el tanque la relación es inversamente proporcional.

Nota: En un proceso de lodos activados de este tipo, al comenzar a aireación, la relación A/M es muy grande, es decir existe un exceso de alimento para los microorganismos como el crecimiento es función del alimento existente, al inicio, el nivel de energía es alto y mantendrá a los microrganismos completamente esparcidos, haciendo muy difícil formar el floc biológico de lodo activado, cuando los microorganismos están en esta fase. Mientras se va consumiendo el alimento y se originan nuevas células la relación A/M disminuye y ya no se lo encuentra en exceso sino como factor limitante.

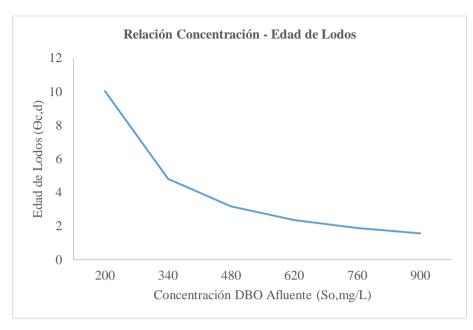
Aquí se pasa a una fase de declinación, cunado algunas células comienzan a aparecer y se empieza a formar el floc, debido a la perdida de energía que han sufrido ya no se aportan las una de las otras y se mantienen en contacto por la turbulencia.

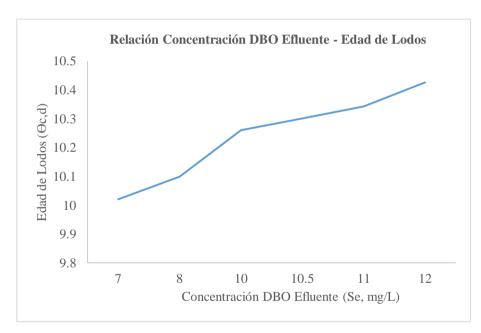

La concentración de alimento va disminuyendo y los microrganismos aumentan, pero en una relación cada vez menor; A/M alcanza un mínimo valor y se inicia la fase endógena, donde los microrganismos no son capaces de obtener energía suficiente del alimento remanente en el

residuo, y empiezan a metabolizar su propio alimento (lisis), aumentando de manera rápida la tasa de formación de floc biológico.


En conclusión, la remoción orgánica es más rápida en la primera fase (crecimiento)

Según la Tabla 23.3 en un proceso convencional los valore normales de la relación A/M están entre $0.2 \text{ y } 0.4 \text{ d}^{-1}$


Edad de lodos


Gráfico 102-3 Automatización para concentración **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

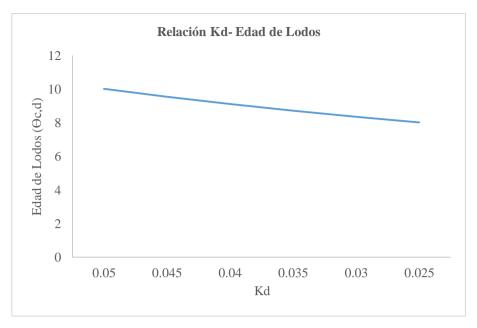
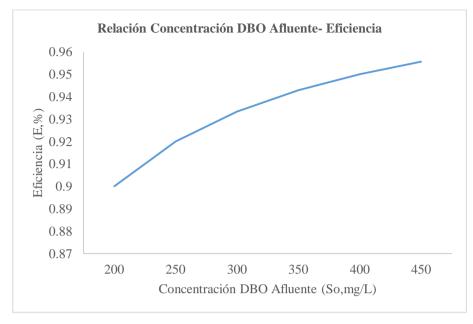

Gráfico 103-3: Automatización para tiempo de retención **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

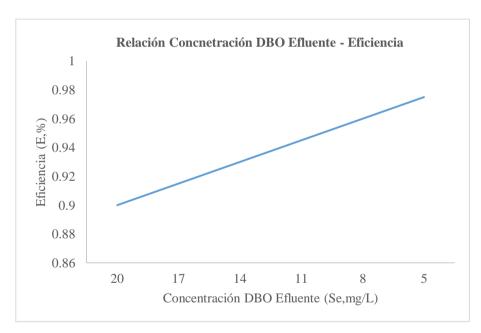
Gráfico 104-3: Automatización para concentración DBO afluente **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Gráfico 105-3: Automatización para concentración DBO efluente **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Gráfico 106-3: Automatización para Kd **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


En las Figuras 102-3,103-3,104-3,105-3 y 106-3, la edad de lodos tiene una relación directamente proporcional con estos cuatro parámetros; X, Θ, Se, Kd y la relación de la edad de lodos con So es inversamente proporcional.

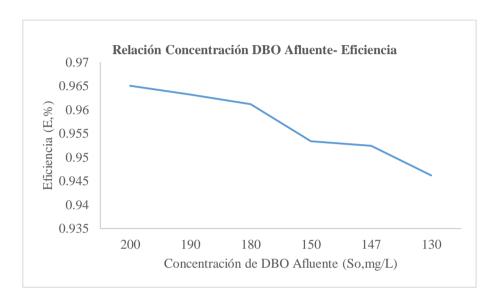
Nota: El tiempo de retención óptimo, será el que produzca el mejor efluente, de acuerdo a las condiciones específicas para cada caso.


En general en edades de lodos largas, la producción de lodos será mejor, debido a la escasez de alimento, sin embargo, se requiere una cantidad mayor de oxígeno.

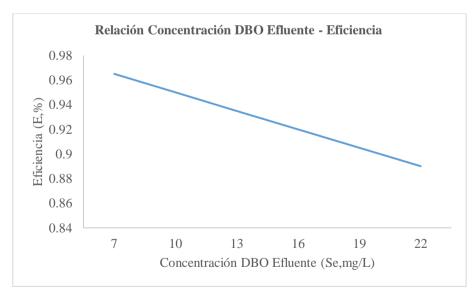
Las edades de lodos cortas se notan una mayor tasa de crecimiento y el uso de oxígeno más eficiente, pero la generación de lodos incrementa

Eficiencia de remoción de DBO total

Gráfico 107-3: Automatización para concentración DBO afluente **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


Gráfico 108-3: Automatización para concentración DBO efluente **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En las Figuras 107-3 y 108-3, la eficiencia de remoción de DBO total tiene una relación directamente proporcional con la diferencia entre el sustrato de afluente y sustrato efluente, y varia inversamente con el sustrato efluente.


Nota: la eficiencia de remoción de DBO para un proceso convencional se encuentra entre el 85 - 95 % según la Tabla 23.3

La mayor eficiencia de DBO se produce en sistemas con aireación prolongada, con aireación larga, relación baja de A/M y concentración altas de SSSLM, porque los microorganismos utilizan sus reservas alimenticias con una actividad mínima e incrementando la sedimentabilidad.

Eficiencia de remoción de DBO soluble

Gráfico 109-3: Automatización para concentración de DBO afluente **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Gráfico 110-3: Automatización para concentración DBO efluente **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En las Figuras 109-3 y 110-3, la eficiencia de remoción de DBO soluble tiene una relación directamente proporcional con la diferencia entre el sustrato de afluente y sustrato efluente, y varia inversamente con el sustrato efluente.

3.2.5 Zanjones de oxidación

Descripción

Los zanjones de oxidación se derivan del proceso de lodos activados que hace uso de la aireación prolongada, cepillos horizontales y excluye el sistema de sedimentación primaria, usan solo un canal concéntrico, un sedimentador secundario y un lecho de secado de lodos. Tiene como principal función la remoción de DBO y SS. (Romero R., J., 2005, pp 505)

En general el zanjón se reviste de concreto o de otro material apropiado para prevenir la erosión y la infiltración. Los aireadores pueden instalarse fijos o flotantes, sobre uno o más sitios a lo largo del canal para suministrar suficiente velocidad dentro del zanjón, generalmente mayor de 0,30 m/s, así como para mantener el nivel de oxígeno disuelto requerido y los sólidos del licor mezclado en suspensión.

(http://www.ptolomeo.unam.mx:8080/xmlui/bitstream/handle/132.248.52.100/2412/Tesis.pdf?s equence=1)

Además, la habilidad que posee el proceso de proveer condiciones aerobias, anóxicas y anaerobias en una sola zanja de oxidación permite que se presenten las condiciones para lograr la remoción de DBO, nitrificación y desnitrificación en un solo sistema de lodos. La remoción de DBO se lleva a cabo tanto en la zona anóxica como en la zona aerobia del canal. La nitrificación, por su parte, ocurre solamente en la porción aerobia del canal mientras la desnitrificación sucede en la porción anóxica del tanque. (http://www.ptolomeo.unam.mx:8080/xmlui/bitstream/handle/132.248.52.100/2412/Tesis.pdf?s equence=1)

Tabla 42-3: Parámetros de diseño para zanjones de oxidación

Parámetro	Valor	Observaciones
Relación A/M, Kg DBO/Kg SSV d	0,1-0,3	En la India
	0.03 - 0.1	En los Estados Unidos
	0,005	En Europa
Carga orgánica volumétrica g DBO/m³d	200 – 1200	
	220	Para aguas residuales domesticas
	160	Para aguas residuales débiles
	<640	Para aguas residuales industriales
SSM, mg/L	2000 - 6000	
	3000 - 8000	
Edad de lodos, d	20 - 30	
	>15	Para temperatura >15°C
Temperatura de aireación, h	12 – 36	
,	24 - 72	En Inglaterra
Relación de recirculación, %	25 – 75	
Profundidad, m	1,0-1,5	Para cepillos o rotores de jaula
,	2,4-5,0	Para rotores mamut o cepillos de
		1,07m de diámetro
Sumergencia de los cepillos, cm	18	Para cepillos de 1,07m de diámetro
<i>C</i> 1 /	5 - 25	Para cepillos de 70cm de diámetro
Longitud de los cepillos, m	0,3-4,5	Para cepillos de 70cm de diámetro
	9	Para cepillos de 107cm de diámetro
Velocidad de los cepillos	60 - 95	Para cepillos de 70 cm de diámetro
•	50 - 72	Para cepillos de 107 cm de diámetro
Taludes	-	Preferiblemente en concreto, asfalto,
		arcilla o prefabricados para prevenir erosión
	5 10	En la India
Produccion de lodos, g/cd	5-10	
g/cd Kg/Kg DBOR	25 - 30 0.5 - 07	En Europa
Oxigeno requerido, KgO / Kg DBOA	1,5-2,0	En la India
KgO ₂ / Kg DBOA	2,0	En Europa
KgO ₂ /Kg DBOA	1,5-1,8	En Estados Unidos
KgO ₂ / DBOR		
Velocidad en la zanja, m/s	0,3-0,8	Suficiente para mantener los sólidos en suspensión.
	150 - 200	Para mantener velocidad de flujo
Relación volumen zanjón /longitud del	- *	adecuada con rotores de 78 cm

cepillo m^3/m	260	Para rotores de 107 cm
	1,5 – 2,0	
Relación ancha del zanjón/longitud del cepillo		
	>90	
Remoción de DBO, %	>90	
Remoción de SST, %		
	0,025	En la India
Área de lechos de secado, m^2/c	0,35	En Europa
	0,125	En la India
Área total requerida m^2/c	1,2	En Europa
	DDG 45	
	DBO< 15	
Calidad del efluente mg/L	SST < 15	
	$NH_3 - N < 5$	
	15 – 20	Para caudal promedio
	13 - 20 40 - 80	Para caudal máximo
Carga superficial de sedimentador m/d	40 – 00	i ara caddar maximo

Fuente: Romero R., J., 2005

Tabla 43-3: Características de un rotor de jaula

Inmersión, m	No, Kg $O_{2/mh}$	Potencia 1	Potencia requerida kW/m		
	7	1,7	0,7		
	12	2,3	1,2		
	15	4,2	1,9		
	22	6,0	2,7		

Fuente: Romero R., J., 2005

Tabla 44-3: Diseños típicos de zanjones de oxidación

Población de	Dimensiones de zanjón, m				Rotor de jaula de Φ=70 cm con la		Recirculación de lodos			
diseño						inmersión de 15 cm				
	A	В	С	D	Е	F	Longitud, m	RPM	kW	L/s
150	15,24	8,53	1,83	0,91	2,44	0,91	0,91	65a	1,12	0,95
200	20,73	8,53	1,83	0,91	2,44	0,91	0,91	75a	1,12	1,14
250	26,21	8,53	1,83	0,91	2,44	0,91	0,91	75b	1,49	1,39
300	32,00	8,53	1,83	0,91	2,44	0,91	0,91	70	1,49	1,58
350	28,65	9,75	2,13	1,07	2,44	0,91	0,91	75	2,24	1,64
400	32,92	9,75	2,13	1,07	2,44	0,91	0,91	80	2,24	1,77
450	32,31	10,36	2,13	1,07	3,05	1,22	1,22	74	2,24	2,02
500	35,97	10,36	2,13	1,07	3,05	1,22	1,22	78	2,24	2,21
600	42,67	10,97	2,44	1,07	3,05	1,22	1,22	86	3,73	2,65
700	32,61	12,80	2,44	1,22	3,96	1,83	1,52	80	3,73	3,09
800	37,49	12,80	2,44	1,22	3,96	1,83	1,52	89	3,73	3,53
900	38,71	13,41	2,44	1,22	4,27	2,13	1,83	86	5,60	3,97
100	39,93	13,41	2,44	1,37	4,27	1,83	1,83	90	5,60	4,42
1100	36,88	14,63	2,44	1,37	4,88	2,13	2,13	88	5,60	4,86
1200	37,49	15,24	2,44	1,37	5,18	2,44	1,83	86	5,60	5,30
1300	40,84	15,24	2,44	1,37	5,18	2,74	2,44	89	5,60	5,74
1400	40,84	15,85	2,44	1,37	5,49	2,74	2,44	88	7,46	6,18
1500	43,89	15,85	2,44	1,37	5,49	3,05	2,74	91	7,46	6,62
1600	43,89	16,46	2,44	1,37	5,79	3,05	2,74	89	7,46	7,00
1700	46,63	16,46	2,44	1,37	5,79	3,35	3,05	91	7,46	7,44
1800	44,20	17,68	2,44	1,37	6,40	3,96	3,35	90	7,46	7,89
1900	44,20	18,29	2,44	1,37	6,71	4,27	3,66	89	11,19	8,33
200	46,33	18,29	2,44	1,37	6,71	4,27	3,66	90	11,19	8,77

Fuente: PARKER, H., 1975

(a) Con 10 cm de inmersión

(b) Con 12 cm de inmersión

Modelos matemáticos de diseño para zanjones de oxidación

$$N = N_0 \alpha (1,024)^{T-20} \left[\frac{\beta c_{s(T,A)} - c}{c_{s(20,0)}} \right] Ec. \ 120-3$$

Donde:

N= tasa real de transferencia de oxigeno KgO_2/mh

 N_0 = tasa nominal de transferencia de oxígeno en condiciones normales, KgO_2/mh

 α = relación promedio de la tasa de transferencia de oxígeno en agua residual, K_L a la tasa de transferencia de oxígeno en agua potable. Generalmente igual a 0,7 – 0,95

T= temperatura de diseño, °C.

β= relación entre la concentración de saturación de oxígeno en el agua residual y la concentración de saturación en el agua potable, generalmente igual a 0,9 para aguas domésticas.

 $C_{S(T,A)}$ = concentración de saturación de oxígeno disuelto en agua potable, a la temperatura T y a la altitud A del lugar mg/L.

 $C_{s(20,0)}$ = concentración de saturación de oxígeno disuelto en agua disuelto a20° C y al nivel del mar, 9,1 mg/L

C= concentración promedio de oxígeno disuelto en el zanjón generalmente, 1.0 - 1.5 mg/L.

El valor de $C_{S(T,A)}$ se calcula por las siguientes ecuaciones:

$$C_{S(T,A)} = \frac{C_{S(T,O)}P_A}{760} Ec. 121-3$$

$$P_A = 760 \left(1 - \frac{A}{9450}\right) Ec. 122-3$$

$$P_A = C_{s(T,O)} \left(1 - \frac{A}{9450}\right) Ec. 123-3$$

Donde:

 $C_{s(T,O)}$ = concentración de saturación OD para la temperatura T y 0 msnm, en agua potable mg/L. los valores de $C_{s(T,O)}$ se encuentran tabulados en el apéndice C.

A= altitud del lugar, m.

 P_A = presión barométrica del lugar, mm Hg

Producción de lodos

Tasa de producción de lodos de desechos, a partir de la definición de edad de lodos

$$\frac{Q_W}{Q} = \frac{\theta X - \theta_C X_e}{\theta_C (X_W - X_e)} Ec. 124-3$$

Despreciando X_e

$$\frac{Q_W}{Q} = \frac{\theta X}{\theta_C X_W} Ec. \ 125-3$$

Donde:

 θ = tiempo de retención, d

X= concentración de solidos suspendidos en el reactor, mg/L

 X_e = concentración de solidos suspendidos en el efluente, mg/L

 θ_C = edad de lodos, d.

 X_w = concentración de solidos suspendidos en el lodo, mg/L.

 Q_W = caudal de lodos de desecho m³/d

Q= caudal afluente m^3/d

Tabla 45-3: Datos experimentales y resultados de tasa real de transferencia de oxígeno

Características	Unidades	Valor	Ecuación	
Tasa nominal de transferencia de oxígeno, No	$\text{Kg O}_2/h$	6		
Relación promedio de la tasa de transferencia de		0,82		
oxígeno en agua residual,K _L a, a la tasa de				
transferencia de oxígeno en agua potable, α.				
Relación entre la concentración de saturación de		9,1		
oxígeno en el agua residual y la concentración de				
saturación en agua potable, β.				
Temperatura de diseño, T.	°C	22		
Concentración de saturación de OD en agua potable,	mg/L	7,35		
a la temperatura T y altitud A del lugar, $C_{s(T,A)}$				
Concentración de saturación de OD en agua destilada	mg/L	9,17		
a 20°C y al nivel del mar, $C_{s(20,0)}$				
Concentración promedio de oxígeno disuelto en el	mg/L	2		
zanjón, C.				
Tasa real de transferencia de oxígeno, N	${\rm Kg~O_2/mh}$	2,09	103-3	

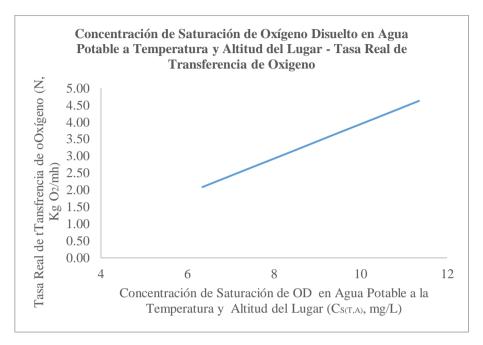
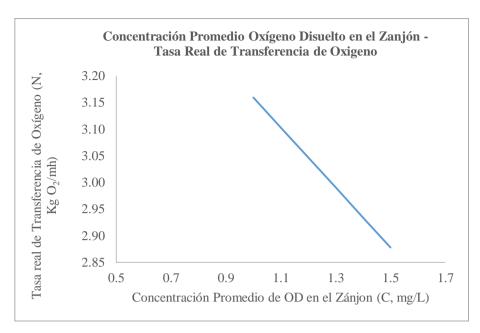

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 46-3: Datos experimentales y resultados para concentración de saturación de oxígeno disuelto en el agua potable a la temperatura y altitud del lugar.

Características	Unidades	Valor	Ecuación
Concentración de saturación de OD para la	mg/L	8,83	
temperatura T y 0 msnm, en agua potable, $C_{s(T,O)}$			
Altitud del lugar, A.	m	2750	
Concentración de saturación de oxígeno disuelto en	mg/L	9,87	
el agua potable a la temperatura y altitud del			
lugar, $C_{s(T,A)}$			106-3


Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tasa Real de Transferencia de Oxigeno

Gráfico 111-3: Automatización de la concentración de OD en agua Potable a la temperatura y altitud del lugar **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

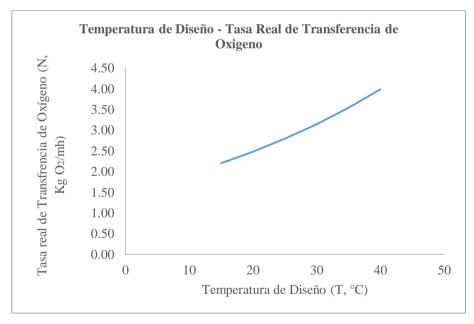
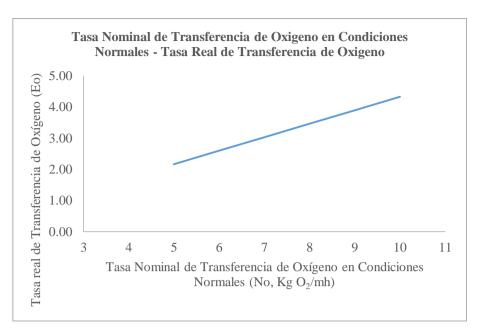
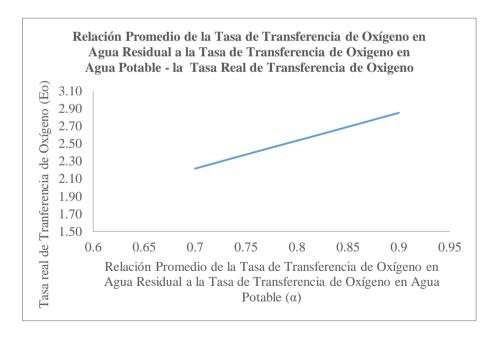

Un parámetro muy importante dentro del diseño de zanjones de oxidación es la tasa real de transferencia de un cepillo de aireación, en las figuras 111-3, se obtiene un mejor rendimiento conforme se va elevando la concentración de saturación de oxígeno disuelto a la temperatura y altitud del lugar $C_{s(T,A)}$

Gráfico 112.3: Automatización de concentración promedio de OD en el zanjón


Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

La tasa real de transferencia es de oxigeno es inversamente proporcional a la concentración promedio de oxígeno disuelto en el zanjón de oxidación.


Gráfico 113-3: Automatización de temperatura de diseño **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Al aumentar la temperatura de dise \tilde{n} o T, hay un incremento en la tasa real de transferencia de oxígeno.

Gráfico 114-3: Automatización de la tasa nominal de transferencia de oxígeno en condiciones normales **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

La tasa nominal de trasferencia en condiciones normales N_o es una medida dado por los fabricantes de los equipos aireadores es por eso que cuando su valor es mayor la tasa de real de transferencia crece.

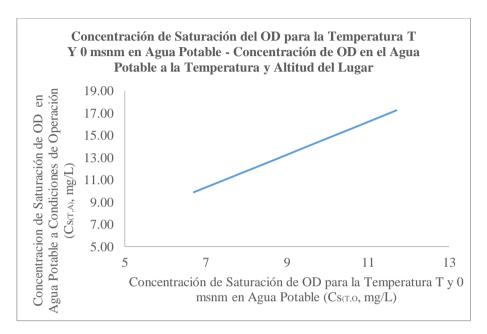


Gráfico 115-3: Automatización de la relación promedio de la transferencia de oxígeno en agua residual a la tasa de transferencia de oxígeno en agua potable

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Cuando la relación promedio de la tasa de transferencia de oxígeno en agua residual $K_L a$ a la tasa de transferencia de oxígeno en agua potable es directamente proporcional al rendimiento real de oxígenación α .

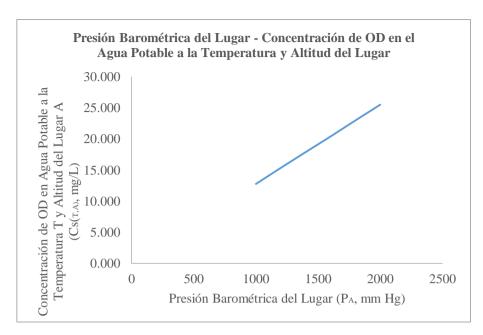

Concentración de Saturación de Oxígeno Disuelto en el Agua Potable a la Temperatura y Altitud del Lugar.

Gráfico 116-3: Automatización de la concentración de OD para la temperatura T y o msnm en agua potable

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

La concentración de saturación del oxígeno disuelto en el agua a la temperaturas y altitud del lugar de operación depende directamente de la concentración de saturación de OD a una temperatura T y 0 msnm., está ultima se relaciona directamente con la temperatura con lo cual un aumento en la temperatura provoca un incremento.

Gráfico 117-3: Automatización de la presión barométrica del lugar **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

La concentración de OD en el agua potable a la temperatura y altitud del lugar C_s aumenta si hay un incremento en la presión barométrica del lugar.

Gráfico 118-3: Automatización de la altitud del lugar **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

La concentración de saturación del oxígeno disuelto en el agua a la temperatura es inversamente proporcional a altitud del lugar, debido a que a mayor altitud respecto con el nivel de mar se tiene una menor presión del aire.

3.2.6 Lagunas aireadas

Descripción

"Una laguna aireada es un estanque de 2 m a 5 m de profundidad utilizado para el tratamiento biológico de aguas residuales. En el sistema de tratamiento se emplea un equipo de aireación mecánica para de suministrar oxígeno y mezcla.

Las lagunas aireadas facultativas son las más usadas porque se obtiene un buen efluente, los niveles de potencia son menores, requieren control mínimo y la remoción de los lodos es poco frecuente, cada diez años o incluso más. Las lagunas aireadas aerobias se utilizan mucho para aguas residuales industriales de alta concentración." (Romero, A.,2002,p.527)

El diseño de una laguna aireada requiere la evaluación cuidadosa de los siguientes factores:

- Características de remoción de DBO
- Requerimientos de oxígeno para oxidación biológica
- Efecto de la temperatura
- Relaciones de transferencia de oxígeno
- Requisitos de mezcla
- Configuración geométrica de la laguna
- Disposición de aireadores
- Concentración de biomasa en la laguna
- Producción de lodos
- Clarificación y depuración del efluente

Tabla 47-3: Valores de K en Lagunas Aireadas

$K_{20,}d^{-1}$	Ecuación	Observaciones
0,28	$K_T = 0.28(1.09)^{T-20}$	(90)
0,28	-	(17)
0,2-0,7	-	Agua residual domestica (94)
0,3-1,0	-	Agua residual domestica (26)
0,35	$K_T = 1,2(1,085)^{T-35}$	(40)
0,4-0,5	-	Para lagunas aireadas
		secundarias de aguas residuales
		domesticas ⁽⁷⁴⁾
0,5-1	-	Agua residual domestica (1)
2,5	$K_T = 2,5(1,085)^{T-20}$	Agua residual de una fábrica de
		textiles ⁽²⁶⁾
<3,0	-	Aguas residuales industriales (1)
2,7-4,8	-	Lagunas primarias de aguas
		residuales domésticas ⁽⁷⁴⁾
5,0	$K_T = 5.0(1,035)^{T-20}$	Agua residual domestica ⁽²⁾
0,75	-	Agua residual empacadoras (158)
0,80	-	Agua residual frigorífico (168)
1,0	-	Agua residual aserradero
0,25-1,0	-	Para remoción de DBO total ⁽⁸⁹⁾
2,5	-	Para lagunas aerobias según la
		EPA ⁽⁶²⁾

Fuente: Romero, A., 2002

Tabla 48-3: Características de Aireadores Superficiales de Baja Velocidad

Potencia	Profundidad	Zona de mezcla	Zona de dispersión de
KW	M	completa	oxígeno
		M	m
2,2	1,8	15	46
3,7	1,8	21	64
7,5	2,4	27	79
4,9	3,0	35	101
18,6	3,0	40	114

Fuente: DROSTE, R.L. Theory and a Practice of the Water and Wastewater Treatment, Wiley, 1997.

Modelos matemáticos de diseño para lagunas aireadas

Características de remocion de DBO

Suponiendo despreciables las pérdidas o ganancias de agua por evaporación, percolación y lluvia, el balance de masa se representa mediante la siguiente ecuación:

$$rV = S_0Q - SQ Ec. 126-3$$

Donde:

 $V = \text{volumen de la laguna, m}^3$.

Q= caudal de aguas residuales, m³/d.

 S_0 = DBO del afluente, mg/L.

S = DBO del efluente, mg/L.

r= tasa de remoción de DBO de primer orden, mg /Ld.

Nuevamente, considerando la tasa de remoción de DBO como una ecuación de primer orden, la tasa es proporcional a la concentración de DBO remanente y se representa según la siguiente ecuación.

$$\frac{dS}{dt} = KSEc. 127-3$$

Donde:

S= concentración de DBO remanente, mg/ L.

t= tiempo, d.

S= concentración de DBO remanente, mg/ L.

K= constante de remoción de DBO, base natural, específica para cada residuo y cada laguna en particular, d ⁻¹.

Para condiciones de equilibrio, la tasa de remoción (r) es igual a KS; por tanto

$$r = KS = \frac{Q}{V}(S_0 - S)$$
 Ec. 128-3

Transformando la ecuación se obtiene la ecuación 112-3

$$\frac{KSV}{O} = S_0 - S Ec. 129-3$$

Por definición, el tiempo de retención está dado por la ecuación 113-3

$$\frac{v}{\varrho} = \theta Ec. 130-3$$

$$K\theta = \frac{S_0 - S}{S} Ec. 131-3$$

$$\frac{s_0}{s} = 1 + K \theta E c. 132-3$$

$$\theta = \frac{S_0 - S}{KS} Ec. 133-3$$

$$\frac{S}{S_0} = \frac{1}{1+K\theta} Ec. 134-3$$

El porcentaje de remoción de DBO en la laguna (E) estará dado por la ecuación 118-3

$$E = 100 - \frac{100}{1+K\theta} Ec. 135-3$$

Para diseño es más conveniente expresar el tiempo de retención en función del porcentaje de remoción deseado, como se indica en la ecuación 119-3.

$$\theta = \frac{E}{K(1-E)} Ec. 136-3$$

El valor de K depende de la temperatura. El efecto de la temperatura se evalúa por la ecuación clásica de Arrhenius.

$$K_T = K_{20}\theta^{T-20}$$
 Ec. 137-3

El coeficiente de actividad por temperatura, en lagunas aireadas, es igual a 1,08⁽⁸⁹⁾. Por tanto, el valor de K se puede calcular por la ecuación 121-3.

$$K_T = K_{20}(1.08)^{T-20}$$
 Ec. 138-3

Donde:

 K_{20} = constante de remoción a 20°C, d⁻¹.

 K_T = constante de remoción a la temperatura T.

T =temperatura de diseño, °C.

Determinación experimental de k

$$\frac{S_0}{S} = 1 + K\theta \ Ec. \ 139-3$$

Requerimientos de oxígeno para oxidación biológica:

En práctica se calcula por la expresión:

Oxigeno requerido = (Factor)(DBO removida)

Calculo del factor F:

$$F = \frac{DBOU}{DBO} Ec. 140-3$$

En general, para la mayor de las aguas residuales F=1,1-1,5 y para las aguas residuales domesticas se usa mucho F=1,3.

Por tanto:

$$OR = FES_0x \ 10^{-3} \ Ec. \ 141-3$$

Donde:

OR= oxigeno requerido, kg/h.

E= eficiencia fraccional de remoción de DBO.

 $Q = \text{caudal}, \text{ m}^3/\text{h}.$

 $S_0 = DBO$ afluente, mg/ L.

También se acostumbra calcular la cantidad de oxígeno requerido en términos de la DBO del afluente así:

$$OR = FS_0Qx \ 10^{-3} \ Ec. \ 142-3$$

La tasa a la cual se requiere oxígeno, en la primera laguna aireada aerobia, se puede calcular por la ecuación 126-3.

$$OR = 6.3 \times 10^{-5} QS_0 Ec. 143-3$$

Donde:

OR= oxigeno requerido, kg/h.

 $Q = \text{caudal m}^3 / \text{d}$

 S_0 = DBO afluente, mg/L.

Para algunas aireadas facultativas, la tasa máxima de oxígeno requerido se puede calcular por la ecuación 127-3.

$$OR = 4,17 \ x 10^{-5} AB \ Ec. \ 144-3$$

Con:

$$B = 60(1,05)^{T-20} Ec. 145-3$$

Donde:

OR= oxígeno requerido, kg/h

A= área del fondo de la laguna, m²

B= demanda bental de oxígeno, g/ m²d

T= temperatura del agua en la laguna durante una semana más cálida del año °C.

Temperatura en lagunas aireadas

$$T = T_a + \frac{T_0 - T_a}{3} Ec. 146-3$$

Donde:

T = temperatura del agua en la laguna, durante la semana más fría del año, °C.

 T_0 = temperatura del afluente, durante la semana más fría del año.

 T_a := temperatura promedio del aire, durante la semana más fría del año, °C.

Relaciones de transferencia de oxígeno

El rendimiento nominal de los equipos de aireación superficial debe corregirse, para las condiciones de diseño, mediante la ecuación 130-3.

$$N = N_0 \alpha (1,024)^{T-20} \left[\frac{\beta C_{S(T,A)} - C_L}{C_{S(20,0)}} \right] Ec. 147-3$$

Donde:

N= tasa real de transferencia de oxígeno, kg O₂/kWh.

 N_0 = tasa nominal de transferencia de oxígeno en condiciones normales, kg O_2 /kWh, o tasa de transferencia de oxígeno en condiciones estándar.

 β = relación entre la concentración de saturación de oxígeno en el agua residual y la concentración de saturación en agua potable, generalmente igual a 0,9 para aguas residuales domésticas.

 α = relación de la tasa de transferencia de oxígeno en agua residual, K_L a, la tasa de transferencia de oxígeno en agua potable. Para aguas residuales domésticas se citan los siguientes valores típicos:

 $\alpha = 0.7^{(2)}$

 $\alpha = 0.9^{(26)}$

 $\alpha = 0.8 - 0.95^{(1)}$

 $\alpha = 0.8 - 0.85^{(3)}$

Para aguas residuales industriales:

 $\alpha = 0.5 - 1.3^{(1)}$

 $\alpha = 0.3 - 2.0^{(3)}$

 $C_{S(T,A)}$ = concentración de saturación de oxígeno disuelto en agua potable, a la temperatura T y altitud A del lugar, mg/L.

 $C_{S_{(20,0)}}$: = concentración de saturación de oxígeno disuelto en agua destilada a 20°C y al nivel del mar; 9,1 mg/L.

 C_L = concentración de OD que se debe mantener en la laguna, generalmente 1,0-1,5 mg/L; 2,0mg/L según las normas de los diez estados (17)

Los valores de $C_{S_{(T,0)}}$ se encuentran tabulados en diferentes textos; el valor de $C_{S_{(T,A)}}$ se calcula por la ecuación 19,25⁽²⁾

$$C_{S(T,A)} = C_{S(T,0)} \frac{P_A}{760} Ec. 148-3$$

Donde:

$$P_A = 760 \left(1 - \frac{A}{9,450}\right) Ec. 149-3$$

$$C_{S(T,A)} = C_{S(T,0)} \left(1 - \frac{A}{9,450} \right) Ec. 150-3$$

 P_A = presión barométrica del lugar, mm Hg.

 $C_{S(T,0)}$ = concentración de saturación de OD para la temperatura T y 0 msnm, en agua potable, mg/L.

A= altitud de lugar, msnm.

Generalmente, para aireadores flotantes:

 $N_0=1,2-2,4 \text{ kg } O_2/\text{ kWh}$

 $N = 0.8-1.0 \text{ kg O}_2/\text{ kWh}$

Requisitos de la mezcla

Para lagunas aireadas aerobias se recomienda un nivel de potencia (NP) de:

$$NP^{(1)} = 12-20 \text{ W/m}^3$$

$$NP^{(2)} = 5 \text{ W/ m}^3$$

$$NP^{(3)} = 6 \text{ W/ m}^3$$

$$NP^{(26)}=20 \text{ W/ m}^3$$

$$NP^{(34)} = 3-4 \text{ W/m}^3$$

Nivel de potencia:

$$NP = 0.004X + 5 Ec. 151-3$$

Donde:

NP= nivel de potencia, W/m³

X= mg/L de sólidos suspendidos en la laguna, generalmente 150 a 250 mg/L.

Para aireación con aire comprimido, el nivel de potencia se puede cuantificar por la ecuación

$$NP = \frac{3.9Q_a}{V} log \left[\frac{h+10.366}{10.366} \right] Ec. 152-3$$

Donde:

NP= nivel de potencia, W/ m³

 Q_a = flujo de aire,L/min

h = profundidad líquida sobre el difusor, m

V= volumen de la laguna, m³

Para lagunas aireadas facultativas el nivel de potencia recomendado es el siguiente:

 $NP^{(1)} = 1,2-2,0 \text{ W/m}^3$

 $NP^{(3,74)}=1,0 \text{ W/ m}^3$

 $NP^{(26)}=3,0-4,0 \text{ W/m}^3$

 $NP^{(34)}=0.8 \text{ W/ m}^3$

Configuración y disposición de los aireadores

El volumen de la laguna puede verificarse por la fórmula

$$V = D\left(a_T L_T - SDa_T - SDL_T + \frac{4}{3}S^2D^2\right) Ec. \ 153-3$$

Donde:

V= volumen, m³

D= profundidad del agua, m

 a_T = ancho de la laguna en la superficie del agua, m

 L_T = longitud de la laguna en la superficie del agua, m

S= pendiente, H:V

Concentración de la biomasa en la laguna

$$X = \frac{Y(S_0 - S)}{1 + k_d \theta} Ec. \ 154-3$$

Donde:

X= concentración de microorganismos en el reactor, mg SSV/L

 S_0 = concentración de sustrato en el afluente, mg/L

S= concentración de sustrato en el efluente del reactor, mg/L

 k_d = coeficiente de respiración endógena, d⁻¹

 θ = tiempo de retención, d

Producción de lodos

$$P_x = XQEc. 155-3$$

Suponiendo un 80% de sólidos volátiles en los sólidos de la laguna, se obtiene la ecuación 139-3.

$$P_{x(ss)} = \frac{xQ}{0.8} Ec. 156-3$$

Donde:

 P_x = producción de lodos, g SSV/d

X= concentración de biomasa en el reactor, mg SSV/L

 $P_{x(ss)}$ = producción de lodos, g SS/d

Clarificación y depuración del efluente

$$X_e = X_0 + \frac{X}{0.8} Ec. 157-3$$

La DBO total del efluente del alaguna aireada se puede calcular por la relación:

$$DBO_{total} = S_e + CX Ec. 158-3$$

Donde:

 S_e = DBO soluble del efluente de la laguna, mg/L

C = 0.4 - 0.5

X= concentración de biomasa en el reactor, mg SSV/L, generalmente menor o igual a 250 mg/L en lagunas de mezcla completa y menor o igual a 250 mg/L en lagunas de mezcla completa y menor o igual a 25 mg/L en lagunas aireadas secundarias facultativas o de mezcla incompleta de aguas residuales domesticas $^{(74)}$

Optimización del diseño de lagunas aireadas en serie

$$S_e = \frac{S_0}{(1 + K_1 \theta_1)(1 + K_2 \theta_2)^n} Ec. 159-3$$

Donde:

 S_e = DBO soluble del efluente, mg/L

 S_0 = DBO total del afluente, mg/L

 K_1 = constante de remoción de DBO en la primera laguna, d⁻¹

K₂= constante de remoción de DBO en la segunda y demás lagunas, d¹¹

 θ_1 = tiempo de retención en la primera laguna, d

 θ_2 = tiempo de retención en la segunda y demás lagunas, d

n=número de lagunas de mezcla incompleta o facultativas

De la ecuación 142-3 se deduce la ecuación

$$\theta_2 = \frac{\left(\frac{S_0}{S_e(1+K_1\theta_1)}\right)^{1/n} - 1}{K_2} Ec. \ 160-3$$

El tiempo total de retención en el sistema de lagunas está dado por la ecuación

$$\theta = \theta_1 + n\theta_2 Ec. 161-3$$

El costo mínimo se obtiene cuando las lagunas son iguales ⁽⁷⁴⁾, es decir para

$$\theta_1 = \theta_2 \, Ec. \, 162-3$$

Tabla 49-3: Datos experimentales y resultados de tiempo de retención (invierno)

Característic	ca	Unidades	Valor	Ecuación
Volumen de	la laguna(V)	m^3	17400	
Caudal	de agua	s m³/día	2000	
residuales(C	<u>)</u>)			
Tiempo de r	retención (Θ)	día	8,7	Ec. 163-3
,		día	8,7	Ec. 163-3

Tabla 50-3: Datos experimentales y resultados de modelo típico para diseño de lagunas aireadas

Característica	Unidades	Valor	Ecuación
Constante de remoción de	d^{-1}	1,4	
DBO (K)			
Tiempo de retención (Θ)	día	8,7	
DBO efluente/DBO afluente		0,07587253	Ec. 164-3
(S/So)			

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 51-3: Datos experimentales y resultados de porcentaje de remoción de DBO en la laguna

Característica	Unidades	Valor	Ecuación
Constante de remoción de	d^{-1}	1,4	
DBO(K)			
Tiempo de retención (Θ)	día	8,7	
Eficiencia de remoción de	%	92,4127466	Ec. 165-3
DBO €			

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 52-3: Datos experimentales y resultados de tiempo de retención en función al porcentaje de remoción

Característica	Unidades	Valor	Ecuación
Eficiencia de remoción de	%	92,4127466	
DBO (E)			
Constante de remoción de	d^{-1}	1,4	
DBO (K)			
Tiempo de retención (Θ)	día	8,7	Ec. 166-3

Tabla 53-3: Datos experimentales y resultados de cantidad de oxígeno requerida

Característica	Unidades	Valor	Ecuación
Factor (F)		1,3	
DBO fluente (So)	mg/L	250	
Eficiencia fraccional de remoción €		0,9	
caudal (Q)	m³/día	2000	
Cantidad de oxígeno requerida (OR)	KgO ₂ /día	585	Ec. 167-3

Tabla 54-3: Datos experimentales y resultados de la cantidad de oxígeno requerido en la primera laguna aerobia

Característica	Unidades	Valor	Ecuación
Caudal (Q)	m³/día	2000	
DBO afluente (So)	mg/L	250	
Oxígeno requerido en la	KgO ₂ /h	31,5	Ec. 168-3
primera laguna aerobia (OR)			

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 55-3: Datos experimentales y resultados de la cantidad de oxígeno requerido para lagunas facultativas

Característica	Unidades	Valor	Ecuación
Área del fondo de la laguna (A)	m ²	10000	
Demanda bental de oxígeno(B)	g/m^2d	97,7336776	
Oxígeno requerido en laguna	kg/h	40,7549436	Ec. 169-3
facultativa(OR)			

Tabla 56-3: Datos experimentales y resultados de la temperatura de diseño para lagunas aireadas

Característica	Unidades	Valor	Ecuación
Temperatura promedio del	°C	20	
aire durante la semana más			
fría del año (Ta)			
Temperatura del afluente	°C	18	
durante la semana más fría			
del año (To)			
Temperatura de diseño (T)	$^{\circ}\mathrm{C}$	19,3333333	Ec. 170-3

Tabla 57-3: Datos experimentales y resultados de la tasa real de transferencia de oxígeno

Característica	Unidades	Valor	Ecuación
Tasa de transferencia de oxígeno	KgO ₂ /kW.h	1,8	
en condiciones estándar (No)			
Relación de tasa de transferencia		0,9	
de oxígeno en agua residual a la			
tasa de transferencia de oxígeno			
en agua potable (α)			
Temperatura(T)	°C	24	
relación entre la concentración de		0,95	
saturación de oxígeno en el agua			
residual, y la concentración de			
saturación en agua potable (β)			
Concentración de saturación de	mg/L	6,6	
oxígeno disuelto en agua potable,			
a temperatura y altitud del lugar			
$(Cs_{(T,A)})$			
Concentración de OD que se debe	mg/L	1	
$mantener\ en\ la\ laguna\ (C_L)$			
Concentración de saturación de	mg/L	9,1	
oxígeno disuelto en agua destilada			
$(Cs_{(20,0)})$			
Tasa real de transferencia de	KgO ₂ /kW.h	1,03153523	Ec. 171-3
oxígeno (N)			

Tabla 58-3: Datos experimentales y resultados del nivel de potencia en lagunas aerobias superficiales de baja velocidad

Característica	Unidades	Valor	Ecuación
Sólidos suspendidos en la	mg/L	150	
laguna (X)			
Nivel de potencia (NP) W/m ³		5,6	Ec. 172-3

Tabla 59-3: Datos experimentales y resultados del volumen de la laguna

Característica	Unidades	Valor	Ecuación
Caudal (Q)	m³/día	2000	
Tiempo de retención (Θ)	día	5,6	
Volumen de la laguna (V)	m^3	11200	-

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 60-3: Datos experimentales y resultados del concentración de la biomasa en la laguna

Característica	Unidades	Valor	Ecuación
Factor(Y)		0,6	
Concentración de sustrato en el	mg/L	250	
afluente(So)			
Concentración de sustrato en el	mg/L	18	
efluente del reactor (S)			
Coeficiente de respiración	d^{-1}	0,06	
endógena (Kd)			
Tiempo de retención (Θ)	día	5,6	
Concentración de microorganismos	mg SSV/L	104	Ec. 173-3
en el reactor(X)			

Tabla 61-3: Datos experimentales y resultados de la producción de lodos

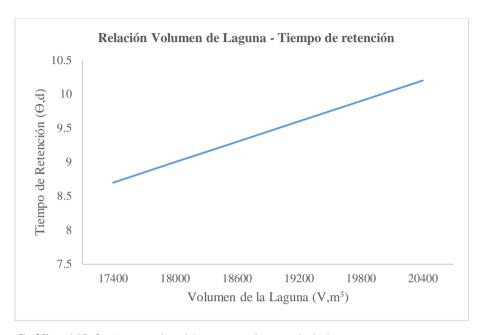
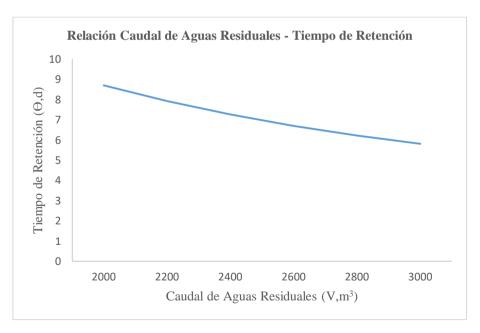

Característica	Unidades	des Valor Ecuación	
Concentración de	mg SSV/ L	104,191617	
microorganismos en el reactor			
(X)			
Caudal (Q)	L/día	2	
Producción de lodos (Px)	Kg SSV/d	208,383234	Ec. 174-3

Tabla 62-3: Datos experimentales y resultados de la concentración de sólidos suspendidos totales en el efluente de la laguna aireada


Característica	Unidades	Valor	Ecuación
Sólidos suspendidos del		200	
afluente (Xo)			
Concentración de biomasa		104,191617	
en la laguna (X)			
Concentración de sólidos de		330,239521	
efluente en la laguna sin			Ec. 175-3
sedimentar (Xe)			

CARACTERÍSTICAS DE REMOCIÓN DE DBO

Tiempo de retención (invierno)

Gráfico 119-3: Automatización para volumen de la laguna **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

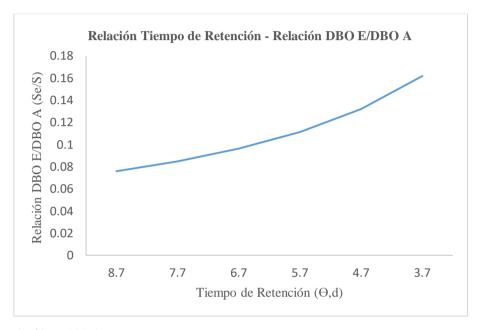


Gráfico 120-3: Automatización para caudal de aguas residuales **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Las Figuras 119-3 y 120-3 indican que entre el volumen y el tiempo de retención existe una relación directamente proporcional mientras que entre el caudal y el tiempo de retención esta relación es inversa.

Nota: en general se recomienda un tiempo de retención mayor de dos días y menor de seis. Como 4 como valor típico. Sin embargo, en sistemas municipales de los Estados Unidos se han usado valores de 7 d a 90.

Relación de DBO del efluente y DBO del afluente

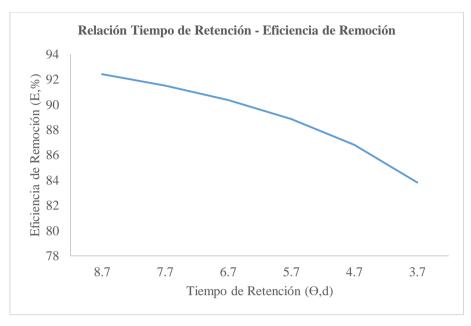


Gráfico 121-3: Automatización para tiempo de retención **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En la Figura 121-3 la relación de DBO de efluente/DBO del afluente, incrementa cuando el tiempo de retención disminuye, y el tiempo de retención depende directamente del valor de K utilizado.

Nota: una relación de DBO del efluente/DBO del afluente, más baja representa mayor eficiencia en el tratamiento, sí esta relación llegase a ser 1 o mayor que 1 se indica que el tratamiento no está cumpliendo su función de remoción de DBO.

Porcentaje de remoción de DBO en la laguna

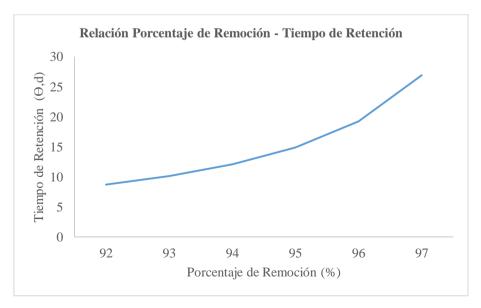
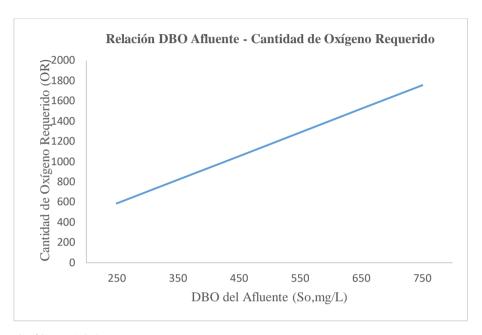
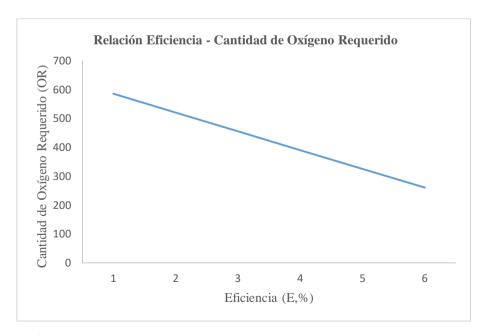


Gráfico 122-3: Automatización para tiempo de retención **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En la Figura 122-3 mientras mayor es el tiempo de retención mayor eficiencia de remoción de DBO en la laguna se tendrá.

Nota: el tiempo de retención depende del valor de K, que puede determinarse experimentalmente u obtenerse de estudios previos, pero siempre dependerá del tipo de agua a tratar.


Tiempo de retención en función al porcentaje de remoción


Gráfico 123-3: Automatización para porcentaje de remoción **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En la Figura 123-3 se indica que cuando se requiere una mayor eficiencia de remoción, es necesario también incrementar el tiempo de retención.

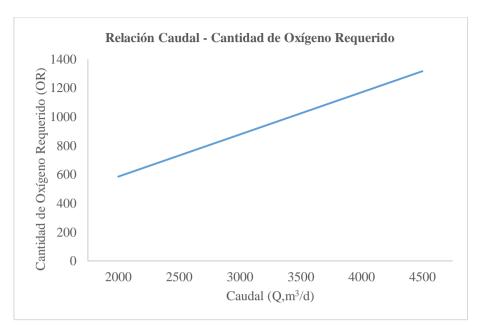

REQUERIMIENTOS DE OXÍGENO PARA OXIDACIÓN BIOLÓGICA Cantidad de oxígeno requerida

Gráfico 124-3: Automatización para DBO del afluente **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Gráfico 125-3: Automatización para eficiencia **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

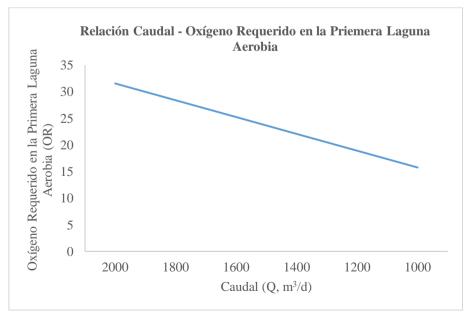
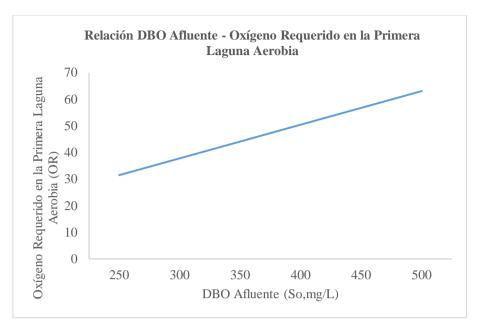
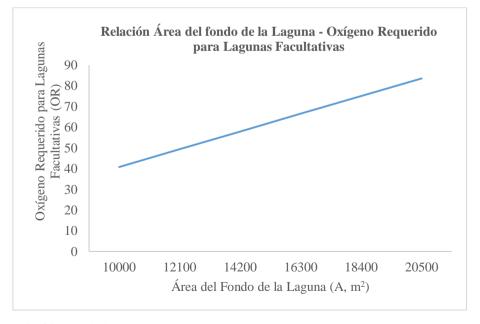


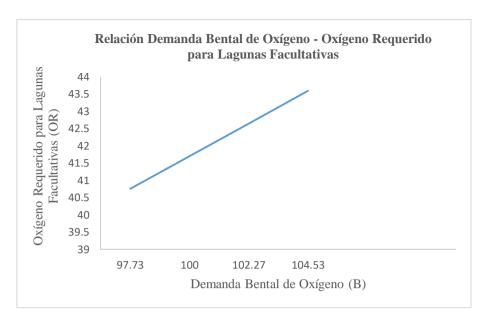
Gráfico 126-3: Automatización para caudal **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento. 2016


En las Figuras 124-3 y 125-3 mientras el DBO del afluente y el caudal son mayores, existe un mayor requerimiento de oxígeno, y en la Figura 126-3, que mientras la eficiencia fraccional incrementa, la necesidad de oxígeno para la oxidación biológica disminuye.

Nota: en general para las mayorías de aguas residuales F = 1,1-1,5 y n este caso para aguas domésticas se usa 1,3.

Cantidad de oxígeno requerido en la primera laguna aerobia

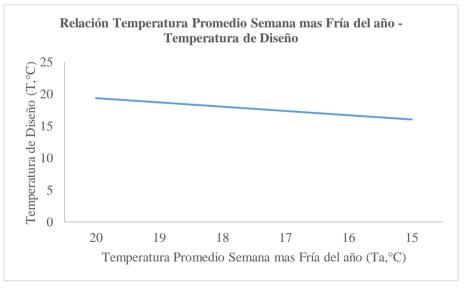

Gráfico 127-3: Automatización para caudal **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento. 2016


Gráfico 128-3: Automatización para DBO afluente **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

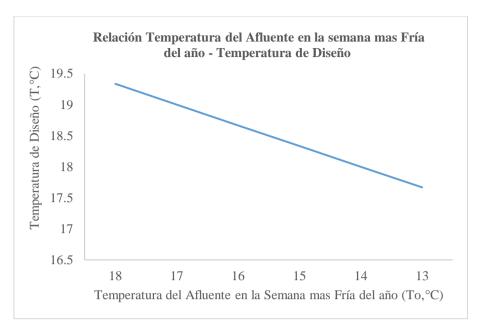
En las Figuras 127-3 y 128-3, si se aumenta el caudal y el DBO del afluente, la cantidad de oxigeno requerida en la primera laguna tiende a aumentar.

Cantidad de oxígeno requerido para lagunas facultativas

Gráfico 129-3: Automatización para área del fondo de la laguna **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


Gráfico 130-3: Automatización para demanda bental de oxígeno **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En las Figuras 129-3 y 130-3, la cantidad de oxígeno requerida para lagunas facultativas, incrementa a medida que los valores del área de fondo de la laguna y la demanda bental de oxígeno se elevan.


Nota: la demanda bental de oxígeno tiene una relación inversamente proporcional con la temperatura del agua en la laguna durante la semana más cálida del año.

EFECTO DE LA TEMPERATURA

Temperatura de diseño para lagunas aireadas

Gráfico 131-3: Automatización para la temperatura promedio semana más fría del año

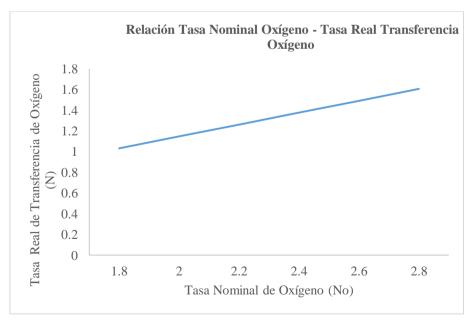
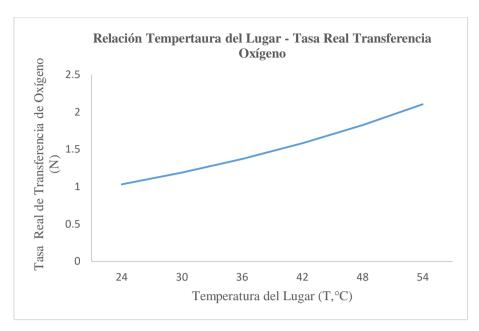


Gráfico 132-3: Automatización para la temperatura del afluente en la semana más fría del año


En las Figuras 131-3 y 132-3 se indica que mientras más elevada es la temperatura del afluente y la temperatura promedio del aire, durante la semana más fría del año, la temperatura de diseño para la laguna es mayor.

RELACIONES DE TRANSFERENCIA DE OXÍGENO

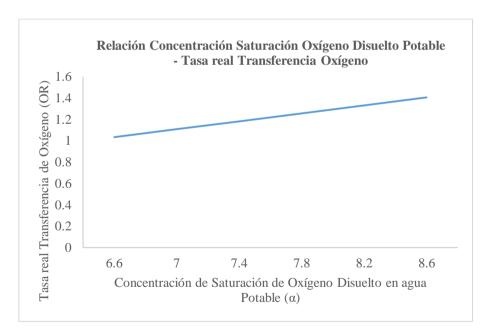
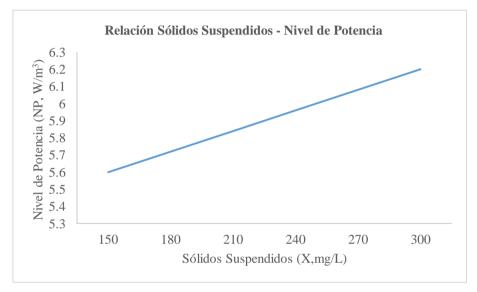

Tasa real de transferencia de oxígeno

Gráfico 133-3: Automatización para tasa nominal de oxígeno **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Gráfico 134-3: Automatización para la temperatura del lugar **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Gráfico 135-3: Automatización para concentración de saturación de oxígeno disuelto en agua potable **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

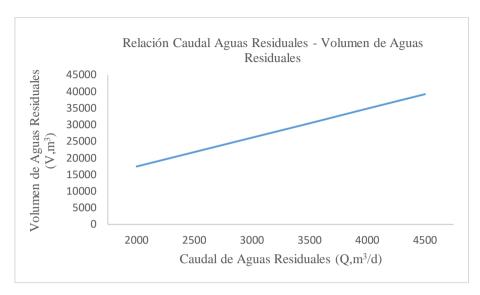

En las Figuras 133-3,134-3 y 135-3 se indica que mientras la tasa nominal de transferencia de oxígeno, la temperatura de diseño y la concentración de saturación de oxígeno disuelto en agua

potable, a la temperatura y altitud del lugar tengan una atendencia ascendente, ocurrirá lo mismo con la tasa real de transferencia de oxígeno.

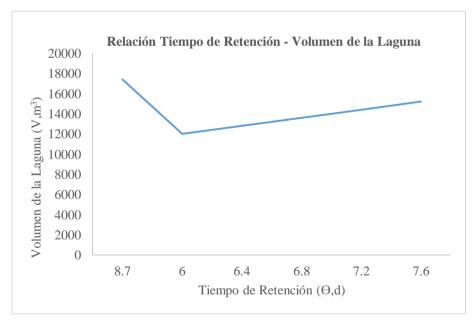
Nota: el valor de β corresponde a 0, 9, generalmente utilizado para aguas residuales domésticas; él valor de α dependerá del tipo de agua residual, para este caso en particular se ha utilizado el valor de 0,9; C $_{(20,0)}$ está dado a 20 °C y al nivel del mar;9,1 mg/L y C_L generalmente de 1,0-1,5 mg/L.

REQUISITOS DE MEZCLA

Nivel de potencia en lagunas aerobias superficiales de baja velocidad

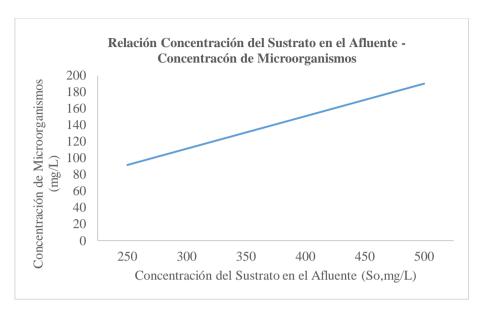

Gráfico 136-3: Automatización para sólidos suspendidos **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

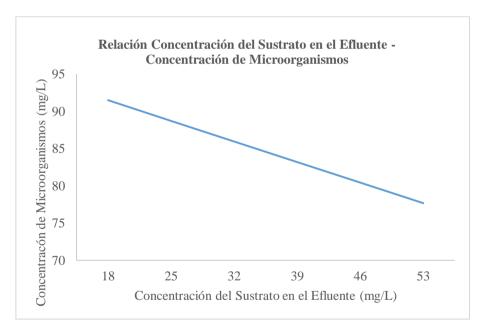
El valor los sólidos suspendidos en la laguna, es directamente proporcional a los niveles de potencia, tal como se indica en la Figura 136-3.


Nota: este modelo de diseño para cálculo de niveles de potencia, se utiliza en lagunas aerobias con aireadores de baja velocidad, e indica que el nivel de potencia es de orden 6 W/m³.

CONFIGURACIÓN Y DISPOSICIÓN DE LOS AIREADORES

Volumen de la laguna


Gráfico 137-3: Automatización para caudal de aguas residuales **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


Gráfico 138-3: Automatización para tiempo de retención **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

El caudal y el tiempo de retención son directamente proporcionales al volumen de la laguna, como está indicado en las Figuras 137-3 y 138-3.

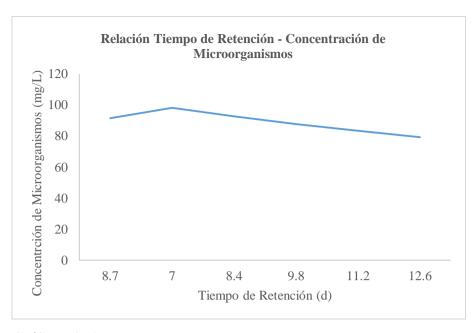

Concentración de microorganismos

Gráfico 139-3: Automatización para concentración del sustrato en el afluente **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

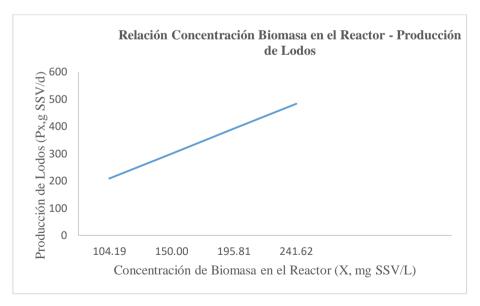
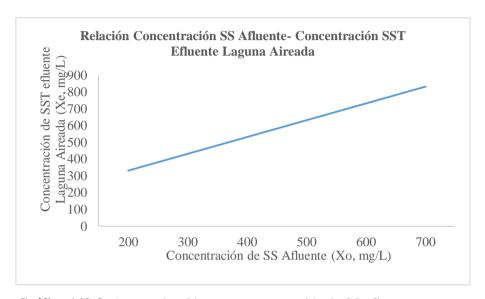

Gráfico 140-3: Automatización para concentración del sustrato en el efluente **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

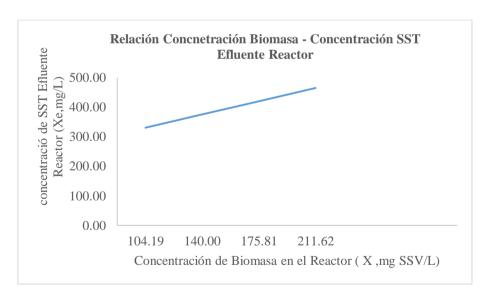
Gráfico 141-3: Automatización para tiempo de retención **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En la Figura 139-3 la concentración de sustrato en el afluente es directamente proporcional, a la concentración de microorganismos en el reactor; mientras que en las Figuras 140-3 y 141-3 la relación entre la concentración de sustrato en el efluente del reactor y el tiempo de retención, con la concentración de microorganismos en el reactor es inversa.

Producción de lodos


Gráfico 142-3: Automatización para concentración de biomasa en el reactor **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Al incrementar la concentración de biomasa en el reactor y el caudal, la producción de lodos tiende a aumentar como se muestra en la Figura 142-3.


Nota: suponiendo un 80% de sólidos volátiles en los sólidos de la laguna

CLARIFICACIÓN Y DEPURACIÓN DEL EFLUENTE

Concentración de sólidos suspendidos totales en el efluente de la laguna aireada

Gráfico 143-3: Automatización para concentración de SS afluente **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Gráfico 144-3: Automatización para concentración de biomasa en el reactor **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En las Figuras 143-3 y 144-3 se indica que tanto los sólidos suspendidos del afluente y la biomasa producida convertida a sólidos totales tienen una relación directamente proporcional con la concentración de sólidos suspendidos totales en el efluente de la laguna aireada.

3.2.7 Filtros biológicos

Descripción

Los filtros percoladores son un tipo de reactores de crecimiento asistido, que hacen uso de un soporte a base de limo por el cual se hace pasar el agua residual, el filtro percolador tiene como fin remover la carga orgánica existente en el afluente; no por acción de una filtración mecánica si no por el efecto de una oxidación aerobia, biosorción, descomposición anaerobia y coagulación. (Menéndez, C. Perez O. J y Garcia, J, 2005. pp 1-5)

Los microorganismos sacan los nutrientes y materiales disueltos de las aguas negras, almacenándolos como alimento. A medida que crece la materia biológica, se vuelve demasiado grande para permanecer atada al medio y se suelta. Esta es transportada con el agua de regreso hacia el tanque de dosificación/clarificador. Allí se acumula en el fondo, formando una capa de lodo. En algunos sistemas, una bomba de lodo manda este material al tanque séptico donde se puede descomponer más.

(http://oaktrust.library.tamu.edu/bitstream/handle/1969.1/86867/pdf_1144.pdf?sequence=1)

Un filtro percolador puede reducir:

- -La demanda bioquímica de oxígeno (DBO5), que es la medición de la cantidad del oxígeno disuelto que necesitan los microorganismos para descomponer la materia orgánica.
- -Los patógenos, u organismos que causan enfermedades.
- -Los coliformes fecales, o bacteria de los desechos humanos o animales.

Tabla 63-3: Coeficientes de tratabilidad para la ecuación

Tipo de residuo	Medio	S_a	K	Base de medida
		mg/L	Kg/m^2d	
Farmacéutico	Koroseal	5248	0,216	DQO
Fenólico	Koroseal	340	0,021	DBO
Doméstico	Diferentes	280	0,0104	DBO
Doméstico	Diferentes	200 - 520	0,045 - 0,05	DBO
Doméstico	Diferentes	215	0,05	DBO
Doméstico	Cloisonyle	266	0,02	DBO
Fábrica de Kraft	Surfpac	130	0,0054	DBO
Fábrica de Kraft	Koroseal	210	0,016	DBO
Fábrica de Kraft	Vinilo	220	0,018	DBO
Papas	Flocor	500	0,051	DBO
Embotelladora	Flocor	2000	0,054	DBO
Cartón	Surfpac	443	0,007	DBO
Frutas	Surfpac	2200	0,093	DBO
Pulpa y papel	Surfpac	280	0,016	DBO
Porqueriza	Madera	15000	0,02	DBO
Vegetales	Del park	235	0,66	DBO

Fuente: WILSON, F. Design calculations in Wastewater Treatment, E& F.N. Spon Ltd., 1980

Modelos matemáticos de diseño para filtros biológicos

Modelo de Eckenfelder

$$\frac{S_e}{S_a} = e^{-cSt} Ec. 176-3$$

Donde:

C= constante de remoción, m/d

S= área superficial especifica del medio, m^3/m^2

t= tiempo de contacto, d

 S_e = concentración de sustrato soluble del afluente, mg/L

 S_a = concentración de sustrato soluble del afluente, mg/L

$$t = \frac{CD}{q^n} Ec. 177-3$$

Donde:

t= tiempo

D= profundidad del filtro, m

q= carga hidráulica superficial, m/d

C y n= constantes que caracterizan el medio y cuyos valores dependen de las unidades para cuantificar, t.

$$\frac{S_e}{S_a} = e^{-KSD/q^n} Ec. 178-3$$

Donde:

K=cC= contante modificada de remoción de sustrato, base natural $(m/d)^n$

K, tiene unidades de m/d para n=1 y C es adimensional. Sin embargo, los valores de K son función de las unidades usadas para expresar las diferentes variables y el valor de n.

La anterior ecuación también puede expresarse de la siguiente manera:

$$\frac{S_e}{S_a} = e^{-kSD/q^n} Ec. 179-3$$

Donde:

k= contante modificada de remoción de sustrato, base decimal $(m/d)^n$

Para filtros percoladores con recirculación de las anteriores ecuaciones, se puede despejar directamente la carga hidráulica superficial requerida.

$$q = \left[\frac{KSD}{ln\left[\frac{1+R(S_e/S_0)}{(1+R)(S_e/S_0)}\right]}\right]^{1/n} Ec. \ 180-3$$

Para filtros percoladores sin recirculación

$$q = \left[\frac{KSD}{\ln[(S_0/S_e)]}\right]^{1/n} Ec. 181-3$$

Para tener un efecto de temperatura sobre el valor de K, se puede usar la ecuación clásica de Arrehenius

$$K_T = K_{20}\theta^{T-20} Ec. 182-3$$

Donde:

 K_T = constante de remoción a la temperatura T

 K_{20} = constante de remoción a 20°C

 θ = coeficiente de temperatura

 θ =1,035 para filtros percoladores. Otros autores consideran θ = 0,10 para temperaturas mayores de 10°C o sea que no sería necesario hacerla corrección por temperatura.

Modelo de Bruce y Merkens

$$S_e = S_a e^{-K_r S^a q^{-b}} Ec. 183-3$$

En filtros percoladores con recirculación, la DBO del afluente al filtro se calcula por la ecuación

$$S_a = \frac{S_0 + RS_e}{1 + R} Ec. 184-3$$

Donde:

 S_e = DBO del efluente sedimentado del filtro, mg/L

S₀= DBO del afluente, sin recirculación, o efluente primario, mg/L

R= relación de recirculación.

 S_a = DBO del afluente al filtro, incluyendo recirculación, mg/L

$$R = \frac{Q_R}{o} Ec. 185-3$$

Donde:

 Q_R = caudal de recirculación, m^3/d

Q= caudal afluente, sin incluir recirculación, generalmente m^3

R= relación de recirculación

$$K_T = 0.1(1.08)^{T-20} Ec. 186-3$$

$$K_T = 0.037(1.08)^{T-15} Ec. 187-3$$

T= temperatura del agua residual, en °C

$$q = \frac{Q}{V} Ec. 188-3$$

Donde:

Q= caudal afluente sin recirculación m^3/d

V= Volumen del filtro,

q= carga hidráulica volumétrica, sin incluir recirculación, m^3/m^3d

$$q = \frac{K_T S}{\ln[(S_q/S_e)]} Ec. 189-3$$

Donde:

 K_T = contante de tratabilidad, a la temperatura t, generalmente en m/d

S= área superficial especifica del medio filtrante, m^3/m^2

 S_a = DBO del afluente al filtro, incluyendo recirculación, mg/L

 S_e = DBO del efluente sedimentado del flitro, mg/L

q= carga hidráulica volumétrica, sin incluir recirculación, m^3/m^3d

$$V = \frac{Q \ln[(S_a/S_e)]}{K_T S} Ec. 190-3$$

Donde:

 S_a = DBO del afluente al filtro, incluyendo recirculación, mg/L

 S_e = DBO del efluente sedimentado del flitro, mg/L

 K_T = contante de tratabilidad, a la temperatura t, generalmente en m/d

Q= caudal afluente sin recirculación m^3/d

S= área superficial especifica del medio filtrante, m^3/m^2

a, b= contantes empíricas, generalmente iguales a la unidad

V= volumen del filtro, m^3

Formula de Oleszkiewicz

$$\frac{S_e}{S_a} = e^{-K/L} = e^{-kS/L} Ec. 191-3$$

Donde:

K= constante de remoción, Kg/m^3d

L= carga orgánica volumétrica, Kg/m^3d

k= coeficiente de tratabilidad específica, Kg/m^2d

S= área superficial especifica del medio, m^3/m^2

 S_e = concentración del afluente, mg/L

 S_a = concentración del afluente, mg/L

Modelo de Germain

$$\frac{S_e}{S_a} = e^{-KD/q^{0.5}} Ec. 192-3$$

Donde

K= constante de remoción, $m^{-0.5}d^{-0.5}$

 $K=0.25-2.51~(md)^{-0.5}$ para aguas residuales domésticas sedimentadas a $20^{\circ}\mathrm{C}$

D= profundidad del filtro, para medio plásticos se prefiere 6m, en general mayor a 3m

q= carga hidráulica, sin incluir recirculación m/d.

 S_e = DBO soluble del efluente, mg/L

 S_a = DBO soluble del afluente, sin incluir recirculación, mg/L

La constante de tratabilidad se corrige por temperatura según:

$$K_T = K_{20}(1,035)^{T-20} Ec. 193-3$$

Donde:

 K_{20} = constante de tratabilidad 20°C

T= temperatura mínima esperada, °C

 K_T = constante de tratabilidad a la temperatura de diseño T

$$S_a = \frac{S_0 + RS_e}{1 + R} Ec. 194-3$$

Donde:

R= relación de recirculación o razón entre el caudal de recirculado y el caudal afluente de aguas residuales

 S_e = DBO soluble del efluente, mg/L

 S_a = DBO del afluente al filtro, incluyendo la recirculación, mg/L

$$S_e = S_a e^{-KD/q^n} Ec. 195-3$$

Donde:

 S_a = DBO del afluente al filtro, incluyendo la recirculación, mg/L

n= coeficiente dependiente del medio de soporte, igual a 0,5 para medio plástico, según Germain

K= constante de remoción, $m^{-0.5}d^{-0.5}$

 $K = 0.25 - 2.51 \ (md)^{-0.5}$ para aguas residuales domésticas sedimentadas a 20°C

D= profundidad del filtro, para medio plásticos se prefiere 6m, en general mayor a 3m

 S_e = DBO soluble del efluente, mg/L

Carga hidráulica:

$$q = \left[\frac{KD}{ln\left[\frac{S_a}{S_e}\right]}\right]^{1/n} Ec. 196-3$$

$$q = \left[\frac{KD}{ln\left[\frac{S_0 + RS_e}{(1 + R)S_e}\right]}\right]^{1/n} Ec. \ 197-3$$

Tabla 64-3: Relación de concentración de sustrato soluble efluente/afluente del modelo de Eckenfelder

Características	Unidades	Valor	Ecuación
Constante de remoción, C.	m/d	1	
Área superficial especifica del medio, S.	m^2/m^3	0,5	
Tiempo de contacto, t.	D	2	
Relación de concentración de sustrato soluble		2,72	
efluente/afluente, Se/Sa			145-3

Tabla 65-3: Datos experimentales y resultados para carga hidráulica superficial sin recirculación del modelo de Eckenfelder

Características	Unidades	Valor	Ecuación
Constante modificada de remoción, K.	(m/d) ⁿ	0,45	_
Área superficial especifica del medio, S.	m^2/m^3	0,5	
Profundidad del filtro, D.	m	1,5	
Concentración de sustrato soluble del efluente, Se.	mg/L	31	
DBO soluble del agua residual, sin incluir	mg/L	150	
recirculación, So.			
Constante que caracteriza al medio y cuyos valores		1	
dependen de las unidades utilizadas para cuantificar			
t, n.			
Carga hidráulica superficial, q.	m/d	0,21	150-3

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 66-3: Datos experimentales y resultados para relación de concentración de sustrato soluble efluente/afluente con recirculación

Características	Unidades	Valor	Ecuación
Constante modificada de remoción, K.	(m/d) ⁿ	0,45	
Área superficial especifica del medio, S.	m^2/m^3	0,5	
Profundidad del filtro, D.	m	1,5	
Carga hidráulica superficial, q.	m/d	6	
Constantes que caracterizan al medio y cuyos valores		1	
depende de las unidades utilizadas para cuantificar t,			
C, n.			
Relación de concentración de sustrato soluble		0,95	
efluente/afluente, Se/Sa			147-3
D-1:11111111111-			

Tabla 67-3: Datos experimentales y resultados para la carga hidráulica superficial, con recirculación.

Características	Unidades	Valor	Ecuación
Constante modificada de remoción, K.	(m/d) ⁿ		
Área superficial especifica del medio, S.	m^2/m^3	0,45	
Profundidad del filtro, D.	m	0,5	
Relación de recirculación, R.		1,5	
Concentración de sustrato soluble del efluente, Se.	mg/L	2	
DBO soluble del agua residual, sin incluir	mg/L	31	
recirculación, So.		150	
Constante que caracteriza al medio y cuyos valores			
dependen de las unidades utilizadas para cuantificar		1	
t, n.			
Carga hidráulica superficial, q.	m/d	0,41	149-3

Tabla 68-3: Datos experimentales y resultados para el DBO soluble del efluente sedimentado del filtro según el modelo de Bruce y Merkens

Características	Unidades	Valor	Ecuación
Constante de tratabilidad, a la temperatura T, K _T	m/d	0,043	
Área superficial especifica del medio filtrante, S.	m^2/m^3	0,5	
Carga hidráulica volumétrica, q.	m^3/m^3d	6	
Constantes empíricas:			
a		1	
b		1	
DBO soluble del efluente sedimentado del filtro, Se	mg/L	135,86	
DBO del afluente al filtro, incluyendo recirculación,	mg/L	130	
Sa.			152-3

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 69-3: Datos experimentales y resultados para DBO del afluente al filtro, incluyendo recirculación según el modelo de Bruce y Merkens

Características		Unidades	Valor	Ecuación	
Relación	de	recirculación, R		2	
DBO soluble	del efluente	e sedimentado del filtro, Se.	mg/L	31	
DBO del afluente al filtro, incluyendo recirculación,			57,33		
Sa			mg/L		
DBO de af	luente, sin	recirculación, o efluente	mg/L	110	
primario, So.				153-3	

Tabla 70-3: Datos experimentales y resultados para carga hidráulica volumétrica según el modelo de Bruce y Merkens

Características	Unidades	Valor	Ecuación
Constante de tratabilidad, a la temperatura T, K _T	m/d	0,043	
Área superficial especifica del medio filtrante, S.	m^2/m^3	0,5	
DBO del afluente al filtro, incluyendo recirculación,	mg/L	150	
Sa.			
DBO soluble del efluente sedimentado del filtro, Se.	mg/L	31	
Carga hidráulica volumétrica, q	m^3/m^3d	0,01	158-3

Tabla 71-3: Datos experimentales y resultados para el volumen del filtro según el modelo de Bruce y Merken

Características	Unidades	Valor	Ecuación
Caudal afluente sin incluir recirculación, Q.	m ³ /d	10000	
DBO del afluente al filtro, incluyendo recirculación,	mg/L	57	
Sa.			
DBO soluble del efluente sedimentado del filtro, Se.	mg/L	10	
Constante de tratabilidad, a la temperatura T, K_T	m/d	0,08	
Área superficial especifica del medio filtrante, S.	m^2/m^3	100	
Volumen del filtro	m^3	2175,58	159-3

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 72-3: Datos experimentales y resultados para la relación de DBO soluble del efluente y afluente según el modelo de Germain

Características	Unidades	Valor	Ecuación
Constante de tratabilidad, K.	$m^{-0.5}d^{-0.5}$	2,27	
Profundidad del filtro, D.	m	6,5	
Carga hidráulica, sin incluir recirculación, q.	m/d	80	
Relación de DBO soluble del efluente y afluente,		0,19	
Se/Sa			161-3

Tabla 73-3: Datos experimentales y resultados para el DBO soluble del efluente según el modelo de Germain

Características	Unidades	Valor	Ecuación
DBO del afluente al filtro, incluyendo recirculación,	mg/L	20	
Sa.			
Constante de tratabilidad, K	$m^{-0.5}d^{-0.5}$	2,47	
Profundidad del filtro, D.	m	6,5	
Carga hidráulica, sin incluir recirculación, q.	m/d	80	
Coeficiente dependiente del medio de soporte, n.		0,5	
DBO soluble del efluente	mg/L	3,32	164-3

Tabla 74-3: Datos experimentales y resultados para la carga hidráulica, sin incluir recirculación según el modelo de Germain

Características	Unidades	Valor	Ecuación
Constante de tratabilidad, K.	$m^{-0.5}d^{-0.5}$	2,47	
Profundidad del filtro, D.	m	6,5	
DBO del afluente al filtro, incluyendo recirculación,	mg/L	56,7	
Sa.			
DBO soluble del efluente, Se. Coeficiente	mg/L	10	
dependiente del medio de soporte, n.		0,5	
Carga hidráulica, sin incluir recirculación, q.	m/d	30,3	165-3

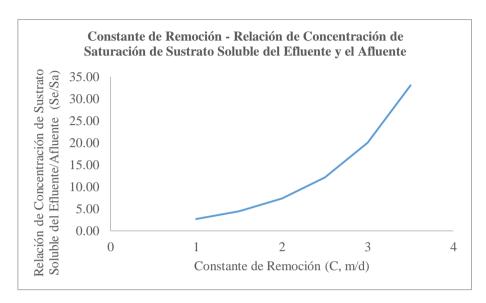
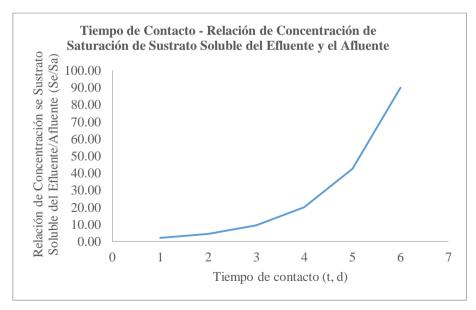
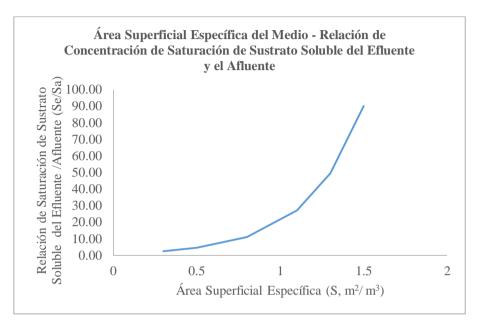

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 75-3: Datos experimentales y resultados para Carga hidráulica, con recirculación. Según el modelo de Germain

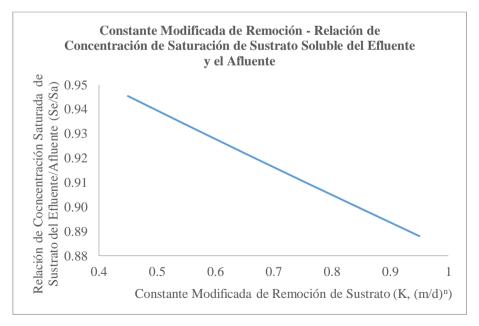
Características	Unidades	Valor	Ecuación
Constante de tratabilidad, K.	$m^{-0.5}d^{-0.5}$	2,47	
Profundidad del filtro, D.	m	6,5	
DBO del efluente al filtro, Se.	mg/L	10	
DBO soluble del afluente, sin incluir recirculación,	mg/L	56	
So.			
Relación de recirculación, R.		2	
Coeficiente dependiente del medio de soporte, n.		0,5	
Carga hidráulica, con recirculación, q.	m/d	8,74	166


MODELO DE ECKENFELDER

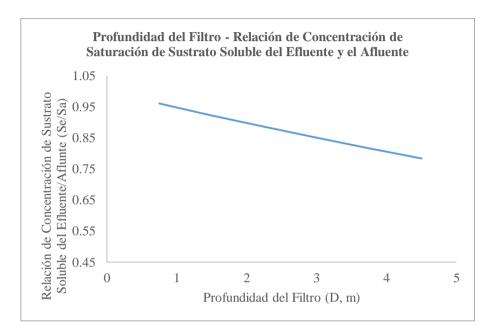
Relación de Concentración de Saturación de Sustrato Soluble del Efluente y el Afluente


Gráfico 145-3: Automatización para la constante de remocion **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

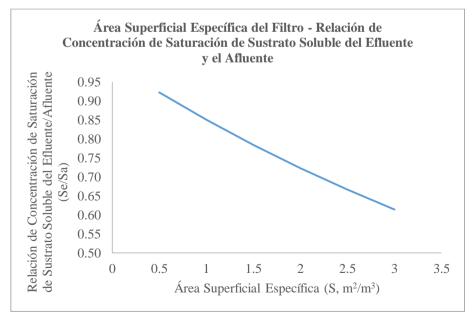
Eckenfelder adapta el modelo general dejándolo como en la ecuación 145, para esta ecuación un incremento en la constante de remoción C derivan en un incremento en la relación de concentración de sustrato soluble del efluente y afluente, dicha relación expresa el remanente de DBO que el filtro no ha removido.


Gráfico 146-3: Automatización para el tiempo de contacto **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

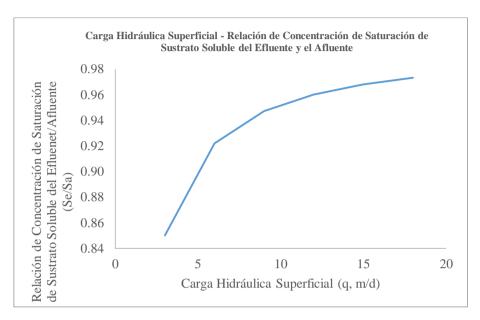
La relación de concentración de saturación de sustrato soluble del efluente y afluente aumenta cuando el tiempo de retención se incrementa.


Gráfico 147-3: Automatización para área superficial específica **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Un aumento en el área superficial del medio filtrante ocasiona que la relación de remoción de sustrato soluble removido sea mayor, por una mayor superficie en la que el agua residual es tratada.


Gráfico 148-3: Automatización para constante modificada de remoción de sustrato

Con las expresiones 146-3 y 145-3 el autor reemplaza términos, con este cambio la constante de remoción modificada de sustrato K y la ecuación definitiva será la ecuación 147-3, en donde la constante K tiene unidades de m/d para n igual 1 y C es adimensional. Cuando más bajo sea el valor de esta variable la remoción de materia orgánica es mayor.


Gráfico 149-3: Automatización para la profundidad del filtro. **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

La profundidad del filtro es inversamente proporcional a la relación de concentración de saturación

Gráfico 150-3: Automatización para el área superficial específica **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

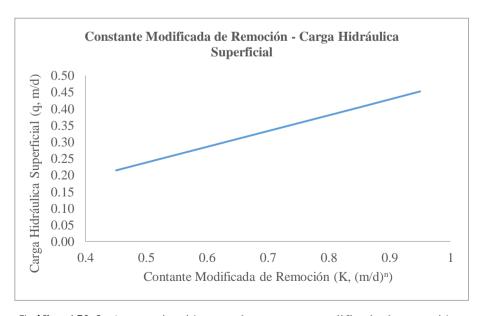
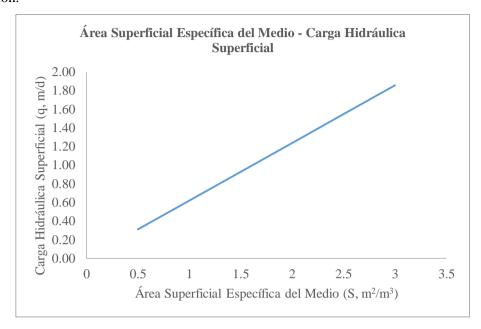
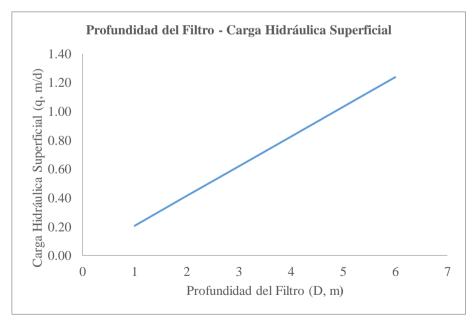

La relación de materia orgánica en un filtro percolador es inversamente proporcional a área superficial especifica del medio.

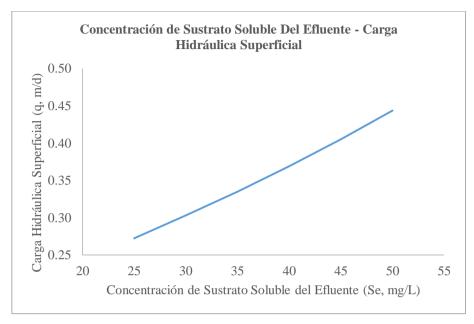
Gráfico 151-3: Automatización para carga hidráulica superficial **Realizado por**: Jenifer Jurado; Lizbeth Sarmiento.2016


Al aumentar la carga hidráulica superficial en se incrementa la relación de concentración de saturación de sustrato soluble del efluente y afluente.

Carga hidráulica sin recirculación


Gráfico 152-3: Automatización para la constante modificada de remoción **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

La carga hidráulica superficial es directamente proporcional a la constante modificada de remoción.


Gráfico 153-3: Automatización para área superficial especifica del medio **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Un aumento en el área superficial específica del medio da como resultado que la carga hidráulica superficial también aumente.

Gráfico 154-3: Automatización para profundidad del filtro **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

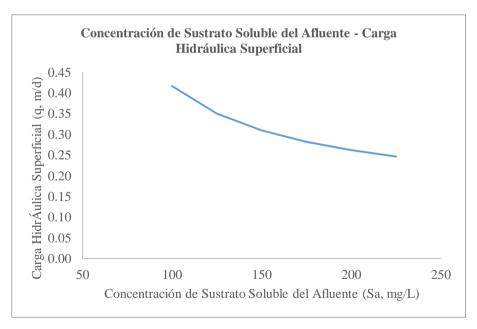

La carga hidráulica superficial requerida es mayor cuando se tiene una profundidad grande en el filtro percolador.

Gráfico 155-3: Automatización para la concentración de sustrato soluble del efluente

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

La concentración de sustrato soluble del efluente ocasiona un incremento en la carga hidráulica.

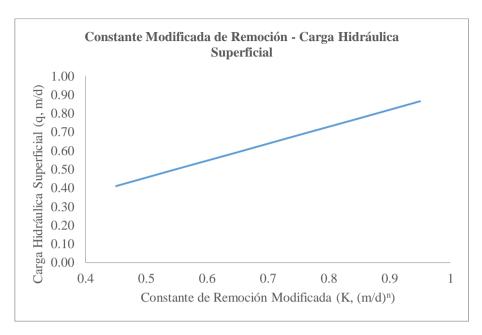


Gráfico 156-3: Automatización para la concentración de sustrato soluble de afluente

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Si el afluente ingresa con una elevada cantidad de sustrato soluble la carga hidráulica del filtro percolador disminuye.

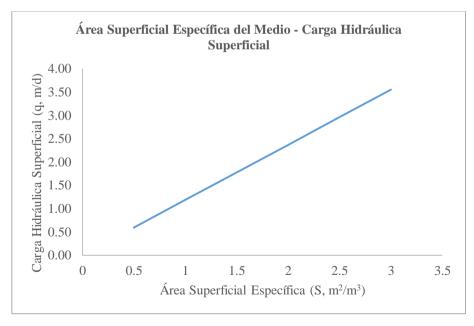
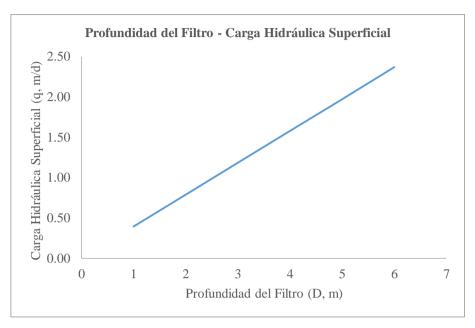
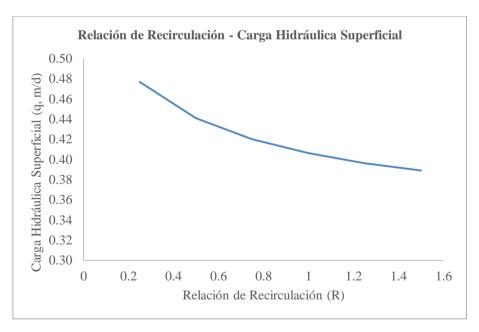

Carga hidráulica con recirculación

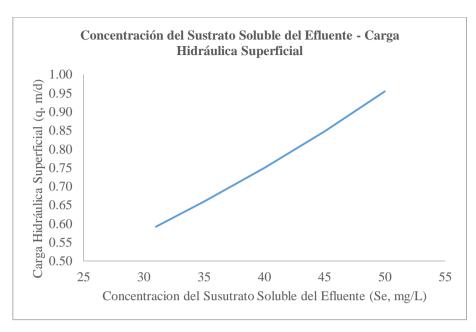
Gráfico 157-3: Automatización para la constante modificada de remoción, con recirculación


Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Para filtros percoladores con recirculación al aumentar la constante modificada de remoción también lo hace la carga hidráulica.


Gráfico 158-3: Automatización para área superficial especifica del medio, con recirculación

La carga hidráulica superficial aumenta proporcionalmente en relación de al área superficial especifica del medio.


Gráfico 159-3: Automatización para profundidad del filtro, con recirculación **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

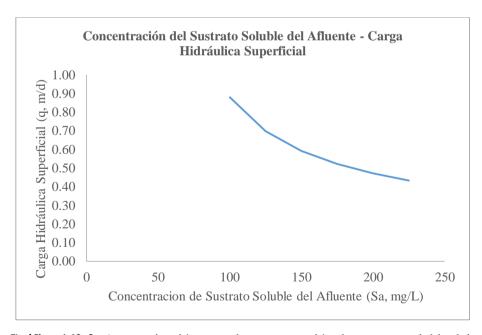
Una mayor profundidad del filtro percolador con lleva a que la carga hidráulica será alta.

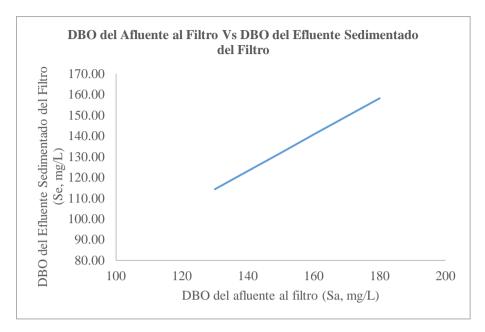
Gráfico 160-3: Automatización para la recirculación **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

La carga hidráulica es inversa a la relación de recirculación.

Gráfico 161-3: Automatización para concentración de sustrato soluble del efluente

La carga hidráulica superficial es directamente proporcional a la concentración del sustrato soluble del efluente.




Gráfico 162-3: Automatización para la concentración de sustrato soluble del afluente, con recirculación

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

La carga hidráulica es inversa a la concentración del sustrato que ingresa al filtro percolador.

MODELO DE BRUCE Y MERKENS

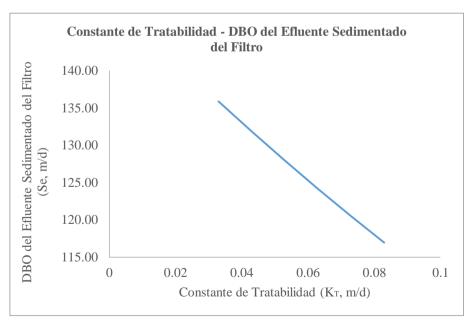
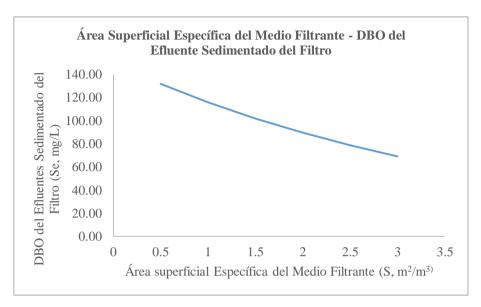
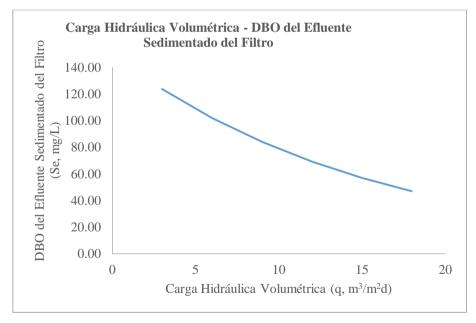

DBO del Efluente Sedimentado del Filtro, sin Recirculación

Gráfico 163-3: Automatización para DBO de afluente al filtro del modelo de Bruce y Merkens


Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

El DBO del efluente sedimentado del filtro será mayor cuando se aumente el DBO que va hacia el filtro S_a .


Gráfico 164-3: Automatización para la constante de tratabilidad del modelo de Bruce Y Merkens

El DBO del efluente sedimentado del filtro será menor cuando K_T la constante de tratabilidad que varía en función de la temperatura.

Gráfico 165-3: Automatización para el área superficial especifica del medio filtrante en el modelo de Bruce y Merkens **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

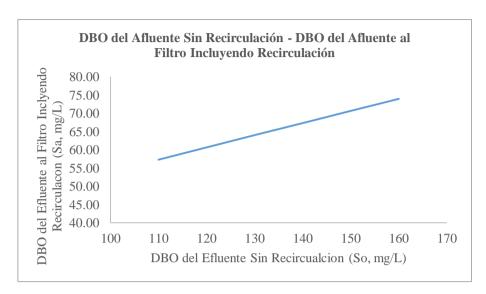
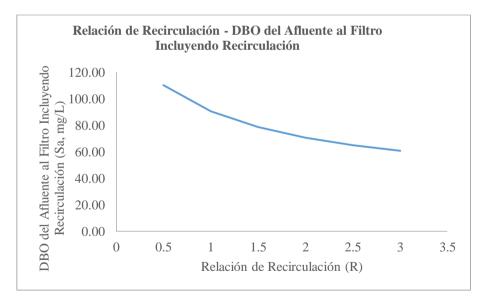
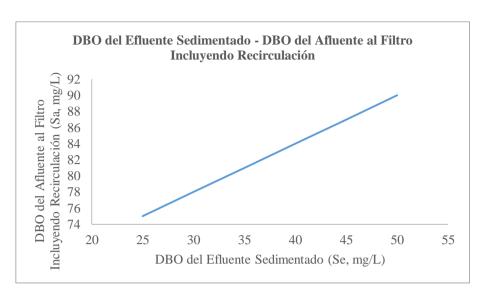

El área superficial específica *S* es inversamente proporcional al DBO del efluente sedimentado del filtro.

Gráfico 166-3: Automatización para la carga hidráulica volumétrica del modelo de Bruce y Merkens **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


La carga hidráulica volumétrica q aumenta haciendo que el DBO sedimentado del filtro se disminuya.

DBO del efluente sedimentado del filtro con recirculación

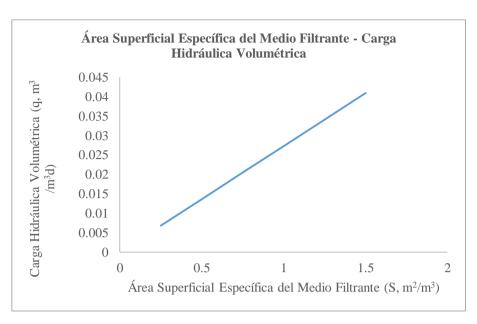

Gráfico 167-3: Automatización para DBO del afluente sin recirculación del modelo de Bruce y Merkens **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Si el DBO del afluente sin incluir recirculación del filtro se incrementa el DBO del efluente al filtro incluyendo recirculación será mayor.

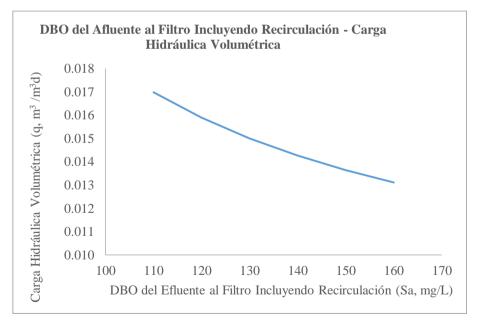
Gráfico 168-3: Automatización para la relación de recirculación del modelo de Bruce y Merkens **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

La relación de recirculación es una medida entre los flujos de reciclo y el de alimentación fresca y a cuando esta tiende a ser baja mayor será el DBO del afluente que vaya al filtro.

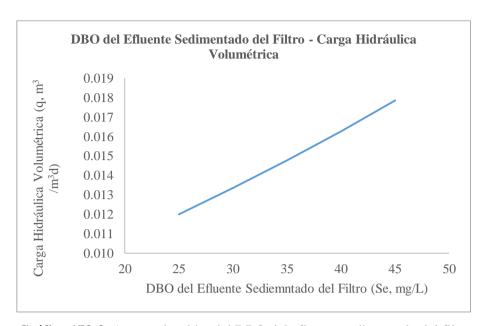
Gráfico 169-3: Automatización del DBO del efluente sedimentado con recirculación del modelo de Bruce y Merkens **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


El DBO del efluente sedimentado será mayor cuando el DBO del afluente que incluyendo la recirculación aumente.

Carga hidráulica


Gráfico 170-3: Automatización para la constante de tratabilidad a la temperatura para el modelo De Bruce y Merkens **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

La carga hidráulica volumétrica aumenta proporcionalmente con ña constante de tratabilidad a la temperatura de operación.


Gráfico 171-3: Automatización del DBO del afluente al filtro incluyendo recirculación para el modelo de Bruce y Merkens **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Al incrementar el área superficial específica del medio filtrante la carga hidráulica también aumenta.

Gráfico 172-3: Automatización del DBO del afluente al filtro incluyendo recirculación para el modelo de Bruce y Merkens **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

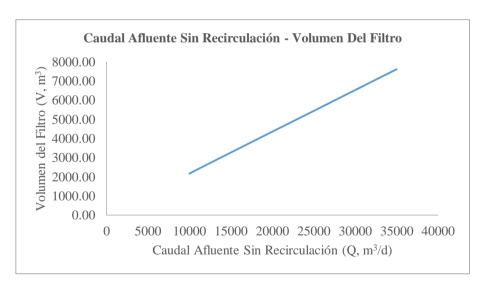

La carga hidráulica es inversamente proporcional al DBO del efluente al filtro que incluye recirculación.

Gráfico 173-3: Automatización del DBO del efluente sedimentado del filtro para el modelo de Bruce Y Merkens **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

El valor de DBO del efluente sedimentado del filtro incrementado genera una disminución de la carga hidráulica volumétrica.

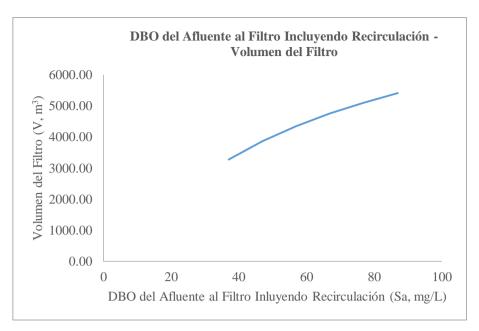
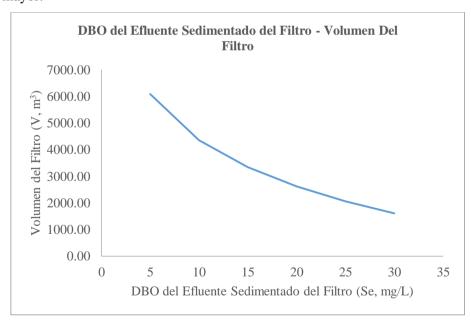
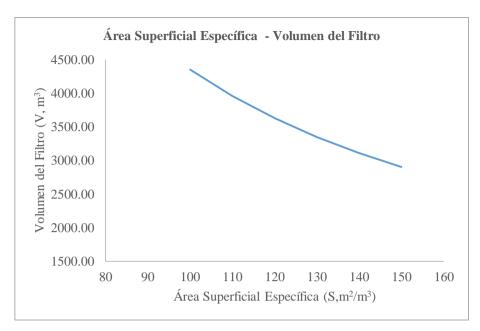

Volumen del filtro

Gráfico 174-3: Automatización del caudal afluente sin recirculación para el modelo de Bruce y Merkens


Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

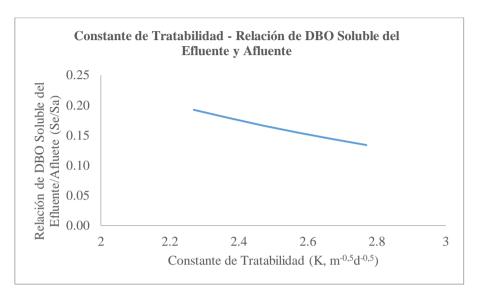
Caudales altos sin incluir recirculación requieren un mayor volumen de filtro.


Gráfico 175-3: Automatización del DBO del afluente incluyendo el recirculación para el modelo de Bruce Y Merkens **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Si el afluente al filtro tiene una elevada cantidad de materia orgánica es necesario un filtro con tamaño mayor.

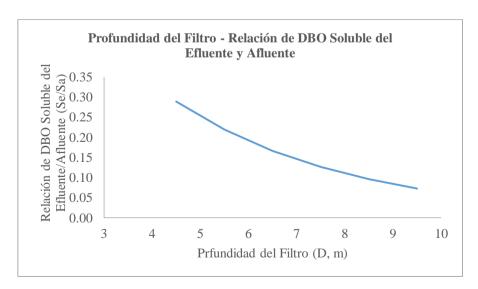
Gráfico 176-3: Automatización del DBO sedimentado del filtro para el modelo de Bruce y Merkens **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

El volumen del filtro es inversamente proporcional al DBO del efluente sedimentado.

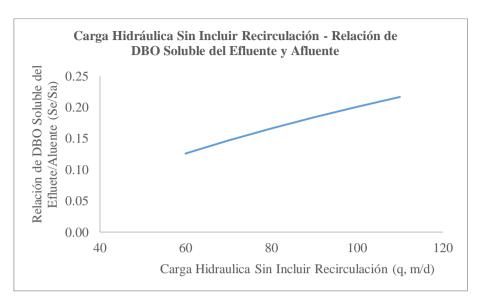

Gráfico 177-3: Automatización con el área superficial específica para el volumen del filtro según el modelo de Bruce y Mekens **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

El área superficial específica es inversamente proporcional al volumen del filtro requerido.

MODELO DE GERMAIN


El modelo de Germain es usado para el diseño de filtros percoladores de medio plástico, así la ecuación

Relación de DBO soluble del efluente y afluente sin recirculación


Gráfico 178-3: Automatización para la constante de tratabilidad, sin recirculación según el modelo de Germain **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Cuando los valores de la constante de tratabilidad K se aumentan se tiene una remoción de materia orgánica inferior.

Gráfico 179-3: Automatización para la profundidad del filtro, sin recirculación para el modelo de Germain **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

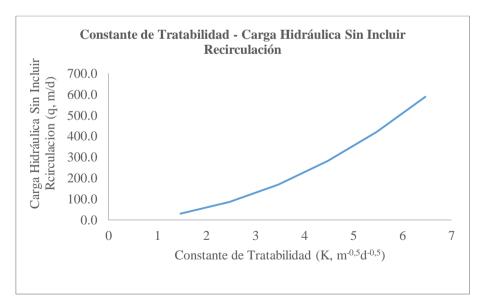
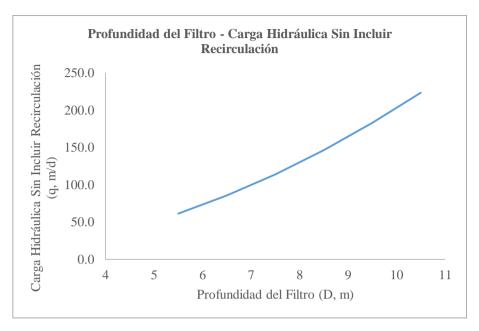

A una mayor profundidad del filtro se tiene una remoción de materia orgánica inferior.

Gráfico 180-3: Automatización para la carga hidráulica, sin recirculación según el modelo de Germain **Realizado por**: Jenifer Jurado; Lizbeth Sarmiento.2016


La relación de remoción de materia orgánica aumenta proporcionalmente a la carga hidráulica sin incluir recirculación.

Carga hidráulica sin recirculación

Gráfico 181-3: Automatización de la constante de tratabilidad para la carga hidráulica, sin recirculación según el modelo de Germain. **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

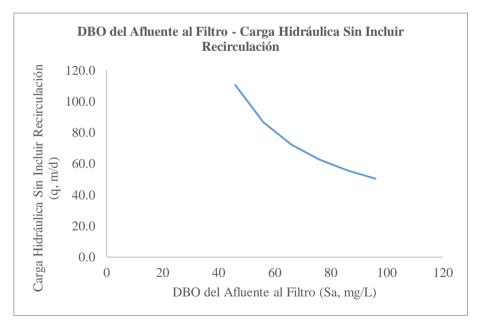
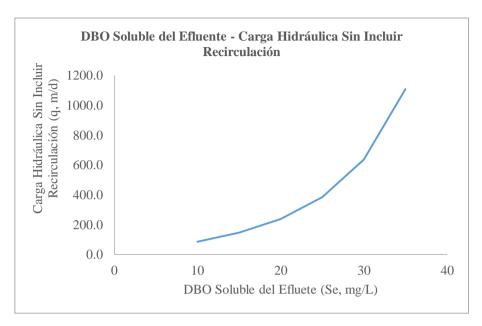

Para la carga hidráulica tanto para sistemas sin recirculación es directamente proporcional a la constante de tratabilidad.

Gráfico 182-3: Automatización para la profundidad del filtro, sin recirculación según el modelo de Germain


Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

A más profundidad del filtro se tiene una mayor carga hidráulica.

Gráfico 183-3: Automatización del DBO del afluente al filtro, sin recirculación según el modelo de Germain

La carga hidráulica del filtro disminuye cuando se incrementa el DBO del afluente al filtro.

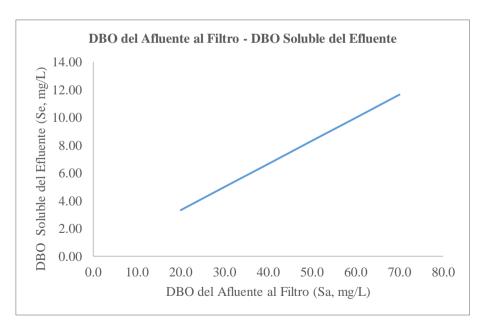
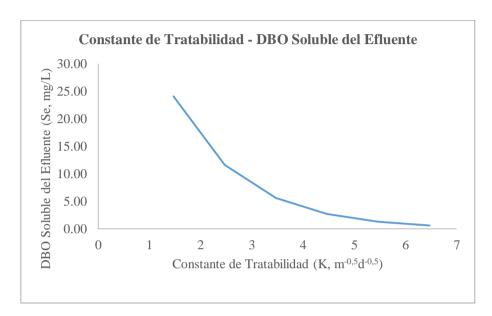
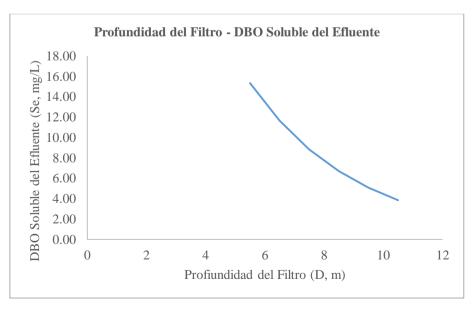


Gráfico 184-3: Automatización del DBO soluble del efluente, sin recirculación según el modelo de Germain

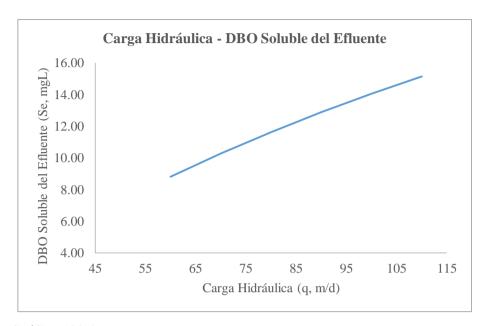
Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016


Para el DBO soluble del efluente si este es mayor hay una menor carga hidráulica.

DBO soluble del efluente con recirculación


Gráfico 185-3: Automatización del DBO afluente al filtro, con recirculación según el modelo de Germain

Para filtros con recirculación la ecuación se modifica hasta quedar como en la expresión 164-3, en donde si el DBO del efluente al filtro que incluyen la recirculación resulta en una mayor retención de DBO soluble.


Gráfico 186-3: Automatización para la constante de tratabilidad, con recirculación según el modelo de Germain **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Al aumentar la contante de tratabilidad del sistema la materia orgánica en el efluente será menor.

Gráfico 187-3: Automatización para la profundidad del filtro, con recirculación según el modelo de Germain. **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

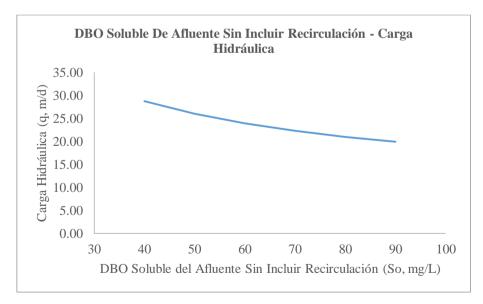
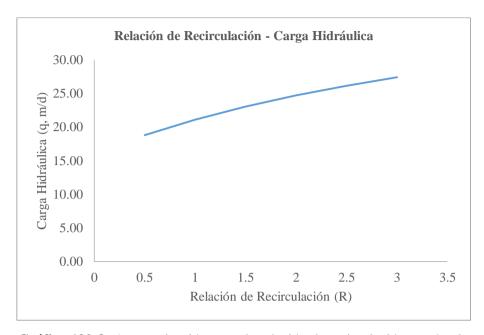

A una mayor profundidad del filtro se tiene una mayor depuración del agua residual, por tanto, el DBO soluble en el efluente será menor.

Gráfico 188-3: Automatización de la carga hidráulica, con recirculación según el modelo de Germain **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


Mayor carga hidráulica implica una mayor cantidad de DBO soluble en el efluente.

Carga hidráulica con recirculación

Gráfico 189-3: Automatización del DBO del afluente sin incluir recirculación según el modelo de Germain **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Para la carga hidráulica en el caso de los filtros sin recirculación cuando el DBO soluble del afluente es mayor hay menos carga hidráulica.

Gráfico 190-3: Automatización para la relación de recirculación, según el modelo de Germain Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Si la relación de recirculación aumenta la carga hidráulica también lo hace.

3.2.8 Biodiscos

Descripción

Este es un tratamiento secundario del tipo biológico muy similar al de filtros biológicos usados para tratar aguas con alto contenido de materia orgánica. La película biológica es adherida a los discos los cuales rotan lentamente y con una sugerencia no mayor al 50% dentro del agua residual, lo que permite proveer de oxígeno a los microorganismos de la película biológica. Su principal finalidad es la remoción de DBO.

Normalmente fabricados de poliestireno o polietileno con diámetros comprendidos entre 3-4 m. Estos discos se mantienen paralelos entre sí y unidos a un eje horizontal que pasa a través de sus centros. Los ejes tienen longitudes de 7,5 m aproximadamente, pudiendo alojar de esta forma un gran número de discos. (Ranalho, R., 2001, pp 493-494)

Especificaciones técnicas de diseño para biodiscos

Tabla 76-3: Características típicas de los discos biológicos

AFLUENTE	SEDIMENTADO	
Carga Hidráulica	0,04 – 0,06 m/d	
	0.02 - 0.08 m/d	
	0.06 - 0.10 m/d	
Para remoción de DBO	0.06 - 0.24 m/d	
Para DBO/SS < 30/30 mg/L	0.08 - 0.16 m/d	
Para remoción de N	0.06 - 0.07 m/d	
Para DBO/SS < 15/15 mg/L y nitrificación	0.03 - 0.08 m/d	
Carga Orgánica		
Sobre la primera etapa	50 - 60	
1	<100	
	<31	
DBO soluble	12 – 40	
DBO total	30 – 40	
Tiempo de retención	50 – 70 minutos	
Coeficiente de temperatura	1,02 – 1,04	
Ejes	-1~ -1~ ·	
Velocidad de rotación	1 – 2	RPM
Longitud	<7,5 m	
Diámetro	13 – 25 mm	
Motores	3,7 – 5,6 kW/eje	
Discos	5,7 5,0 kw/ejc	
Numero de discos por eje	40 - 60	
Numero de etapas en serie	4 – 5	
Diámetro Diámetro	3.0 - 3.6 m	
Diametro	3,0 – 3,0 m 2 - 3 m	
Egnagar	2 - 3 III 10 mm	
Espesor Material planes a corrugados	Poliestireno o polietileno	
Material, planos o corrugados	40%	
Sumergencia Valaridad da retación marifárica	20 – 30 cm	
Velocidad de rotación periférica	3 – 4 cm	
Separación	$9300 - 11700 m^2$	
Área de discos por eje		
Área específica del medio	$115 - 175 \ m^2/m^3$	
Sedimentador secundario		
Carga de sólidos para caudal pico	$147 - 176 Kg/m^2 d$	
Tiempo de retención	4 h	
Carga superficial	33 mm/d	
Efluente	·	
DBO total	15-30 mg/L	
DBO soluble	7 – 15 mg/L	
	<u> </u>	
$NH_3 - N$	1-10 mg/L	
$NO_3 - N$	2 – 7 mg/L	
Lodos		
Producción	0,04 – 0,5 Kg/Kg DBO removida	
Concentración de solidos	2-5 %	
Eficiencia	.	
Remoción de DBO	80 – 95 %	
Energía		
Consumo	0.6 W/m ²	
	0.6 W/m^2	
Costo	US\$ $3.2 - 5.4/m^2$	

Fuente: ASCE, WPCF. Wastewater Treatment Plant Design, 1977

Tabla 77-3: Microbiología de los Biodiscos

ORGANISMOS	PRESENCIA
Bacterias filamentosas	
Baggiatoa	En nueve plantas
Sphaerotilus	En ocho plantas
Tipo 0041	En cuatro plantas
Tipo 1701	En dos plantas
Nocardia	En dos plantas
Tipo 021N	En dos plantas
Protozoos	
Flagelados: Bodo	El más común en nueve plantas
Ciliados libres	En siete plantas
Ciliados adheridos	En nueve plantas
Epistylis	El más frecuente en seis plantas
Nematodos	En nueve plantas
Rotíferos	En nueve plantas
Anélidos	En ocho plantas

Fuente: MALINA, J. Biodisc Treatment, 1982

Tabla 78-3: Factores de correlación de caudal por población equivalente

Población equivalente	Factor de corrección, Q (m³/min)
c	
<10000	1,0
5000 - 10000	1,1 - 1,2
1500 - 5000	1,2-1,3
400 - 1500	1,3 – 1,5
400	1,5

Fuente: WILSON, F. Design Calculations in Wastewater Treatment, 1980

Tabla 79-3: Factores de correlación de área por números de etapas

N° de Etapas	Factor	% máximo de remoción de DBO	
3	0,91	85	
4	0,87	90	
<4	0,85	90	

Fuente: MALINA, J. Biodisc Treatment, 1982

Modelos matemáticos de diseño para biodiscos

MODELO CINÉTICO

Tasa especifica de remoción de DBO

$$R = \frac{Q(S_O - S_e)}{A} Ec. 198-3$$

Donde:

Q= caudal de agua residual m^3/d

A= área del disco m^2

 S_0 = DBO del afluente g/m^3

 S_e = DBO del efluente g/m^3

R= tasa de remoción de DBO, por unidad de área de disco, g/dm^2

La figura muestra una cinética de primer orden para DBO baja y de orden cero para concentraciones altas de DBO, por tanto

$$R = \frac{pS_e}{K + S_e} Ec. 199-3$$

Donde:

P= tasa especifica máxima de remoción de $DBOg/dm^2$

K= concentración de DBO para la cual la tasa específica de remoción de DB es igual a la mitad de la tasa máxima. g/m^3

 S_e = DBO del efluente g/m^3

R= tasa de remoción de DBO por unidad de área del disco. g/dm^2

Los valores numéricos de p y K se obtienen gráficamente a partir de la ecuación anterior

$$\frac{1}{K} = \frac{1}{p} + \frac{K}{p} \left(\frac{1}{S_e}\right) Ec. 200-3$$

Esta es la ecuación de la recta con (1/R) como ordenada y $(1/S_e)$ como abscisa.

Para $\frac{1}{S_e}$ = 0 se obtiene:

$$\frac{1}{p} = \frac{1}{R}$$
 = Ordenada en el origen

Para $\frac{1}{R}$ = 0 se obtiene:

$$-\frac{1}{K} = \frac{1}{S_e}$$
 = Abscisa en el origen

MODELO DE WU

$$S_e = \frac{14,2q^{0,5579}S_0^{0,3163}}{e^{0,32N_T^{0,2477}}} \ Ec. \ 201-3$$

Donde:

 S_0 = DBO soluble del afluente, mg/L

q=carga hidráulica, caudal/ área superficial de los discos, gpd/pie²

T= temperatura del agua residual, °C,

N= número de etapas des biodiscos

 S_e = DBO soluble del efluente, mg/L.

Otra forma de expresar la ecuación es:

$$S_e = \frac{84.7q^{0.5579}S_0^{0.3163}}{e^{0.32N}T^{0.2477}} Ec. \ 202-3$$

Donde:

 S_0 = DBO soluble del afluente, mg/L

q=carga hidráulica, caudal/ área superficial de los discos, m/d

T= temperatura del agua residual, °C,

N= número de etapas des biodiscos

 S_e = DBO soluble del efluente, mg/L.

Tabla 80-3: Datos experimentales y resultados para la tasa de remoción de DBO por unidad de área de disco

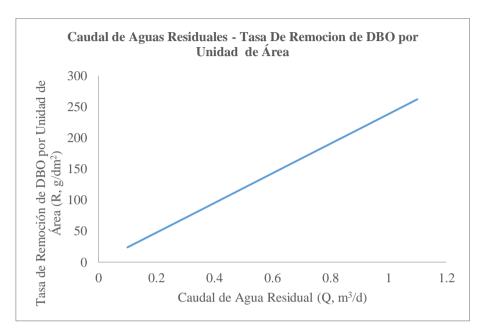

Características	Unidades	Valor	Ecuación
Caudal de agua residual, Q.	m³/d	0,1	
Área del disco, A.	m^2	0,5	
DBO del afluente, So.	g/m ³	150	
DBO del efluente, Se	g/m ³	31	
Tasa de remoción de DBO por unidad de área de	g/dm ²	23,8	
disco, R.			167-3

Tabla 81-3: Datos experimentales para DBO del efluente según el modelo de Wu

Características	Unidades	Valor	Ecuación
Carga hidráulica, q.	gpd/pie ²	3	
DBO del afluente, So.	mg/L	150	
Temperatura del agua residual, T.	°C	25	
Número de etapas de biodisco.		4	
DBO del efluente, Se.	mg/L	16,01	170-3

MODELO CINÉTICO

Tasa de remoción de DBO por unidad de área del disco

Gráfico 191-3: Automatización del caudal de agua residual, según el modelo cinético

Realizado por: Jenifer Jurado; Lizbeth Sarmiento. 2016

Suponiendo que los reactores funcionan como reactores de mezcla completa y de una sola etapa la reacción se realiza por toda el área superficial de forma uniforme en el tanque.

La tasa específica de remoción de DBO definida en la ecuación 167-3, se incrementa cuando hay un mayor caudal de agua residual Q.

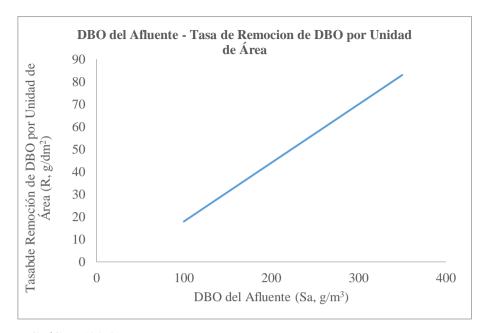
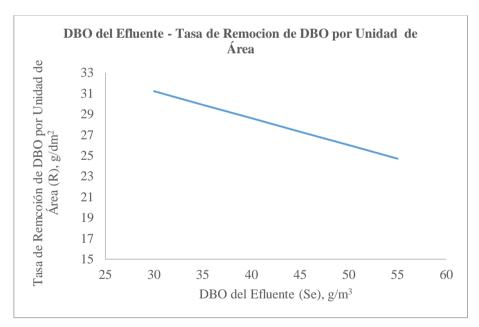



Gráfico 192-3: Automatización del DBO del afluente, según el modelo cinético

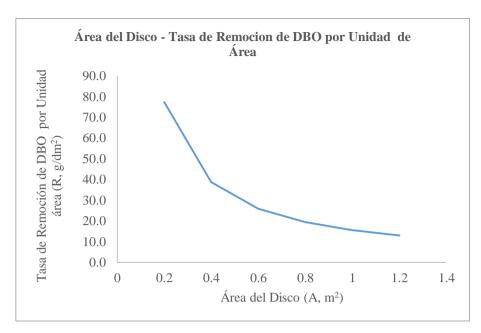
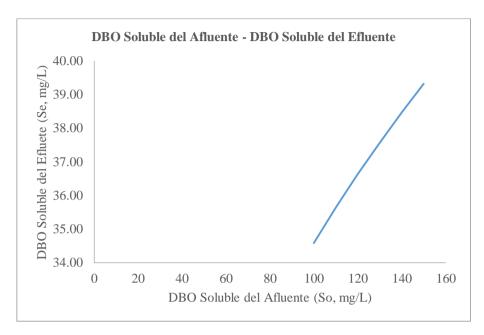

La tasa específica de remoción de DBO aumenta cuando hay un mayor DBO del afluente S_0 .

Gráfico 193-3: Automatización del DBO del efluente, según el modelo Cinético

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Cuando se tiene que el DBO del efluente aumenta quiere decir hay menos remoción de materia orgánica.

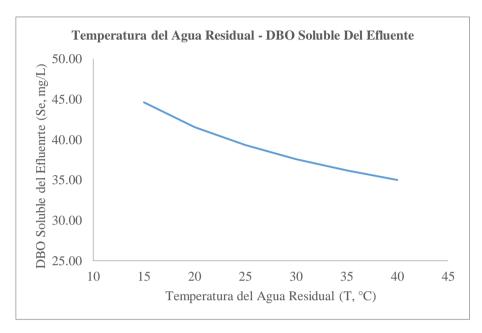
Gráfico 194-3: Automatización del área del disco, según el modelo cinético


A una mayor área del disco no es garantía de que exista una mezcla mayor entre los microorganismos y el agua residual, por tanto, si el área es muy grande disminuye el porcentaje de remoción.

DBO Soluble del Efluente


Gráfico 195-3: Automatización para carga hidráulica según el modelo de Wu **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

A medida que aumenta la carga hidráulica el porcentaje de DBO removido disminuye, esto se evidencia en la figura 120 en donde cuanta más carga hidráulica hay más cantidad de DBO soluble queda en el efluente.


Gráfico 196-3: Automatización del DBO soluble del afluente, según el modelo Wu **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Si en el afluente que ingresa al tratamiento se tiene una cantidad considerable de materia orgánica es probado que existe una mayor a cantidad de DBO retenido.

Gráfico 197-3: Automatización número de etapas del biodisco, según el modelo de Wu **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Cuando se aumenta el número de etapas de los biodiscos hay una mayor eficiencia del tratamiento por que el remante de materia orgánica existente en el efluente será inferior.

Gráfico 198-3: Automatización de la temperatura, según el modelo de Wu **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

El DBO soluble en el efluente disminuye proporcionalmente a la temperatura del agua.

3.2.9 Sedimentación de aguas residuales

Descripción

"En el tratamiento de aguas residuales se usa la sedimentación para los siguientes propósitos:

Sedimentación primaria para remover sólidos sedimentables y material flotante de aguas residuales crudas, reduciendo así el contenido de sólidos suspendidos.

Sedimentación intermedia para remover los sólidos y crecimientos biológicos preformados en reactores biológicos intermedios, como los filtros percoladores de primera etapa.

Sedimentadores secundarios para remover la biomasa y sólidos suspendidos de reactores biológicos secundarios, como los procesos de lodos activados y los filtros percoladores.

Sedimentadores terciarios para remover sólidos suspendidos y floculados, o precipitados químicamente, en plantas de tratamiento de aguas residuales.

En el diseño de tanques de sedimentación se debe tener en cuenta los siguientes criterios generales:

Proveer una distribución uniforme del afluente para minimizar la velocidad de entrada y el cortocircuito.

- Proveer adecuada y rápida recolección del lodo sedimentado, así como la espuma.
- Minimizar las corrientes de salida, limitando las cargas de rebose sobre el vertedero. El efluente debe salir sin alterar el contenido del tanque.
- Proveer profundidad suficiente para almacenar lodo y permitir su espesamiento adecuado.
- Proveer un borde libre mayor de 30 cm.
- Reducir efectos del viento mediante pantallas y vertederos.
- Evaluar opciones de diseño.
- Repartir uniformemente el caudal entre las unidades de sedimentación."
 (Romero, A., 2002, pp. 633-634)

Tabla 82-3: Estándares de Diseño para Sedimentadores Primarios

Referencia	Carga superficial	Tiempo de	Profundidad	Carga sobre el
	m/d	retención	m	vertedero
		Н		L/s m
Metcalf & Eddy	32-48	1,5-2,5	3-5	1,4-5,8
Normas de los	41	-	>2,1	<2,2
diez estados				
Manual de diseño	49	-	3	<14
naval				
Ejercito de los	12-41	2,5	2,5-4,5	0,7-1,7
EE.UU				
Steel & Mc Ghee	24-60	1-2	1-5	-
Fair et al.	-	2	3	-
Sundstrom&Klei	-	1-4	-	-
USEPA	24-49	-	3-5	-
Tchobanoglous	30-60	-	3-5	-
IWPC	30-45	2	>1,5	1,2-5,2

Fuente: Romero, A., 2002.

Tabla 83-3: Parámetros de Diseño de Sedimentadores Secundarios

Tipo de	Carga	m/d	Carga de	Kg/dm ²	Profundidad
tratamiento	superficial	caudal pico	sólidos	Caudal pico	M
	promedio		Caudal		
			promedio		
Sedimentación	16-29 ⁽¹³⁰⁾	40-65 ⁽¹³⁰⁾	100-150 ⁽¹³⁰⁾	245(130)	3,7-4,6 ⁽¹³⁰⁾
secundaria	<34	<65			
Sedimentación	8-33 ⁽⁸⁹⁾	24-49 ⁽⁸⁹⁾	23-164 ⁽⁸⁹⁾	164-234 ⁽⁸⁹⁾	3-6 ⁽⁸⁹⁾
secundaria					
Sedimentación	16-24 ⁽⁸⁸⁾	41-49 ⁽⁸⁸⁾	-	-	3-3,7 ⁽⁸⁸⁾
después de filtro					
percolador					
Sedimentación	16-32 ⁽⁸⁸⁾	41-49 ⁽⁸⁸⁾	98-147 ⁽⁵⁸⁾	245 ⁽⁸⁸⁾	$3,7-4,6^{(88)}$
después de lodos					
activados					
(excluyendo					
aireación					
prolongada)					
Sedimentación	8-16 ⁽⁸⁸⁾	32 ⁽⁸⁸⁾	98-147 ⁽⁸⁸⁾	245 ⁽⁸⁸⁾	$3,7-4,6^{(88)}$
después de					
aireación					
prolongada					

Fuente: Romero, A., 2002.

Modelo matemático de diseño

La velocidad crítica de arrastre se puede calcular por la ecuación de Camp y Shields (89,130)

$$v_c = \left(\frac{8 k (s-1)g d}{f}\right)^{0.5} Ec. 203-3$$

Donde:

v_c= velocidad crítica de arrastre, m/s

k= 0,04 para material unigranular k= 0,06 para material viscoso

f= 0,02-0,03, factor de fricción de Darcy-Weisbach

s= densidad relativa de las partículas

g= aceleración gravitacional, m/s²

d= diámetro de las partículas, m

Según Tebbutt, la eficiencia en remoción de solidos suspendidos en un tanque de sedimentación primaria puede calcularse por la expresión :

$$E = 0.955e^{-\left(\frac{265}{S_0} + 0.0021\frac{Q}{A}\right)}$$
 Ec. 204-3

Donde:

E= eficiencia fraccional del sedimentador primario

S₀= sólidos suspendidos del afluente, mg/ L

 $\frac{Q}{A}$ = carga superficial, m/d

Diseño con base en ensayos de sedimentación de Cochada

Velocidad de asentamiento específica

$$V_{\rm s} = f(C_0) Ec. 205-3$$

Donde:

V_s= velocidad de asentamiento para sedimentación interferida

C₀= concentración inicial de partículas en la suspensión

El área requerida para clarificación se calcula por la ecuación 22.3

$$A = \frac{Q_0}{v_c} Ec. \ 206-3$$

Donde:

A= área superficial de la zona de sedimentación

Q₀= tasa de clarificación

 v_s = velocidad de asentamiento, calculada con base en la pendiente de la porción de asentamiento interferido de la interfaz, tramo AB de la curva de asentamiento.

El área requerida para espesamiento se determina por la ecuación de talmadge y fitch (ecuación 176)

$$A = \frac{Qt_u}{H_0} Ec. \ 207-3$$

Donde:

A= área superficial requerida para espesamiento del lodo, m²

Q= caudal afluente al tanque, m³/s

H₀= altura inicial de la interfaz en la columna, m

 t_u =tiempo requerido para alcanzar la concentración deseada C_u , en el lodo espesado, s.

Tabla 84-3: Datos experimentales y resultados de velocidad critica de arrastre

Característica	Unidades	Valor	Ecuación
Coeficiente (k)		0,04	
Densidad relativa de las		1,25	
partículas (s)			
Aceleración gravitacional	m/s^2	9,8	
(g)			
Diámetro de las partículas	m	0,0003	
(d)			
Factor de fricción de		0,02	
Darcy (f)			
Velocidad crítica de	m/s	0,108	Ec. 208-3
arrastre (Vc)			

Tabla 85-3: Datos experimentales y resultados del área requerida para caudal promedio

Característica	Unidades	Valor	Ecuación
Caudal (Q)	m ³ /d	7500	_
Carga superficial promedio	m/d	36	
(Csp)			
Área requerida para caudal	m^2	208,33	-
promedio (A)			

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 86-3: Datos experimentales y resultados del área requerida para caudal pico

Característica	Unidades	Valor	Ecuación
Caudal (Q)	m ³ /d	7500	
Relación caudal pico a		3	
caudal promedio			
Carga superficial máxima	m/d	90	
(Csm)			
Área requerida para caudal	m^2	250	-
pico (A)			

Tabla 87-3: Datos experimentales y resultados del diámetro del sedimentador

Característica	Unidades	Valor	Ecuación
Área (A)	m ²	250	
Diámetro (φ)	m	17,8412203	-

Tabla 88-3: Datos experimentales y resultados de longitud del vertedero perimetral

Característica	Unidades	Valor	Ecuación
ф:	m	17,8	
L:	m	55,92034917	-

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 89-3: Datos experimentales y resultados de volumen del sedimentador

Característica	Unidades	Valor	Ecuación
Área (A)	m^2	250	
Profundidad (h)	m	4	
Volumen (V)	m^3	1000	-

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 90-3: Datos experimentales y resultados de tiempo de retención

Característica	Unidades	Valor	Ecuación
Volumen (V)	m^3	1000	
Carga superficial	m/d	36	
promedio (Csp.)			
Caudal (Q)	m^3/d	10000	
Tiempo de retención (Θ)	d	3,6	-

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 91-3: Datos experimentales y resultados de área requerida para clarificación

Caracteri	ística	Unidades	Valor	Ecuación
Tasa de o	clarificación (Qo)	m ³ /d	333	
Velocida	d de asentamiento(Vs)	m/s	21,6	
Área	requerida para	m^2	15,41666667	Ec. 209-3
sediment	cación (A)			

Tabla 92-3: Datos experimentales y resultados de área requerida para espesamiento.

Característica	Unidades	Valor	Ecuación
Caudal (Q)	m^3/d	400	
Tiempo requerido para la	min	34	
concentración deseada (t _u)			
Altura inicial de la	m	576	
interfaz de la columna			
$(H_{0)}$			
Área requerida para	m^2	23,61111111	Ec. 210-3
espesamiento (A)			

Tabla 93-3: Datos experimentales y resultados de flujo de solidos

Característica	Unidades	Valor	Ecuación
Concentración inicial de	mg/L	4000	
sólidos (Co)			
Caudal (Q)	m^3/d	0,4	
Flujo solidos	kg/d	1600	-

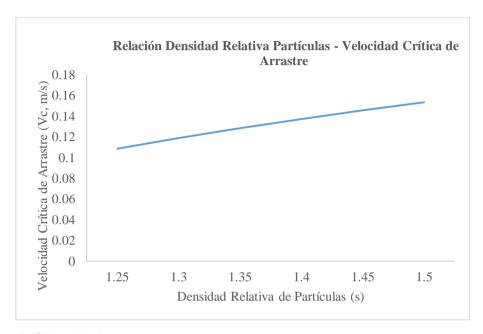
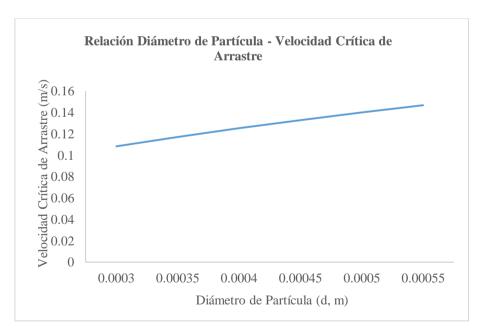

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 94-3: Datos experimentales y resultados de carga hidráulica.


Característica	Unidad	Valor	Ecuación
Caudal (Q)	m^3/d	400	
Área requerida por	m^2	23,6	
espesamiento (A)			
Carga hidráulica (CH)	$m^3/m^2.d$	16,94915254	-

MODELOS TÍPICOS DE DISEÑO

Velocidad crítica de arrastre

Gráfico 199-3: Automatización para densidad relativa de partículas **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

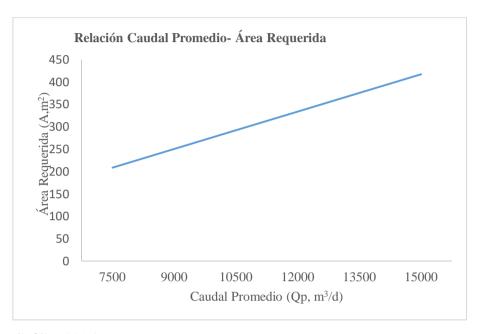
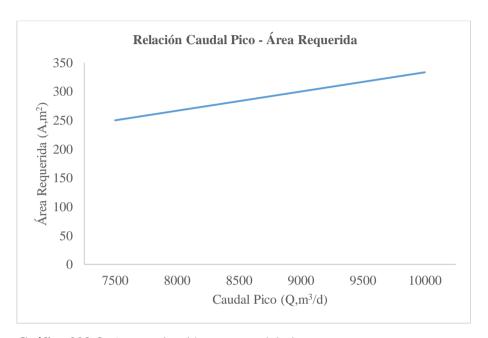


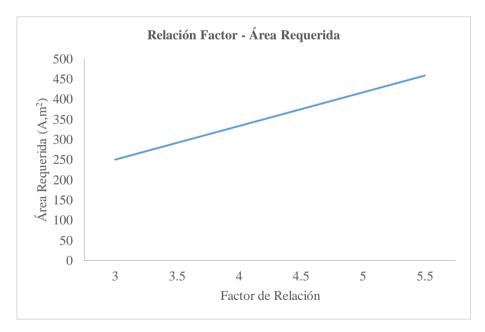
Gráfico 200-3: Automatización para diámetro de partícula **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


En las Figuras 199-3 y 200-3, mientras mayor es la densidad relativa y el diámetro de las partículas, la velocidad crítica de arrastre tiende a aumentar.

Nota: se ha utilizado los siguientes valores: para k=0.04 para material unigranular, para f=0,02, factor de Darcy.

Área requerida para caudal promedio


Gráfico 201-3: Automatización para caudal promedio **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


Gráfico 202-3: Automatización para carga superficial promedio **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En las Figuras 201-3 y 202-3, la relación entre el caudal y el área requerida para el caudal promedio es directamente proporcional, mientras que al disminuir la carga superficial promedio aumenta el área requerida para caudal promedio.

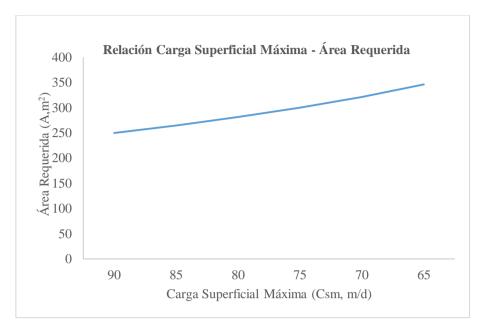

Área requerida para caudal pico

Gráfico 203-3: Automatización para caudal pico **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Gráfico 204-3: Automatización para factor de relación **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Gráfico 205-3: Automatización para carga superficial máxima **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En las Figuras 203-3 y 204-3, el caudal como el factor de relación entre caudal pico horario a caudal promedio, son directamente proporcionales a el área requerida para caudal promedio, mientras que en la Figura 205-3 con la carga superficial máxima ocurre una relación inversa. Nota: se adopta como área del sedimentador la mayor.

Diámetro del sedimentador

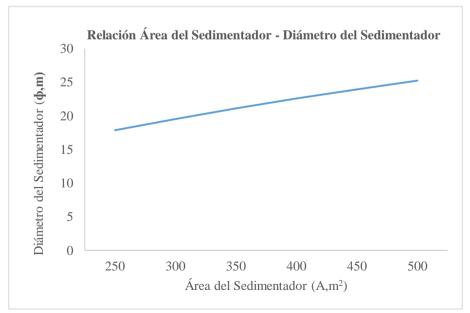
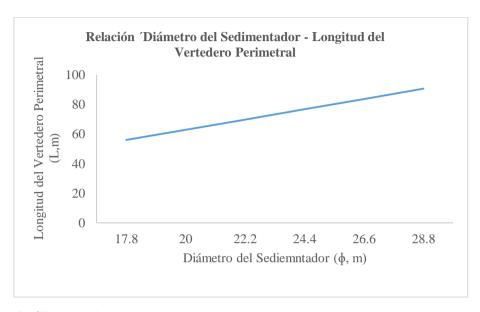



Gráfico 206-3: Automatización para área del sedimentador

En la Figura 206-3, se indica que, a mayor área, mayor diámetro; cabe notar que siempre se trabajara con el área mayor entre la requerida para caudal promedio y la para caudal pico.

Longitud del vertedero perimetral

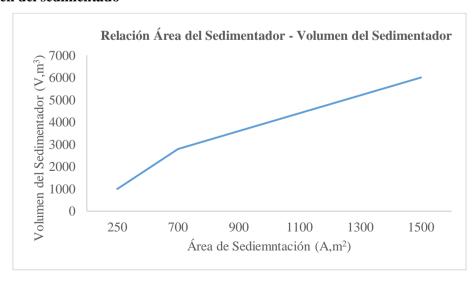
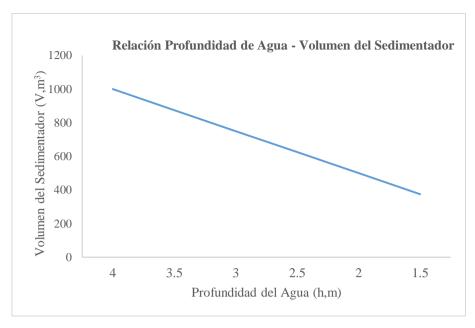


Gráfico 207-3: Automatización pata diámetro del sedimentador **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


En la Figura 207-3, la longitud del vertedero perimetral varía directamente en relación con el diámetro del sedimentador.

Nota: una mayor longitud del vertedero perimetral en los sedimentadores circulares disminuye apropiadamente la velocidad del agua, contrarrestando la turbulencia.

Volumen del sedimentado

Gráfico 208-3: Automatización para área de sedimentación **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

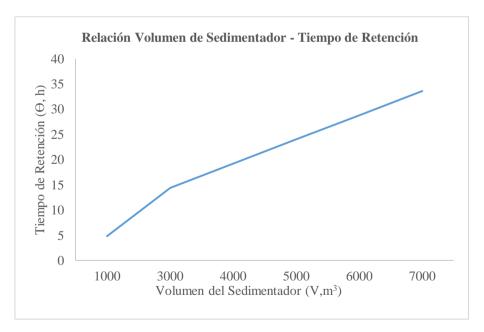
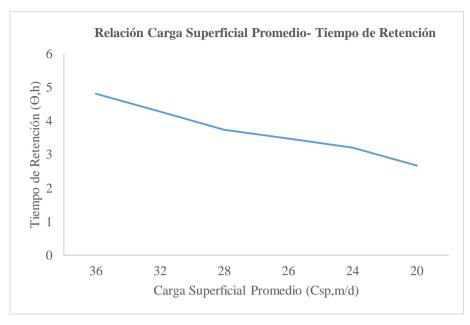


Gráfico 209-3: Automatización para profundidad del agua **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


En las Figuras 208-3 y 209-3, se indica que el volumen del sedimentador depende directamente del área del sedimentado y de su profundidad.

Nota: La profundidad de agua utilizada en tanques circulares varía entre 2 y 4 m.

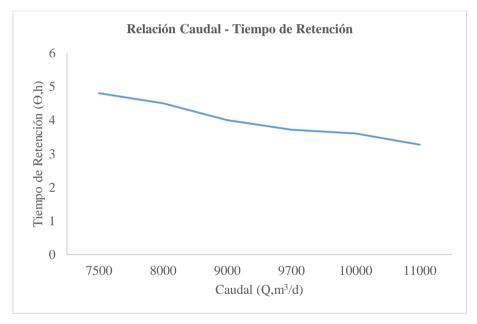
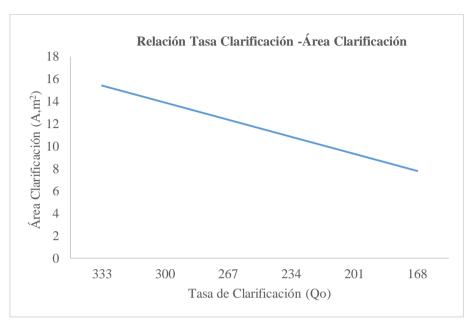
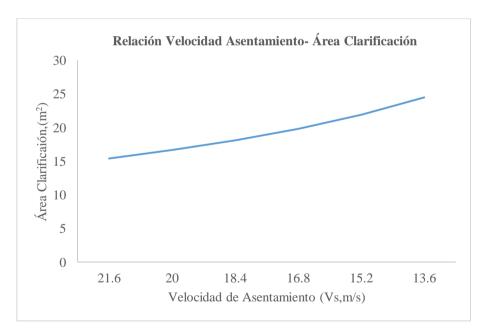

Tiempo de retención

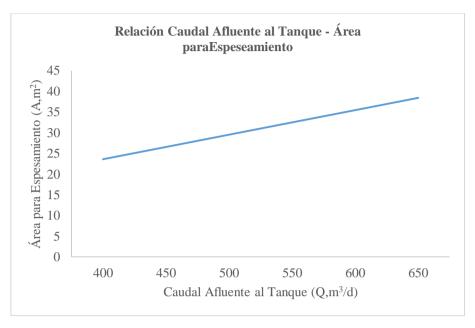
Gráfico 210-3: Automatización para volumen del sedimentador **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

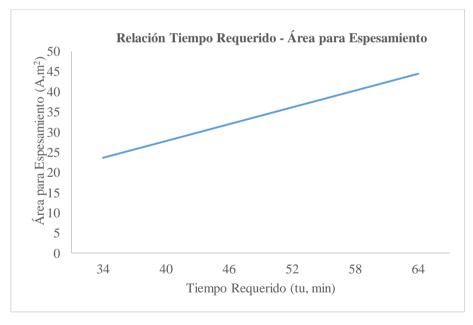

Gráfico 211-3: Automatización para carga superficial promedio **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


Gráfico 212-3: Automatización para caudal **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En las Figuras 210-3,211-3 y 212-3, se indica que, mientras más grande es el volumen y la carga superficial promedio, mayor tiempo de retención se requiere y que al ingresar mayor caudal, el tiempo de retención disminuye.

MODELO DE DISEÑO CON BASE EN ENSAYOS DE SEDIMENTACIÓN EN COCHADA **Área requerida para clarificación**


Gráfico 213-3: Automatización para tasa de clarificación **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


Gráfico 214-3: Automatización para velocidad de asentamiento **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En la Figura 213-3 a mayor tasa de clarificación mayor área requerida y como se indica en la Figura 214-3, mientras la velocidad de asentamiento decrece, el área requerida aumenta.

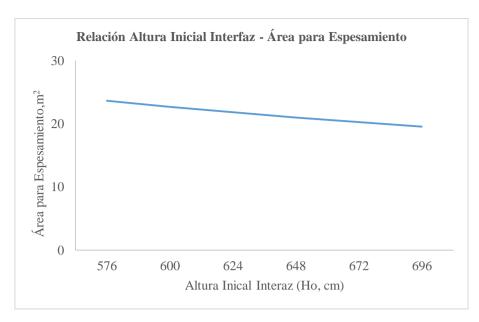

Área requerida para espesamiento

Gráfico 215-3: Automatización para caudal afluente al Tanque **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Gráfico 216-3: Automatización para tiempo requerido **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

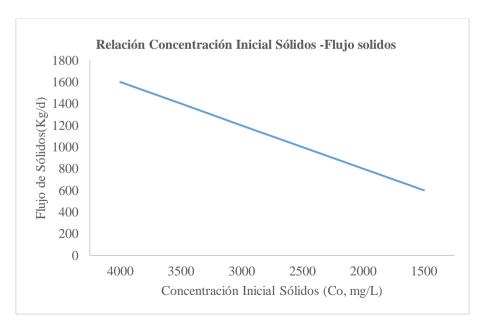
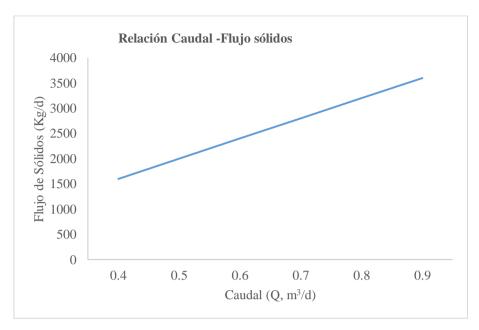
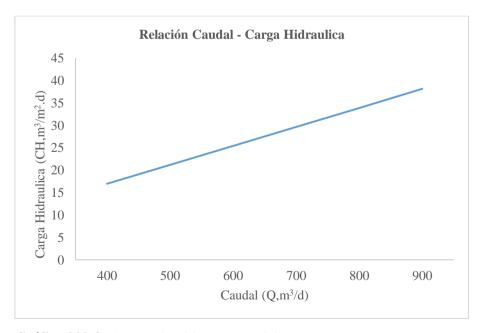


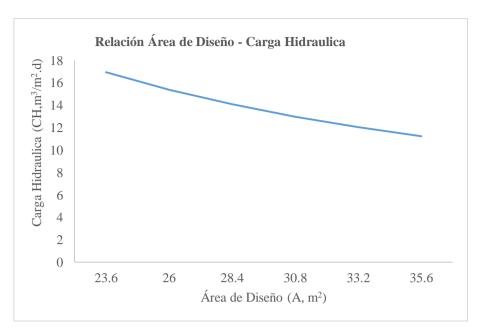
Gráfico 217-3: Automatización para altura inicial interfaz **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


En las Figuras 215-3 y 216-3, a medida que se incrementa el caudal afluente al tanque y el tiempo requerido para alcanzar la concentración deseada, el área requerida para espesamiento seguirá la misma tendencia, no sucede lo mismo en la Figura 217-3, que con la altura interfaz de la columna, en este caso se ve una relación inversa.

Nota: entre el área de clarificación y espesamiento se determina el área de control del diseño, esta será la que tenga la mayor área.

Flujo de sólidos


Gráfico 218-3: Gráfico de la automatización para concentración Inicial sólidos **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


Gráfico 219-3: Automatización para caudal **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento. 2016

En las Figuras 218-3 y 219-3, la concentración inicial de sólidos y el caudal, son directamente proporcionales al flujo de sólidos.

Carga hidráulica

Gráfico 220-3: Automatización para caudal **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Gráfico 221-3: Automatización para área de diseño **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En las Gráficas 220-3 y 221-3, el caudal es directamente proporcional a la carga hidráulica, mientras que el área y la carga hidráulica muestra una relación inversa.

3.2.10 Sistemas anaerobios

Descripción

"Los usos principales del tratamiento biológico anaerobio son el de remoción de materia orgánica de las aguas residuales y el de oxidación y estabilización de los lodos orgánicos o biosólidos producidos en el tratamiento biológico." (Romero, A.,2002, pp.681)

TANQUE IMHOFF

El tanque imhoff es una unidad de tratamiento primario cuya finalidad es la remoción de sólidos suspendidos.

Para comunidades de 5000 habitantes o menos, los tanques imhoff ofrecen ventajas para el tratamiento de aguas residuales domésticas, ya que integran la sedimentación del agua y a digestión de los lodos sedimentados en la misma unidad, por ese motivo también se les llama tanques de doble cámara.

Los tanques imhoff tienen una operación muy simple y no requiere de partes mecánicas; sin embargo, para su uso concreto es necesario que las aguas residuales pasen por los procesos de tratamiento preliminar de cribado y remoción de arena.

El tanque imhoff típico es de forma rectangular y se divide en tres compartimentos:

- Cámara de sedimentación.
- Cámara de digestión de lodos.
- Área de ventilación y acumulación de natas.

Durante la operación, las aguas residuales fluyen a través de la cámara de sedimentación, donde se remueven gran parte de los sólidos sedimentables, estos resbalan por las paredes inclinadas del fondo de la cámara de sedimentación pasando a la cámara de digestión a través de la ranura con traslape existente en el fondo del sedimentador. El traslape tiene la función de impedir que los gases o partículas suspendidas de sólidos, producto de la digestión, interfieran en el proceso de la sedimentación. Los gases y partículas ascendentes, que inevitablemente se producen en el proceso de digestión, son desviados hacia la cámara de natas o área de ventilación.

Los lodos acumulados en el digestor se extraen periódicamente y se conducen a lechos de secado, en donde el contenido de humedad se reduce por infiltración, después de lo cual se retiran y dispone de ellos enterrándolos o pueden ser utilizados para mejoramiento de los suelos"

SISTEMAS ANAEROBIOS

Tabla 95-3: Procesos Anaerobios de Tratamiento de Aguas residuales y Biosólidos.

Tipo	Nombre común	Uso
Crecimiento suspendido	Digestión anaerobia: tasa	Estabilización, remoción de
	estándar, tasa alta, una y dos	DBOC, remoción de SSV.
	etapas, proceso anaerobio de	Remoción de DBOC
	contacto.	
Híbrido	Lagunas anaerobias.	Remoción de DBOC,
	Tanque séptico.	Remoción de SS.
		Tratamiento primario, remoción
		de grasas, remoción de DBOC,
		remoción de sólidos
		suspendidos.
	Proceso de flujo ascensional y	Remoción de DBOC, remoción
	manto de lodos anaerobio,	de SS.
	PAMLA, RAFA o UASB.	
	Tanque Imhoff	Remoción de grasas, remoción
		de DBOC.
		Remoción de SS y digestión
		anaerobia de dichos sólidos.
Crecimiento adherido	Filtro anaerobio.	Remoción de DBOC,
		estabilización.
	Procesos de lecho fluidizado.	Remoción de DBOC
	Procesos de lecho expandido.	Remoción de DBOC

Fuente: Romero, A.,2002.

Tabla 96-3: Rendimiento Típico de los Procesos Anaerobios

Parámetro	Valor
Remoción de DBO, %	80-90
Remoción de DQO, mg /L	1,5 x DBO removida
Producción de biogás	0,5 m ³ /kg de DQO removida
Producción de metano	0,35 m ³ /kg de DQO removida
Producción de lodo	0,05- $0,10 kg SSV/kg D QO removida$

Fuente: MALINA, J.F y POHLAND, F.G. Desing of Anaerobic processes for the Treatment of Industrial and Municipal Wastes, Technomic, 1992.

Tabla 97-3: Edades de Lodos para Diseño

Temperatura de operación, °C	Mínima, d	Diseño, d
18	11	28
24	8	20
29	6	14
35	4	10
41	4	10

Fuente: HAMMER, M. J. y MacKICHAN, K.A. Hidrology and Quality of Water Resources, Wiley, 1981.

Tabla 98-3: Factores de Capacidad Relativa

Temperatura °C	Factor de capacidad relativa (fcr)	
5	2,0	
10	1,4	
15	1,0	
20	0,7	
>25	0,5	

 $\overline{Fuente:}\ www.ptolomeo.unam.mx:8080/xmlui/bitstream/handle/132.248.../reyespantoja.pdf$

Tabla 99-3: Valores de tiempo de digestión en función a la temperatura.

Temperatura °C	Tiempo de digestión en días	
5	110	
10	76	
15	55	
20	40	
>25	30	

Fuente: www.ptolomeo.unam.mx:8080/xmlui/bitstream/handle/132.248.../reyespantoja.pdf

Modelos matemáticos de diseño para sedimentación

Modelos de diseño para tanque Imhoff

Diseño de sedimentación:

Caudal de diseño:

$$Q_p = \frac{población*dotación}{1000}\%$$
 contribución Ec. 211-3

Donde:

Qp = caudal de diseño

Área del sedimentador:

$$A_S = \frac{Q_p}{c_s} Ec. 212-3$$

Donde:

Qp = caudal de diseño

Cs = carga superficial

As = área del sedimentador

Volumen del sedimentador

$$V_s = Q_p * R Ec. 213-3$$

Donde:

Qp = caudal de diseño

R = periodo de retención hidráulica

Vs = volumen del sedimentador

Longitud máxima del vertedero de salida

$$L_{max} = \frac{Q_{max}}{chv} Ec. 214-3$$

Donde:

Qmax = caudal máximo

Chv =carga hidráulica sobre el vertedero

Lmax = longitud máxima del vertedero de salida

Diseño del digestor:

Volumen de almacenamiento y digestión

$$V_d = \frac{70*P*fcr}{1000}$$
 Ec. 215-3

Donde:

P = población

Fcr = factor de capacidad relativa

Vd = volumen de almacenamiento y digestión

Carga de sólidos que ingresa al sedimentador

$$C = \frac{POBLACIÓN*CONTRIBUCIÓN PERCAPITA}{1000} Ec. 216-3$$

Donde:

C= carga de sólidos que ingresa al sedimentador

Masa de sólidos que conforman los lodos

$$Msd = (0.5 * 0.7 * 0.5 * C) + (0.5 * 0.3 * C) Ec. 217-3$$

Donde:

Msd = masa de sólidos que conforman los lodos

C= carga de sólidos que ingresa al sedimentador

Volumen diario de lodos digeridos

$$Vld = \frac{Msd}{densidad \ lodo*(\%\frac{sólidos}{100})} Ec. \ 218-3$$

Donde:

Msd = masa de sólidos que conforman los lodos

Vld = volumen diario de lodos digeridos

Volumen de lodos a extraerse del tanque

$$Vel = \frac{Vld*Td}{1000} Ec. 219-3$$

Donde:

Vld = volumen diario de lodos digeridos

Td = tiempo de digestión

Vel= volumen de lodos a extraerse del tanque

Área del lecho de secado

$$Als = \frac{Vel}{Ha} Ec. 220-3$$

Donde:

Vel= volumen de lodos a extraerse del tanque

Ha = profundidad de aplicación

Als = área del lecho de secado

Tabla 100-3: Datos experimentales y resultados de caudal de diseño

Característica	Unidades	Valor	Ecuación
población:	hab	2000	
dotación:	L hab / d	150	
contribución:	%	0,8	
Caudal de diseño (Qp)	m ³ /h	240	Ec. 221-3

Tabla 101-3: Datos experimentales y resultados de área del sedimentador

Característica	Unidades	Valor	Ecuación
Caudal de diseño (Qp)	m ³ /h	10	
Carga superficial (Cs)	$m^3/m^2 h$	1	
Área del sedimentador	m^2	10	Ec. 222-3
(As)			

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 102-3: Datos experimentales y resultados de volumen del sedimentador

Característica	Unidades	Valor	Ecuación
Caudal de diseño (Qp)	m ³ /h	10	
Periodo de retención	h	2	
hidráulica (R)			
Volumen del sedimentador	m^3	20	Ec. 223-3
(Vs)			
Volumen del sedimentador	m^3	20	Ec. 223-3

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 103-3: Datos experimentales y resultados de longitud máxima del vertedero de salida

Característica	Unidades	Valor	Ecuación
Caudal máximo (Qmax)	m^3/d	312	
Carga hidráulica sobre el	$m^3/m.d$	250	
vertedero (Chv)			
Longitud máxima del	m	1,248	Ec. 224-3
vertedero a la salida (Lv)			

Tabla 104-3: Datos experimentales de volumen de almacenamiento y digestión

Característica	Unidades	Valor	Ecuación
Población (P)	hab	2000	
Factor de capacidad		1,4	
relativa (fcr)			
Volumen de	m^3	196	Ec. 225-3
almacenamiento y			
digestión (Vd)			

Tabla 105-3: Datos experimentales y resultados de carga de sólidos que ingresa al sedimentador

Característica	Unidades	Valor	Ecuación
población	hab	2000	
C.percapita	gr SS/hab.d	90	
Carga sólidos (C)	Kg SS/ d	180	Ec. 226-3

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 106-3: Datos experimentales y resultados de masa de sólidos que conforman los lodos

Característica	Unidades	Valor	Ecuación
Carga de	Kg SS/ d	180	
sólidos (C)			
Masa de sólidos (Msd)	Kg SS/ d	86	Ec. 227-3

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 107-3: Datos experimentales de volumen diario de lodos digeridos

Característica	Unidades	Valor	Ecuación
Masa de	Kg SS/ d	86	
sólidos que			
conforman			
los lodos			
(Msd)			
densidad lodo:	Kg/L	1,04	
% sólidos	%	8	
Volumen diario de	L/d	6,615384615	Ec. 228-3
lodos digeridos (Vld)			

Tabla 108-3: Datos experimentales y resultados de volumen de lodos a extraerse del tanque

Característica	Unidades	Valor	Ecuación
Volumen diario de	L/d	6,615384615	
lodos digeridos (Vld)			
Tiempo de	d	76	
digestión (Td)			
Volumen de	m^3	0,502769231	Ec. 229-3
lodos a			
extraerse del			
tanque (Vel)			

Tabla 109-3: Datos experimentales y resultados de volumen diario de lodos digeridos

Característica	Unidades	Valor	Ecuación
Masa de	Kg SS/ d	86	
sólidos que			
conforman			
los lodos			
(Msd)			
densidad lodo:	Kg/L	1,04	
% sólidos	%	8	
Volumen diario de	L/d	6,615384615	Ec. 230-3
lodos digeridos (Vld)			

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Tabla 110-3: Datos experimentales y resultados de volumen dario de lodos digeridos

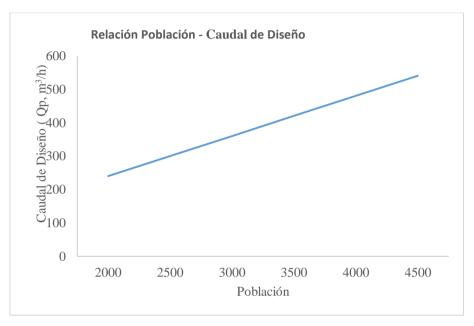
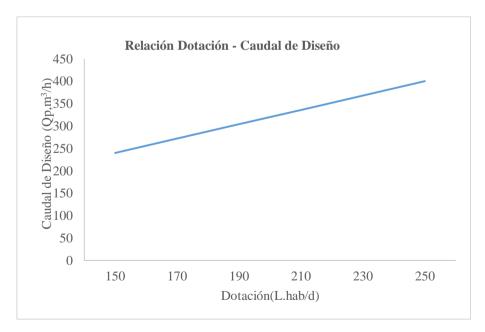

Característica	Unidades	Valor	Ecuación
Masa de	Kg SS/ d	86	
sólidos que			
conforman			
los lodos			
(Msd)			
densidad lodo:	Kg/L	1,04	
% sólidos	%	8	
Volumen diario de	L/d	6,615384615	Ec. 231-3
lodos digeridos (Vld)			

Tabla 111-3: Datos experimentales y resultados de área del lecho de secado


Característica	Unidades	Valor	Ecuación
Volumen de	m ³	0,502769231	
lodos a			
extraerse del			
tanque (Vel)			
Profundidad (Ha)	m	0,4	
Área de lecho de secado	m^2	1,256923077	Ec. 232-3
(Als)			

TANQUE IMHOFF DISEÑO DEL SEDIMENTADOR

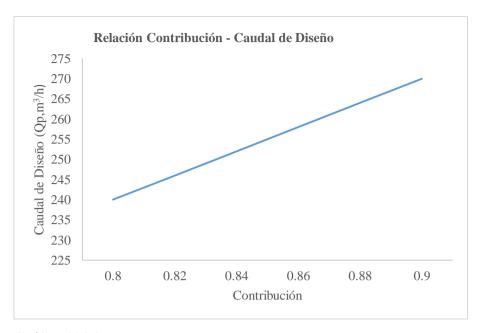

Caudal de diseño

Gráfico 222-3: Automatización para población **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Gráfico 223-3: Automatización para dotación **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

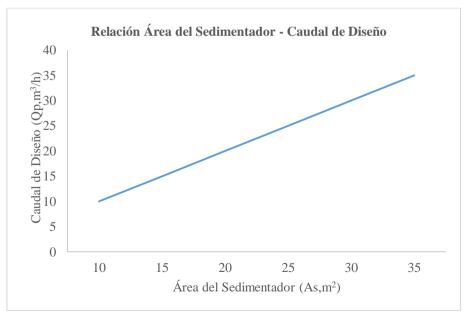
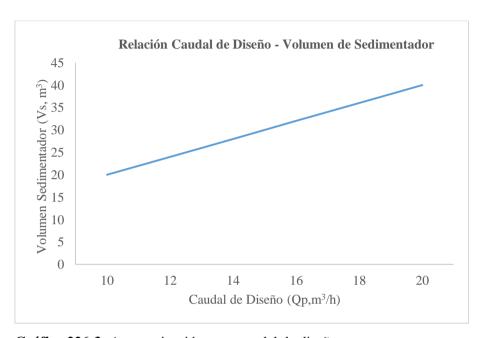
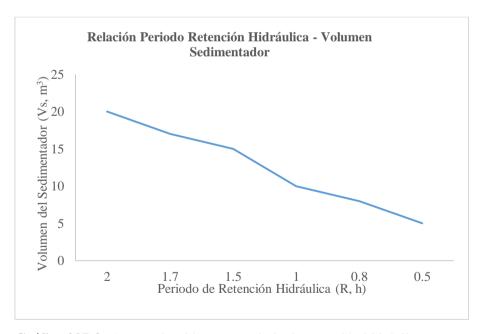


Gráfico 224-3: Automatización para contribución **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En las Figuras 222-3,223-3 y 224-3 se indica que, de la población, la dotación por habitante, y la contribución de desagüe afectan en proporción directa al caudal de diseño; y que a medida que estas variables aumentan se requiere un mayor caudal de diseño del sedimentador.

Nota: los valores de población no rebasan el límite adecuado, para la implementación de un tanque imhoff.


Área del sedimentador


Gráfico 225-3: Automatización para área del sedimentador **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En la Figura 225-3, se indica que a medida que incrementan los valores de caudal, el área requerida por el sedimentador tiende también a incrementarse.

Volumen del sedimentador

Gráfico 226-3: Automatización para caudal de diseño **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

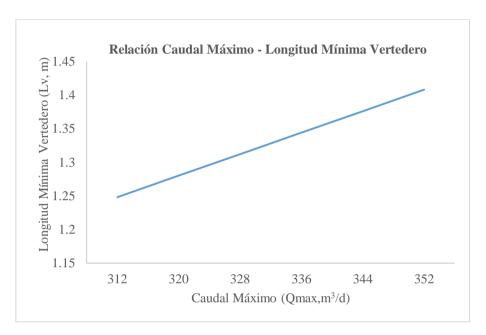
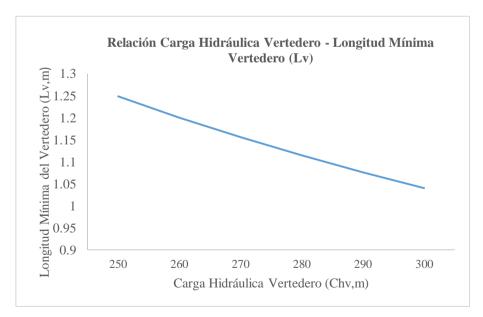


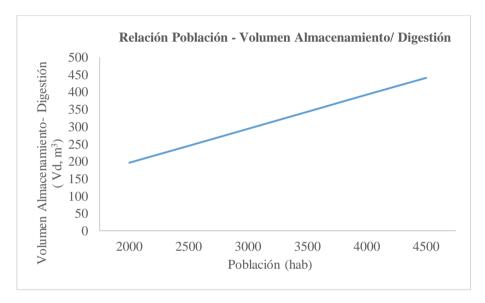
Gráfico 227-3: Automatización para periodo de retención hidráulica **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


En las Figuras 226-3 y 227-3 el caudal de diseño y el tiempo de retención influyen directamente sobre el volumen del sedimentador; cuando el valor de estos dos parámetros incrementa, el volumen del sedimentador tiende a ser mayor.

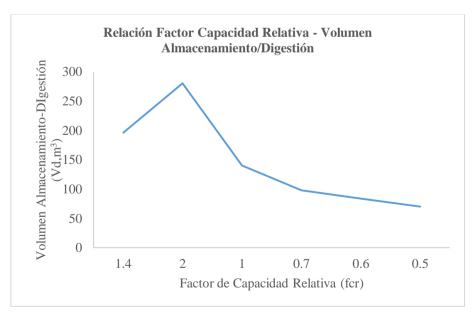
Nota: los valores de tiempo de retención hidráulica deben estar comprendidos entre 1,5 a 2,5 horas, tal como en la aplicación, siendo el tiempo recomendable 2 h.

Longitud mínima del vertedero a la salida

Gráfico 228-3: Automatización para caudal máximo **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


Gráfico 229-3: Automatización para carga hidráulica vertedero **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

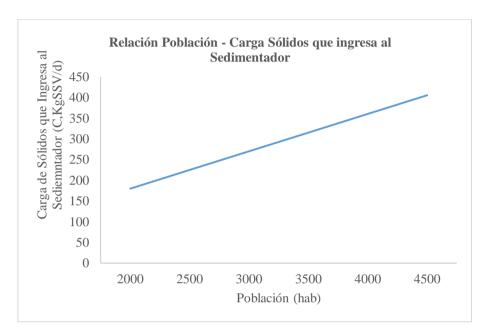
En las Figura 228-3 se indica que mientras el caudal máximo incrementa, la longitud mínima del vertedero a la salida incrementa también, mientras que la relación con la carga hidráulica del vertedero es inversamente proporcional como se indica en la Figura 229-3.


Nota: la carga hidráulica sobre el vertedero estará entre 125 a 500 m³/m.d, siendo 250 el valor recomendable.

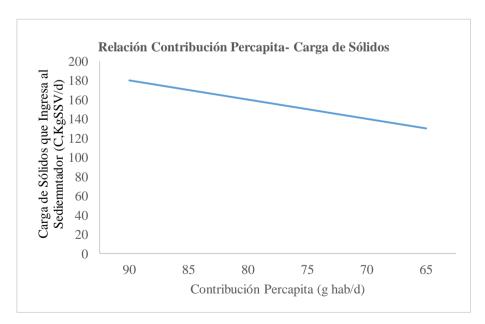
DISEÑO DEL DIGESTOR

Volumen de almacenamiento y digestión

Gráfico 230-3: Automatización para población **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


Gráfico 231-3: Automatización para factor de capacidad relativa **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En las Figuras 230-3 y 231-3, se indica que tanto la población como el factor de capacidad relativa, son directamente proporcionales al volumen de almacenamiento y digestión.


Nota: el factor de capacidad relativa depende de la temperatura del lugar, y está dado en la Tabla 98-3.

LECHOS DE SECADOS DE LODOS

Carga de sólidos que ingresa al sedimentador

Gráfico 232-3: Automatización para población **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

Gráfico 233-3: Automatización para contribución percapita **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En las Figuras 232-3 y 233-3, la población y la contribución per cápita respectivamente afectan directamente a la carga de sólidos que ingresa al sedimentador; a medida que estos parámetros incrementan, la carga de sólidos también.

Nota: en localidades que cuentan con servicio de alcantarillado, la contribución per cápita se determina mediante una caracterización de las aguas residuales.

Cuando la localidad no cuenta con alcantarillado, se utiliza una contribución per cápita de 90gr.SS/hab,dia

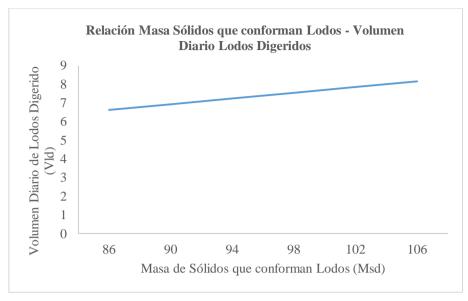

Masa de sólidos que conforman los lodos

Gráfico 234-3: Automatización para carga de sólidos que ingresa al sedimentador **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En la Figura 234-3, la masa de sólidos que conforman los lodos depende directamente a la carga de sólidos que ingresa al sedimentador.

Volumen diario de lodos digeridos

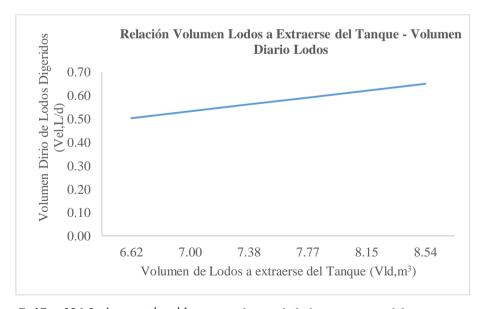
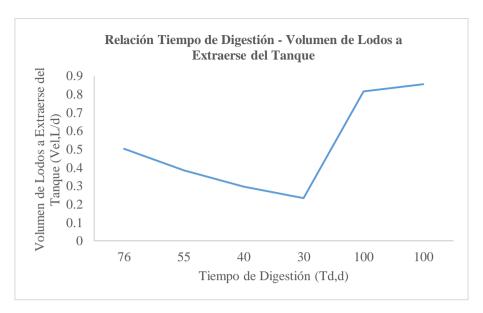


Gráfico 235-3: Automatización para masa de sólidos que conforman lodos **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016


En la Figura 235-3, se indica una relación directamente proporcional entre la masa de sólidos que conforman los lodos y el volumen diario de lodos digeridos.

Nota: se ha trabajado con una densidad de lodos igual a 1,04 Kg/l,y con un contenido de sólidos del 8%,que podría variar en un rango de 8-12 %.

Volumen de lodos a extraerse del tanque

Gráfico 236-3: Automatización para volumen de lodos a extraerse del tanque **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

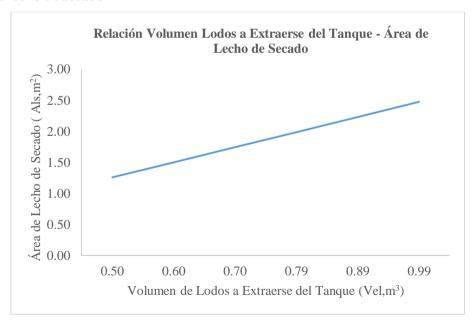


Gráfico 237-3: Automatización para tiempo de digestión **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

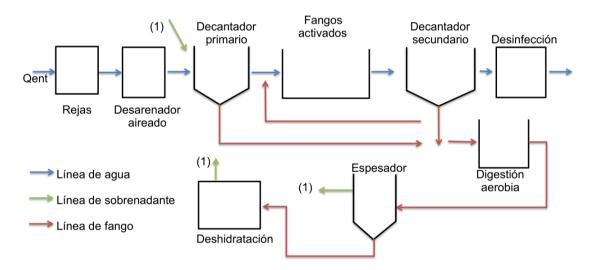
En las Figuras 236-3 y 237-3, se indica que el volumen de lodos a extraerse del tanque depende directamente del volumen diario de lodos digeridos y del tiempo de digestión.

Nota: el tiempo de digestión dado en días podemos encontrarlo en la Tabla 99-3, y tiene una relación inversamente proporcional con la temperatura.

Área de lecho de secado

Gráfico 238-3: Automatización para volumen de lodos a extraerse del tanque **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

En la Figura 238-3, el área de lecho de secado depende directamente del volumen de lodos a extraerse del tanque, con una profundidad de aplicación de 0,4 m.


3.3 Proceso de producción.

SISTEMAS DE TRATAMIENTOS DE AGUAS RESIDUALES

Aquí se utiliza un esquema general, para tratamiento de agua residual urbana para identificar el conjunto de procesos físicos y biológicos que se llevan a cabo con el fin de cumplir con los objetivos de calidad del agua y los requisitos de vertido establecidos en la normativa vigente.

Los sistemas de tratamiento se encuentran conformados por una línea de agua y una línea de fangos. Los procesos que se incluyen en la línea de agua se dividen en 4 etapas: el pretratamiento, el tratamiento primario, el tratamiento secundario y dependiendo del caso particular, el tratamiento terciario. En la línea de fangos se realiza el espesado, la estabilización del fango y su posterior deshidratación. Los sobrenadantes generados en el espesado y deshidratación del fango se suelen recircular a la cabecera de la planta, aunque en algunas PETAR reciben un tratamiento específico para la eliminación o recuperación de nutrientes, llegándose a hablar de la línea de sobrenadante.

En la Figura 239-3 se observa un esquema general de las distintas líneas descritas anteriormente.

Gráfico 239-3: Esquema general de tratamiento de agua residual para plantas de tratamientos medianas **Fuente:**

En un proceso de fangos activados convencional se diferencian dos operaciones: la oxidación biológica que tiene lugar en el reactor biológico y la separación liquido-sólido que se realiza en el decantador secundario. Una fracción del fango decantado se extrae del sistema (purga) que luego pasará a la línea de fangos para su estabilización, o directamente a espesado y/o

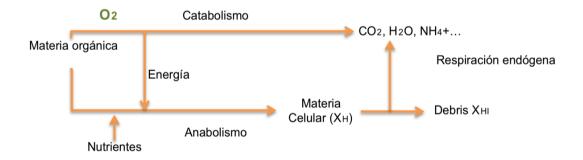
deshidratación; mientras que el resto del fango se recircula al reactor inicial para mantener la población bacteriana en el sistema.

El proceso convencional de fangos activados funciona bajo tiempos de retención celular (TRC) medios debido a esto los fangos necesitan de una digestión posterior. Por otra parte el proceso de oxidación total, el cual es una variante de los fangos activados, funciona con valores de TRC elevados, debido a esto los microorganismos presentes compiten por el alimento existente utilizando incluso su propia masa celular. Esta situación da lugar a un efluente altamente tratado con una producción de fangos baja. A causa del elevado TRC el fango llega a estabilizarse en el reactor biológico por lo que la línea de fangos se reduce a un espesador y un deshidratador.

La reducción de la contaminación va encaminada principalmente a la eliminación de materia orgánica, sólidos suspendidos y nutrientes, como son el nitrógeno (N) y el fósforo (P). Anteriormente, el diseño de estaciones depuradoras estaba enfocado principalmente a la disminución de la demanda biológica de oxígeno (DBO) pero actualmente se han desarrollado distintos esquemas y configuraciones de tratamiento para una eliminación conjunta y eficaz de materia orgánica biodegradable, nitrógeno y fósforo.

El enriquecimiento de nutrientes en los cuerpos de agua provoca la eutrofización, generando impactos negativos como el crecimiento y la muerte del fitoplancton, la acumulación de detritos, el aumento de las bacterias y, por último, el agotamiento del oxígeno disuelto (OD) y la sofocación de los organismos superiores, alterando las comunidades biológicas presentes en los ecosistemas. Nebel y Wright. (1999).

Por lo anterior es muy importante la eliminación de nutrientes en las EDAR. Además, la eliminación biológica de nutrientes trae consigo beneficios para la planta de tratamiento, como la disminución de microorganismos filamentosos, lo cual mejora la sedimentabilidad del fango, la reducción en la producción de fangos debido al bajo uso de reactivos químicos para la precipitación química del fósforo y la reducción en los requerimientos de oxígeno.


Los procesos de eliminación de nutrientes son más complejos que los de eliminación de materia orgánica, siendo necesaria la combinación de al menos dos etapas: aerobia y anóxica en el caso de la eliminación de nitrógeno, y aerobia y anaerobia en el caso de la eliminación de fósforo.

Los casos en los cuales existe la necesidad de eliminación simultánea de ambos nutrientes requieren de al menos tres etapas: anaerobia, anóxica y aerobia. Ferrer y Seco. (2003).

Los organismos heterótrofos son los que básicamente actúan en los sistemas biológicos de depuración, actuando por vía aerobia, anóxica o anaerobia. Mediante la vía aerobia el oxígeno (SO2) actúa como aceptor de electrones para el crecimiento de las bacterias heterótrofas (XH), estos organismos, tras la introducción de materia orgánica en su interior, la someten a dos transformaciones diferentes.

La primera transforma esa materia orgánica en CO2, agua y otros compuestos inorgánicos (NH4+). Dado que esta reacción es exotérmica, proporciona energía al resto de las funciones celulares. La segunda transformación consiste en la síntesis del tejido celular a partir de los nutrientes, la materia orgánica presente y la energía producida en el proceso mencionado anteriormente. En la Figura 240-3 se muestra un esquema con las transformaciones mencionadas. Ferrer y Seco. (2003).

En el proceso de desaparición de la biomasa algunos de los constituyentes de la célula son transformados en productos finales. La fracción de materia celular que no puede degradarse o que lo hace muy lentamente da lugar un residuo orgánico inerte denominado Debris (XHI).

Gráfico 240-3: Transformaciones biológicas por vía aerobia. **Fuente:** Ferrer y Seco (2003).

Los compuestos orgánicos suspendidos deben ser solubilizados antes de ser consumidos y los de elevado peso molecular han de ser reducidos a compuestos más pequeños a fin de ser posible su paso a través de la membrana celular. En otras palabras, es necesario convertir la materia orgánica lentamente biodegradable en fácilmente biodegradable.

Los procesos aerobios son los más usados para la degradación de la materia orgánica. Se trata de procesos donde el aporte de oxígeno se realiza por medios mecánicos, lo cual hace que sean costosos.

Los modelos matemáticos utilizados en los procesos de eliminación de materia orgánica descritos anteriormente serán simulados en Excel Microsoft. En este diseño se ha hecho

particular énfasis en la velocidad de cálculo, presentación gráfica y fácil manejo. El método con que se ha desarrollado este proyecto consiste en la utilización de varios modelos matemáticos para representar los procesos físicos y bilógicos más importantes que tienen lugar en el tratamiento de aguas residuales. Por lo tanto, el trabajo realizado puede utilizarse para diseñar y automatizar las operaciones básicas de una PTAR, y de esta forma el funcionamiento individual de cada tratamiento puede ser optimizado.

3.4 Requerimientos de Tecnología, equipos y maquinarias.

Para realizar el presente Trabajo de Titulación se adquirió una lista de equipos, materiales y tecnología. Este proyecto no requiere de un espacio físico como tal para su ubicación y ejecución, ya que se está realizando un proyecto de diseño conceptual; por lo tanto, para levantar los métodos interactivos flexibles que luego llevaran a la obtención de una plataforma de de diseño de tecnología PTAR será necesario de los siguientes elementos:

- El conocimiento en lenguaje de programación.
- Computadoras.
- Visual Studio Profesional.
- Modulación de procesos
- Excel Microsoft

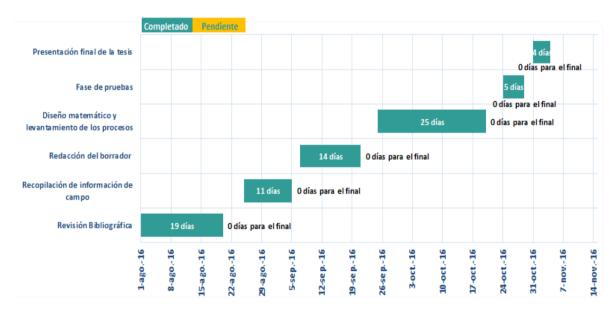
Luego de utilizar la tecnología antes mencionada se obtiene cada uno de los modelos matemáticos planteados, adjuntados como una nueva herramienta tecnológica realizada mediante programación en Visual Studio Profesional, la misma que se encontrara en formato digital.

3.5 Análisis de costo / Beneficio del proyecto.

En Ecuador el valor de tratamiento de agua residual para un caudal de un litro/s está estimado alrededor de los \$50 dólares americanos, como resultado las economías del tratamiento de aguas residuales son bastante críticas. En principio y utilizando procesos de tratamiento bastante sofisticados, se puede obtener agua potable de las aguas residuales. La consideración de aspectos económicos, sin embargo, evita el que se pueda llegar a la aplicación y la consecuente utilización de muchos métodos disponibles.

Al evaluar un proceso de tratamiento específico es importante estimar la relación costo / beneficio, derivado del tratamiento para obtener agua de una calidad específica, y el costo en conseguir este grado de calidad.

En el país los tratamientos de aguas residuales representan una gran inversión tanto en el sector público como privado, es por ello que llevar a cabo un diseño de tratamiento para una determinada población en condiciones específicas requiere fuertes sumas de dinero y un largo periodo de tiempo de acuerdo a su complejidad. Este proyecto busca disminuir ese periodo de tiempo y a la vez evitar gastos innecesarios a través de la predicción de inconvenientes que podrían darse en cada una de las operaciones utilizadas para llegar a obtener una mayor eficiencia.


Tomando en cuenta los factores antes mencionados, se verifica que la relación costo /beneficio de este trabajo es relativamente alta, ya que, con una pequeña inversión en una herramienta informática para realizar el diseño y simulación de las operaciones, podrían evitarse grandes pérdidas económicas en municipios, empresas públicas y privadas, ocasionadas por errores que pudieron preverse.

3.6 Cronograma de ejecución del Proyecto.

En la ejecución del Trabajo de Titulación se ejecutaron las siguientes actividades:

Proyecto	Fecha inicio prevista	Días trabajados	Fecha final prevista	Situación	Días para el final
Revisión Bibliográfica	01-ago16	19	20-ago16	Terminado	0
Recopilación de información de campo	25-ago16	11	5-sep16	Terminado	0
Redacción del borrador	07-sep16	14	21-sep16	Terminado	0
Diseño matemático y levantamiento de los procesos	25-sep16	25	20-oct16	Terminado	0
Fase de pruebas	24-oct16	5	29-oct16	Terminado	0
Presentación final de la tesis	31-oct16	4	4-nov16	Terminado	0

Realizado por: Jenifer Jurado; Lizbeth Sarmiento.2016

Gráfico 241-3: Cronograma de actividades **Realizado por:** Jenifer Jurado; Lizbeth Sarmiento.2016

CAPITULO IV

Conclusiones

- Se optimizo el proceso de diseño conceptual de operación de plantas de tratamientos de aguas residuales para la empresa HETWEN, mediante la automatización de las ecuaciones de diseño.
- Se recopilaron los datos y parámetros de diseños necesarios en base a diferentes fuentes bibliográficas para estudiar las variables que condicionan el funcionamiento de cada etapa de tratamiento para posteriormente en base a la experticia del técnico y/o usuario pueda tomar la mejor decisión al momento de optimizar la operación de la planta.
- Se implementaron módulos de cálculo en Microsoft Excel para estudiar el funcionamiento básico de cada modelo matemático, esto es de gran utilidad dado que permite identificar a los usuarios los parámetros que intervienen en el diseño de proceso y a través de este evaluar las condiciones que limitarán cada etapa.
- Mediante leguaje de programación, visual Basic, y modulación de procesos se obtuvo una plataforma de automatización de diseño de tecnología PTAR; la misma que será de uso exclusivo de la empresa, se dejará una copia del programa en la escuela de Ingeniería Química par fines didácticos. En el ANEXO IV se adjunta el certificado de conformidad otorgado por la empresa aupsticiante.

BIBLIOGRAFÍA

- **1. BENET, J. & FERRER J.,** Aplicación de depuración de aguas. Segunda edición, Barcelona, Reverte 1992, pp 400-420.
- 2. CLESCERI, L., GREENBERG, A. & TRUSSELL, R. Métodos normalizados para el análisis de agua residual .Séptima Edición. Madrid: Reverte, 2000, pp 310-320.
- **3. CRITES, R**. *Tratamiento de aguas residuales en pequeñas poblaciones*. México D.F.: McGraw-Hill Interamericana, 2000.
- **4. EDZWALD, J.** "Principles and applications of dissolved air flotation". *Water Scientific Technology*, vol. 31, 3-4, 1995, pp. 1-23.
- **5. FEACHEM, R.** *Consulta para evaluación ambiental*, Volumen II. Nueva York: McGarry, 1997, pp 134-160.
- **6. FERRER, J. Y SECO, A**. *Tratamientos físicos y químicos de aguas residuales*. España: Servicios de publicaciones de la Universidad Politécnica de Valencia. 2011, pp 145-170.
- 7. FERRER, J., SECO, A., SERRALTA, J., RIBES, J., AGUADO, D., RUANO, M., & GARCÍA, M. Diseño y Simulación de EDAR mediante Software DESASS. Primera ed. Valencia, España: Universidad Politécnica de Valencia. 2011.
- **8. JOIN COMMITTEE OF WPCF AND ASCE.** *A Wastewater Treatment Plant Design, MOP/8*, Water Pollution Control federation, Alexandria, Washington, D.C., 1977, pp 284- 290.
- **9. LINSLEY, E. y FRANZINI, J.** Ingeniería de los recursos hidráulicos. México.: Continental, 1967, pp 150-169.

- 10. LLORET, J. Estudio de alternativas para la ampliación de la depuradora de aguas residuales Alzira- Carcaixent mediante simulación con software DESASS. Valencia, España: Universidad Politécnica de Valencia. 2016, pp 170-195.
- 11. MALINA, J. F. Biodisc Treatment, Austin, Texas, University of Texas, 1982.
- **12. OLESZKIEWICZ, J., y KOZIARSKI, S**. Low Temperature Anaerobic Biofiltration in Upflow Reactors, Water Pollution Control Federation, Washington, D.C.,1982, pp 129-145.
- **13. METCALF & EDDY, INC**. Wastewater Engineering: Treatment, Disposal, Reuse, 2da. McGraw Hill, 1979, pp 463.
- **14. PARKER, H. W.** *Wastewater Systems Engineering,* Washington DC., Pretice Hall, 1975, pp 230-300.
- **15. RANALHO, R.,** *Tratamientos de aguas residuales*, Segunda edición, Barcelona, Reverte 2003, pp 493-494.
- **16. RIGOLA, M. & LAPEÑA, B**. *Tratamiento de aguas industriales*. México: Limusa, 1998, pp 308-354.
- 17. ROJAS SUAZO, Hector Octavio. El Sistema de Zanjas de Oxidación como una Alternativa de Tratamiento Biológico en México [En línea] (tesis pregrado). Universidad Nacional Autónoma de México, Facultad de Ingeniería, Ciudad de México, México, 2012, pp 41-44 [Consulta: 2016-07-23]. Disponible en: http://www.ptolomeo.unam.mx:8080/xmlui/bitstream/handle/132.248.52.100/2412/Tesis.pdf?sequence=1
- **18. ROMERO, J.** *Tratamientos de aguas residuales. Teoría y principios de diseño.*, Segunda edición, Colombia, Editorial Escuela Colombia de Ingeniería, 2002, pp 505-507.

- **19. SAINZ, J.A.** *Procesos y operaciones unitarias en depuración de aguas residuales*. España: Continental, 2005, pp 154-160.
- **20. SIEGRIST, H., RENGLI, D. & GUJER, W.** Mathematical modelling of anaerobic mesophilic sewage sludge treatment. Water Science & Technology, 1993., pp 25-36.
- **21. TULAS.** Norma de calidad ambiental y descarga de efluentes: recurso agua. s.l.: Texto unificado de legislación ambiental secundaria.
- **22. WILSON, F.** *Design calculations in Wastewater Treatment*, Washington: Spon., 1980, pp 134-160.
- 23. WPCF, Wastewater Sampling for Process and Quality Control, MOP N°OM-11, 1980. *Texas A&M AgriLife Extension Service*, [en línea], Texas: Bruce J. Lesikar, 4 de agosto 2015, EL-5345: OWTS: Trickling Filter. [Consulta: 15-08-2016]. Disponible en: http://oaktrust.library.tamu.edu/bitstream/handle/1969.1/86867/pdf 1144.pdf?s equence=1

ANEXO I

Certificado de Control de Similitud URKUND

URKUND

Urkund Analysis Result

Analysed Document:

OPTIMIZACIÓN DEL PROCESO DE DISEÑO CONCEPTUAL DE

OPERACIÓN DE PLANTAS DE TRATAMIENTOS DE AGUAS RESIDUALES PARA LA EMPRESA HETWEN.docx (D23953439)

Submitted:

2016-12-01 00:27:00

Submitted By:

valetapiag@gmail.com

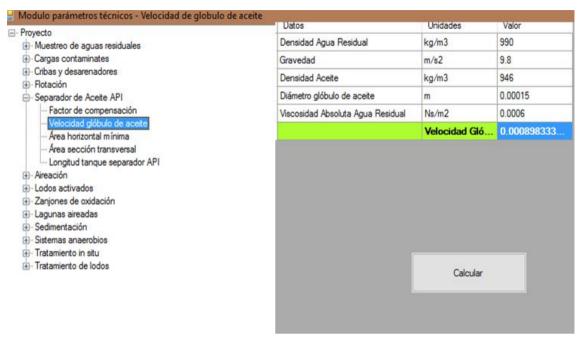
Significance:

5 %

Sources included in the report:

TESIS ACTUALIZADA JESSICA OLARTE 12 OCTUBRE.docx (D11787138) 25-08 TESIS JESSICA - TERMINADO COMPLETO-1.docx (D11651026) TESIS MAESTRIA FINAL - ASTERIO CORONEL CAMATON - TEXTO.docx (D21973591) TESIS A.Castillo-MJ Guerra...docx (D10574293) TESIS revisar.docx (D10465445)

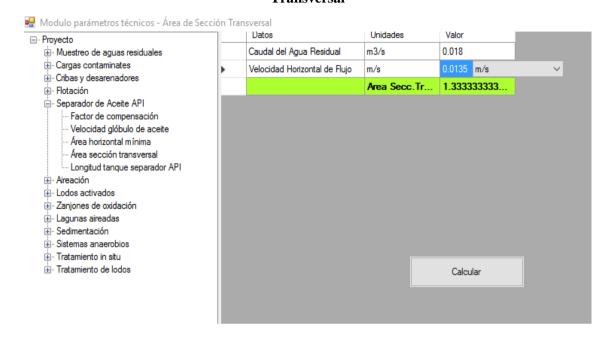
TESIS revisar.docx (D10465445) tesis sin anexos.pdf (D14272880)


1.Tesis Oscar Solano Pineda_ALCANTARILLADO SANITARIO_EL GUABO.pdf (D12484157) http://www.uap.edu.pe/intranet/fac/

material/24/20102BT240224E10240108011/20102BT240224E1024010801120689.pdf

Instances where selected sources appear:

Q1


ANEXO II $\begin{tabular}{ll} M\'odulo de C\'alculo Ejemplo N°1 para el Separador de Aceite API: Velocidad Elevación \\ del Gl\'obulo de Aceite \\ \end{tabular}$

g:	μ		ρw:	ρο:	D	Vt:
9.8	1	0.0006	990	946	0.00015	0.000899
9.8	1	0.0007	990	946	0.00015	0.000771
9.8	1	0.0008	990	946	0.00015	0.000674
9.8	1	0.0009	990	946	0.00015	0.000600
9.8	1	0.001	990	946	0.00015	0.000540
9.8	1	0.0011	990	946	0.00015	0.000491

ANEXO III

Módulo de Cálculo Ejemplo N°2 para el Separador de Aceite API: Área de Sección Transversal

Q:	VH	Ac:
0.018	0.0135	1.33
0.02	0.0135	1.48
0.025	0.0135	1.85
0.029	0.0135	2.15
0.03	0.0135	2.22
0.035	0.0135	2.59

ANEXO IV

Certificado de Finalización del Proyecto Otorgado por la Empresa HETWEN

Ambato, 13 de Enero de 2017

Señor Ingeniero

Mario Villacrés
DIRECTOR DE LA ESCUELA DE INGENIERÍA QUÍMICA DE LA
ESCUELA POLITÉCNICA DE CHIMBORAZO

Presente.-

Quién suscribe, como representante de HETWEN Cía. Ltda., me permito informar, que las señoritas egresadas de la carrera de Ingeniería Química: Jenifer Amanda Jurado Lara y Lizbeth Gabriela Sarmiento Jiménez, han finalizado satisfactoriamente las investigaciones necesarias para su trabajo de titulación denominado: "OPTIMIZACIÓN DEL PROCESO DE DISEÑO CONCEPTUAL DE OPERACIONES DE PLANTAS DE TRATAMIENTOS DE AGUAS RESIDUALES PARA LA EMPRESA HETWEN", demostrando, amplio conocimiento sobre el tema y responsabilidad, convirtiéndose en un aporte significativo para las operaciones de nuestra empresa.

Además, cabe recalcar, que la empresa HETWEN ha puesto a disposición de la Escuela de Ingeniería Química, un instalador del módulo totalmente funcional del software de PTAR, en el cual las señoritas egresadas colaboraron activamente, reservándonos el derecho del código fuente y del producto final, debido a que, el mismo, fue desarrollado totalmente por el personal de la empresa y que constituye parte de un proyecto de mayor envergadura.

Es todo lo que puedo informar al señor Director y autorizo el uso de este documento a las señoritas egresadas para los fines pertinentes.

Atentamente,

PRESIDENTE HETWEN

Oscar E. Reyes y Benjamín Carrión, Pasaje Ana María Albornoz Mz. 24 Cs. 5, Ambato, Ecuador
Celular: 0998583742, T: (03) 2 841696, Casilla Nº: 18 - 01 - 907

ANEXO V

Análisis de Aguas Residuales Otorgado por la Empresa

SGC

LABORATORIO DE ANÁLISIS AMBIENTAL E INSPECCIÓN

Panamericana Sur Km. 1 1/2 Telefax: (03) 2998232 ESPOCH FACULTAD DE CIENCIAS RIOBAMBA - ECUADOR

N° OAE LE 2C 06-008

1862 13 – 915 ANÁLISIS DE AGUAS

Nombre Peticionario:

INFORME DE ENSAYO No:

Dirección:

Ing.: Autris Omero José Moises Garces Vía Corte Huambalo, entrada Caserío Ladrillo 07 de Octubre del 2013

2013 / 09 / 26 - 14:30

Ing. Patricio Romero

NUMERO DE MUESTRAS: FECHA Y HORA DE RECEPCIÓN EN LAB: FECHA DE MUESTREO:

2013 / 09 / 26 – 13:00 2013 / 09 / 26 – 2013 / 10 / 07 Agua Residual

FECHA DE ANÁLISIS: TIPO DE MUESTRA: CÓDIGO LABCESTTA:

LAB-A 3137-13

CÓDIGO DE LA EMPRESA: PUNTO DE MUESTREO:

NA Entrada a la planta de tratamiento.

Físico-Químico.

ANÁLISIS SOLICITADO: PERSONA QUE TOMA LA MUESTRA:

Ing. Patricio Romero T máx.:25.0 °C. T min.: 15.0 °C

CONDICIONES AMBIENTALES DE ANÁLISIS:

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	VALOR LÍMITE PERMISIBLE	INCERTIDUMBRE (k=2)
Demanda Química de Oxígeno	PEE/LABCESTTA/09 APHA 5220 D	mg/L	255	500	±3%
Demanda Bioquímica de Oxígeno (5 días)	PEE/LABCESTTA/46 APHA 5210 B	mg/L	110	250	±20%
Solidos Suspendidos	PEE/LABCESTTA/13 APHA 2540 D	mg/L	<50	220	±20%
*Solidos Sedimentables	PEE/LABCESTTA/56 APHA 2540 F	ml/L	0,1	20	19
*Sulfuros	PEE/LABCESTTA/19 APHA 4500-S ²⁻ 4	mg/L	0,136	1,0	12
Fenoles	PEE/LABCESTTA/14 APHA 5530 C	mg/L	0,140	0,2	±7%
Grasas y Aceites	PEE/LABCESTTA/42 APHA 5520 B	mg/L	19,8	100	±6%
Tensoactivos	PEE/LABCESTTA/44 APHA 5540 C	mg/L	6,15	2,0	±15%
*Color	PEE/LABCESTTA/61 APHA 2120-C	Pt/Co	105,12	=	-

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- Los parámetros con (*) están fuera del alcance de acreditación del OAE.
- Resultados comparados con límites permisibles Tabla 11 del TULAS.

RESPONSABLES DEL INFORME:

Dr. Mauricio Álvarez	Ing. Marcela Erazo
RESPONSABLE TÉCNICO	JEFE DE LABORATORIO

Este documento no puede ser reproducido ni total ni parcialmente sin la aprobación escrita del laboratorio. Los resultados arriba indicados sólo están relacionados con los objetos ensayados

Página 1 de 1 Edición 2

MC01-14

SGC

LABORATORIO DE ANÁLISIS AMBIENTAL E INSPECCIÓN

Panamericana Sur Km. 1 ½ Telefax: (03) 2998232 ESPOCH FACULTAD DE CIENCIAS RIOBAMBA - ECUADOR

INFORME DE ENSAYO No: ST:

322 13 – 148 ANÁLISIS DE AGUAS CRISTIAN CAR Sra. Martha Pineda Cantón Pelileo Nombre Peticionario: Nombre Peticionario:
Atn.
Dirección:
FECHA:
NUMERO DE MUESTRAS:
FECHA Y HORA DE RECEPCIÓN EN LAB:
FECHA DE MUESTREO:
FECHA DE ANÁLISIS:
TIPO DE MUESTRA:
CÓDIGO LABCESTTA:
CÓDIGO DE LA EMPRESA:
PUNTO DE MUESTREO: 22 de Marzo del 2013

1 2013 / 03 / 14 - 14:50 2013 / 03 / 14 - 10:32 2013 / 03/ 14 - 2013 / 03 / 22

Agua residual LAB-A 344-13 1-A CODIGO DE LA EMPRESA: PUNTO DE MUESTREO: ANÁLISIS SOLICITADO: PERSONA QUE TOMA LA MUESTRA: CONDICIONES AMBIENTALES DE ANÁLISIS: 1-A Descarga Físico - Químico Dr. Kleber Iza T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	VALOR LÍMITE PERMISIBLE	INCERTIDUMBRE (k=2)
Temperatura	PEE/LABCESTTA/04 APHA 2550 B	°C	18,6	<40	±3%
*Caudal	Volumétrico	L/s	48,68	1,5 veces al caudal promedio horario del sistema de alcantarillado	1-
Potencial de Hidrógeno	PEE/LABCESTTA/05 APHA 4500- H ⁺	Unidades de pH	6,55	5-9	±0,10
Tensoactivos	PEE/LABCESTTA/44 APHA 5540 C	mg/L	1,00	2,0	±15%
*Soʻlidos Sedimentables	PEE/LABCESTTA/56 APHA 2540 F	ml/L	4,96	20	-
Demanda Biológica de Oxígeno (5 días)	PEE/LABCESTTA/46 APHA 5210 B	mg/L	225	250	±20%
Demanda Química de Oxígeno	PEE/LABCESTTA/09 APHA 5220 D	mg/L	426	500	±3%
Fenoles	PEE/LABCESTTA/14 APHA 5530 C	mg/L	0,035	0,2	±32%
*Color	PEE/LABCESTTA/61 APHA 2120-C	UTC	245	-	
*Sulfuros	PEE/LABCESTTA/19 APHA 4500-S ²⁻ 4	mg/L	0,15	1,0	-
Grasas y Aceites	PEE/LABCESTTA/42 APHA 5520 B	mg/L	8,0	100	±10%
Soʻlidos Suspendidos	PEE/LABCESTTA/13 APHA 2540 D	mg/L	65	220	±20%

SGC

LABORATORIO DE ANÁLISIS AMBIENTAL E INSPECCIÓN

Panamericana Sur Km. 1 ½ Telefax: (03) 2998232 ESPOCH FACULTAD DE CIENCIAS RIOBAMBA - ECUADOR

OBSERVACIONES:

- Muestra transportada en refrigeración. Resultados comparados con límites permisibles Tabla 11 del TULAS Los parámetros con (*) están fuera del alcance de acreditación.

RESPONSABLES DEL INFORME:

Dr. Mauricio Alvarez RESPONSABLE TÉCNICO

Laboratorio de Analisis Ambiental Einspección Lab - Cestta Espoch

Dra. Nancy Veloz M.

JEFE DE LABORATORIO