EVALUACIÓN Y SELECCIÓN AGRONÓMICA DE CUARENTA GENOTIPOS DE PAPA (Solanum tuberosum L.) PARA TOLERANCIA A ESTRÉS HÍDRICO EN TRES LOCALIDADES DE LA PROVINCIA DE CHIMBORAZO

NORMA DEL PILAR BONILLA AULLA

TESIS PRESENTADA COMO REQUISITO PARCIAL PARA OBTENER EL TÍTULO DE INGENIERO AGRÓNOMO

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO

FACULTAD DE RECURSOS NATURALES

ESCUELA DE INGENIERÍA AGRONÓMICA

RIOBAMBA-ECUADOR 2009 **EL TRIBUNAL DE TESIS CERTIFICA QUE:** el trabajo de investigación titulado "Evaluación y selección agronómica de cuarenta genotipos de papa (*Solanum tuberosum* L.) para tolerancia a estrés hídrico en tres localidades de la provincia de Chimborazo", de responsabilidad de la señorita Egresada Norma del Pilar Bonilla Aulla ha sido prolijamente revisada, quedando autorizada su presentación.

TRIBUNAL DE TESIS	
Ing. David Caballero	
DIRECTOR	
Ing. Fernando Romero	
MIENBRO	

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE RECURSOS NATURALES ESCUELA DE INGENIERÍA AGRONÓMICA

Riobamba, Abril 2009

AGRADECIMIENTO

A los profesores de la Escuela de Ingeniería Agronómica, mi eterna gratitud a los Ingenieros David Caballero y Fernando Romero, Director y Miembro del tribunal de tesis, por el aporte de sus conocimientos en esta investigación.

A los Ingenieros Xavier Cuesta, Jorge Rivadeneira y Zoila Yánez del Programa Nacional de Raíces y Tubérculos rubro papa del Instituto Nacional Autónomo de Investigaciones Agropecuarias (INIAP), por el apoyo facilitado y sobre todo por la valiosa contribución en el contexto de la investigación.

A mis compañeros de la Unidad Técnica de Chimborazo y a los agricultores de las comunidades de Tiazo Bajo, Pusniag San Patricio y Santa lucia, quienes han contribuido de cerca en la fase de realización de este trabajo.

DEDICATORIA

De todo corazón, este trabajo esta dedicado al señor Jesús por otorgarme su fuerza y bondad infinita; a mis padres Alberto y Clarita por su apoyo incondicional y sobre todo por enseñarme a amar la vida y a querer vivirla plenamente, a mi hermana Marlene por compartir los momentos más importantes de mi vida.

TABLA DE CONTENIDOS

Lista de Cuadros	vi
Lista de Gráficos	X
Lista de Anexos	xi

2

		CAPITULO	Página
2	I	TITULO	1
	II	INTRODUCCION	1
	III	REVISION DE LITERATURA	3
	IV	MATERIALES Y METODOS	12
	V	RESULTADOS Y DISCUSION	24
	VI	CONCLUSIONES	82
	VII	RECOMENDACIONES	84
	VIII	RESUMEN	85
	IX	SUMMARY	86
	X	BIBLIOGRAFIA	87
	XI	ANEXOS	91

LISTA DE CUADROS

NUMERO	CONTENIDO	Página
1	Características de los sitios experimentales del estudio: Evaluación y selección agronómica de 40 genotipos de papa (<i>Solanum tuberosum</i> L.) para tolerancia a estrés hídrico en la provincia de Chimborazo, 2008	13
2	Análisis físico-químico de los suelos del estudio: Evaluación y selección agronómica de 40 genotipos de papa (<i>Solanum tuberosum</i> L.) para tolerancia a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	13
3	Genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	15
4	Esquema del análisis de varianza de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	16
5	Características de las parcelas experimentales	16
6	Escala para determinar la cobertura de suelo de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	18
7	Escala para determinar el vigor de planta de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	18
8	Escala para determinar los días a la floración de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	19
9	Escala para determinar los días a la senescencia de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	19
10	Análisis de varianza del porcentaje de emergencia (%) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	25
11	Prueba de Tukey al 5% de significación para el porcentaje de emergencia (%) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	262

12	Análisis de varianza de tres evaluaciones de la altura de planta (cm) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	30
13	Prueba de Tukey al 5% de significación para la altura de planta (cm) a los 45 días después de la siembra de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	31
14	Prueba de Tukey al 5% de significación para la altura de planta (cm) a los 75 días después de la siembra de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	32
15	Prueba de Tukey al 5% de significación para la altura de planta (cm) a los 90 días después de la siembra de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	33
16	Análisis de varianza de cuatro evaluaciones de cobertura de suelo de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	39
17	Prueba de Tukey al 5% de significación para la cobertura de suelo a los 75 días después de la siembra de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	40
18	Prueba de Tukey al 5% de significación para la cobertura de suelo a los 90 días después de la siembra de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	41
19	Prueba de Tukey al 5% de significación para la cobertura de suelo a los 105 días después de la siembra de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	42
20	Análisis de varianza del vigor de planta de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	43
21	Análisis de varianza de los días a la floración (dds) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	44
22	Prueba de Tukey al 5% de significación para los días a la floración (dds) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	45

23	Análisis de varianza de los días a la senescencia (dds) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	46
24	Prueba de Tukey al 5% de significación para el número de días a la senescencia (dds) de genotipos de papa sometidos a estrés hídrico en Pusniag San Patricio provincia de Chimborazo, 2008	47
25	Análisis de varianza del número de plantas cosechadas de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	49
26	Prueba de Tukey al 5% de significación para el número de plantas cosechadas de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	50
27	Análisis de varianza del número de tubérculos por planta de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	51
28	Prueba de Tukey al 5% de significación para el número de tubérculos por planta de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	52
29	Análisis de varianza del rendimiento planta (Kg) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	54
30	Prueba de Tukey al 5% de significación para el rendimiento planta de genotipos de papa (Kg) sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	55
31	Análisis de varianza del rendimiento por categorías (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	56
32	Prueba de Tukey al 5% de significación para el rendimiento categoría 1 (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	57
33	Prueba de Tukey al 5% de significación para el rendimiento categoría 2 (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	60

34	Prueba de Tukey al 5% de significación para el rendimiento categoría 3 (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	61
35	Análisis de varianza del rendimiento total (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	66
36	Prueba de Tukey al 5% de significación para el rendimiento total (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	67
37	Análisis de varianza del rendimiento por hectárea (Kg) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	68
38	Prueba de Tukey al 5% de significación para el rendimiento por hectárea (Kg) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	69
39	Puntajes de calificación para la selección de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008	74
40	Prueba de probabilidad para la selección de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo 2008	75

LISTA DE GRÁFICOS

NUMERO	CONTENIDO	Página
1	Curva de desarrollo de cinco genotipos de papa sometidos a estrés hídrico en la localidad de Tiazo Bajo, provincia de Chimborazo	34
2	Curva de desarrollo de cuatro genotipos de papa sometidos a estrés hídrico en la localidad de Pusniag San Patricio, provincia de Chimborazo	35
3	Curva de desarrollo de cinco genotipos de papa sometidos a estrés hídrico en la localidad de Santa Lucia, provincia de Chimborazo	36
4	Rendimiento por categorías de genotipos de papas sometidos a estrés hídrico en la localidad de Tiazo Bajo, provincia de Chimborazo	62
5	Rendimiento por categorías de genotipos de papas sometidos a estrés hídrico en la localidad de Pusniag San Patricio, provincia de Chimborazo	63
6	Rendimiento por categorías de genotipos de papas sometidos a estrés hídrico en la localidad de Santa Lucia, provincia de Chimborazo	64
7	Porcentaje de materia seca de genotipos de papa sometidos a estrés hídrico en la localidad de Tiazo Bajo, provincia de Chimborazo	71
8	Porcentaje de materia seca de genotipos de papa sometidos a estrés hídrico en la localidad de Pusniag San Patricio, provincia de Chimborazo	72
9	Porcentaje de materia seca de genotipos de papa sometidos a estrés hídrico en la localidad de Santa Lucia, provincia de Chimborazo	73
10	Régimen de precipitación en la localidad de Tiazo Bajo, provincia de Chimborazo	78
11	Régimen de precipitación en la localidad de Pusniag San Patricio, provincia de Chimborazo	79
12	Régimen de precipitación en la localidad de Santa Lucia, provincia de Chimborazo	80

LISTA DE ANEXOS

NUMERO	CONTENIDO	Página
1	Esquema de la distribución de los tratamientos en el campo	91
2	Datos registrados de la humedad del suelo (bares) durante el ciclo de cultivo de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo	94
3	Datos registrados del porcentaje de emergencia (%) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo	95
4	Datos registrados de la altura de planta (cm) a los 90 días de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo	98
5	Datos registrados de la cobertura de suelo(escala) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo	101
6	Datos registrados del vigor de planta (escala) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo	104
7	Datos registrados de los días a la floración (dds) de genotipos de papa sometidos a estrés hídrico en Tiazo Bajo.	107
8	Datos registrados de los días a la senescencia de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo	108
9	Datos registrados del número de plantas cosechadas de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo	111
10	Datos registrados del número de tubérculos por planta de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo	114
11	Datos registrados del rendimiento por planta (Kg) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo	117

12	Datos registrados del rendimiento categoría l (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo	120
13	Datos registrados del rendimiento categoría 2 (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo	123
14	Datos registrados del rendimiento categoría 3 (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo	126
15	Datos registrados del rendimiento total (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo	129
16	Datos registrados del rendimiento por hectárea (Kg) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo	132
17	Datos registrados del porcentaje de materia seca del tubérculo (%) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo	135

I. EVALUACIÓN Y SELECCIÓN AGRONÓMICA DE CUARENTA GENOTIPOS DE PAPA (Solanum tuberosum L.) PARA TOLERANCIA A ESTRÉS HÍDRICO EN TRES LOCALIDADES DE LA PROVINCIA DE CHIMBORAZO

II. INTRODUCCIÓN

En el ámbito agrícola, el estrés hídrico es considerado como el déficit de agua en el interior de la planta, como consecuencia de un desequilibrio entre el proceso de transpiración y la disponibilidad de agua en el suelo (BOOK, 1998).

Un déficit hídrico de corta duración provoca un marchitamiento paulatino del vegetal, lo que influye negativamente en la producción de los cultivos, porque reduce la cantidad de follaje productivo, disminuye la tasa del proceso fotosintético y acorta los periodos vegetativos. Mientras, que un estrés hídrico prolongado induce el marchitamiento del vegetal con características irreversibles en sus funciones vitales (OCEANO, 2002).

El crecimiento y rendimiento de las plantas están relacionados con las condiciones climáticas de cada zona. En este sentido, si ocurren alteraciones en el medio ambiente las plantas desarrollan una serie de estímulos denominados estresores con sistemas orgánicos complejos que intercambian materia y energía. Los factores estresantes pueden ser las variaciones de la temperatura, escasez de agua, cambios en la intensidad lumínica, carencia de nutrientes, salinidad excesiva, etc. (PRADO, 1995).

La papa al igual que otros cultivos, es una especie sensible a la sequía, para su desarrollo requiere de agua en todos sus estadios de vida, sobre todo en la formación de los tubérculos. Sin embargo, por constituirse en un cultivo de gran expansión, los investigadores han identificado genotipos con resistencia a la sequía. En estas condiciones, la interrelación genotipo por medioambiente es alta. (GOMEZ, 1988).

El presente estudio, se basará en la evaluación de clones avanzados del programa de mejoramiento del INIAP y clones introducidos del Centro Internacional de la Papa (CIP) para exponerlos a lugares con meses ecológicamente secos, como: Pusniag, Tiazo Bajo y Santa Lucia

de la provincia de Chimborazo y medir su comportamiento a través de los componentes de resistencia.

A. JUSTIFICACIÓN

El cultivo de papa se ha extendido significativamente en los últimos años debido a la creciente demanda de una población numerosa, lo que ha obligado que instituciones como el INIAP desarrolle nuevas variedades de papa.

El estrés hídrico, provocado por la sequía, limita el crecimiento y la productividad de los cultivos. En Chimborazo, la mayor superficie del cultivo de papa se realiza considerando los meses de pluviosidad, siendo los meses de sequía, los factores que condicionan la época de siembra de este tubérculo.

Por otro lado, los desequilibrios climáticos del globo terrestre, determinan ecosistemas cada vez más frágiles. Bajo esta premisa, las condiciones climáticas de Chimborazo son más susceptibles a la sequedad, situación que propicia el estudio y la búsqueda de genotipos de papa con tolerancia al estrés hídrico, que podría producir variedades que permitan asegurar el entorno alimenticio de la población.

B. OBJETIVOS

- 1. Determinar el comportamiento agronómico de cuarenta genotipos de papa en condiciones de estrés hídrico.
- 2. Identificar y seleccionar los genotipos de papa que presenten tolerancia a la deficiencia hídrica.

III. REVISION DE LITERATURA

A. GENERALIDADES

La falta de agua limita la productividad de los ecosistemas naturales y agrícolas. En general, se produce sequía o escasez de agua cuando el suministro es restringido por falta de lluvias o deficiencias, o bien porque la capacidad de almacenamiento del suelo no es buena (OCEANO, 2002). Por lo mismo, se debe tener en cuenta las bases de desarrollo del cultivo de papa para determinar en que momento y como afecta la insuficiencia del agua en el normal desarrollo de las plantas. Al respecto ALDABE y DOGLIOTTI (2000), distinguen tres etapas de desarrollo del cultivo:

La primera que va desde la siembra hasta el inicio de la tuberización. En los primeros estadios de desarrollo, la planta depende de las reservas acumuladas del tubérculo que en condiciones óptimas de temperatura produce una rápida expansión del área foliar pudiendo llegar a cubrir totalmente el suelo a los 40 o 45 días después de la emergencia. En esta etapa, los asimilados se destinan al crecimiento de hojas, tallos, raíces y estolones.

La segunda etapa va desde el inicio de la tuberización hasta el fin del crecimiento del follaje, en esta etapa, los asimilados disponibles se destinan al desarrollo de los tubérculos en detrimento del crecimiento del follaje, deteniéndose la ramificación y la aparición de hojas nuevas y al final de la etapa cesa totalmente el crecimiento del follaje.

La tercera etapa va desde el fin del crecimiento del follaje hasta el fin del crecimiento del cultivo que ocurre por la senescencia del follaje. El área foliar en esta etapa empieza a disminuir en su conjunto porque va bajando gradualmente su eficiencia fotosintética hasta que ésta no es suficiente para mantener el crecimiento de los tubérculos. En esta etapa, los asimilados disponibles se destinan al crecimiento de los tubérculos.

Por otro lado, la presencia de agua es vital para el crecimiento de las plantas, siendo el reactivo principal para la formación de los azúcares a través del proceso de fotosíntesis. Es el medio de transporte de minerales desde el suelo para la turgencia de las células y por consiguiente de la planta, también regula la transpiración y la temperatura de las hojas (KALAZICH, 1993).

CALISPA et al. (2000), considera que la lluvia y el riego constituyen los aportes de agua para las plantas, pero poco beneficiaría si el suelo no pudiera retenerla. Además, menciona que el almacenamiento del agua depende de la textura, estructura, profundidad, porosidad, contenido de arcilla y materia orgánica del suelo. Según BOOK (1998), en el suelo se pueden distinguir tres fases de permanencia del agua:

- 1. Suelo a saturación, donde el agua ocupa todos los espacios porosos y no es conveniente para las plantas, por la mala aireación que genera al sistema radicular.
- 2. Suelo a capacidad de campo, sucede cuando se ha perdido el agua gravitacional, el agua retenida en los microporos es aprovechada por los vegetales.
- 3. Suelo en punto de marchitez permanente, que no es sinónimo de ausencia de agua en el suelo, sino que la planta no puede aprovechar de ésta, porque se halla fuertemente encerrada en las moléculas de las partículas del suelo.

SALISBURY y ROSS (1994), manifiestan que el ambiente estresante, es el conjunto de la interrelación de algunos elementos climáticos y de varias características del suelo. Según HANSON y HITZE (1982), si un vegetal se somete a un factor de estrés, el organismo crea una reacción de alarma como consecuencia de la alteración de algunas funciones metabólicas, provocando una respuesta, luego la planta presentará una fase de resistencia, en la cual se adaptará al factor estresante retornando a su función normal. Si el factor de estrés continúa por un largo tiempo, la planta llegara a un estado de agotamiento con la muerte del vegetal.

B. REQUERIMIENTO HÍDRICO DEL CULTIVO DE PAPA

HAVERKORT, (1986), señala que un buen cultivo de papa requiere en promedio de 600 a 800 milímetros de agua dependiendo de las condiciones climáticas y de la duración del periodo vegetativo, en tanto que JERÉZ y SIMPFENDOFER (2000), manifiestan que las necesidades de agua de la papa varían de 600 a 700 milímetros; además, mencionan que precipitaciones inferiores a 10 milímetros no son efectivas para el cultivo ya que estas quedan retenidas en las hojas del cultivo y se evaporan. DOOREMBOS y KASSAN (1986), señalan que para lograr altos rendimientos en variedades de papa cuyo ciclo de cultivo sea de 120 a 150 días, los requerimientos hídricos son de 500 a 700 mm por temporada dependiendo del clima.

C. ESTRÉS HÍDRICO

OCEANO (2002), al referirse al estrés hídrico menciona que la mayor parte del agua absorbida por las raíces de la planta es evaporada por las hojas en el proceso de transpiración, que está relacionada con la temperatura del ambiente. Cuando la intensidad de transpiración es superior a la absorción del agua radicular, se produce un déficit de agua en el interior de la planta.

CULTURAL (2002), define al estrés hídrico como el conjunto de síntomas que revelan la alteración del funcionamiento normal del organismo vegetal y distingue dos tipos de estrés:

- 1. Déficit hídrico moderado, que sucede cuando la absorción de agua no es suficiente para compensar las pérdidas por transpiración y,
- 2. Déficit hídrico prolongado que ocasiona síntomas evidentes de falta de agua.

OCEANO (2002), considera que la sensibilidad de las plantas al estrés hídrico depende de la fisiología y la gravedad del daño está relacionada con las etapas de desarrollo sensibles, como la germinación, cuajado de frutos y tuberización.

Según LEVITT (1967), el estrés por déficit hídrico en términos biológicos puede ser conceptualizado de dos tipos: elástico y plástico. El tipo elástico esta determinado por la disminución de la fotosíntesis como consecuencia del cierre temporal de los estomas de las hojas ocasionadas por la baja disponibilidad hídrica, situación que tiende a revertirse cuando se normaliza el suministro de agua, en este estado los estomas recuperan la función de intercambiar los gases, promoviendo la turgencia de las células con la consiguiente normalización de la actividad fotosintética. Si por lo contrario la función de las estomas no recupera su normalidad, se dice que la deformación es de tipo plástico, llegando a la abscisión de las hojas.

Los cambios en el balance hídrico celular constituyen una de las causas principales de las alteraciones en la fotosíntesis y en el crecimiento (HANSON y HITZE, 1982). La disminución de la fotosíntesis se atribuye al cierre estomático (KRAMER, 1983).

La absorción del CO₂ en la fotosíntesis implica que las plantas expongan sus hojas a una atmósfera seca y en consecuencia sufren una pérdida de agua por evaporación. Una pérdida de agua muy grande conduce a la deshidratación del vegetal. Así, las plantas con resistencia al estrés hídrico han desarrollado hojas con una cutícula relativamente impermeable en la epidermis y válvulas operadas con turgencia. La epidermis con sus estomas no solo reduce la tasa de CO₂ y vapor de agua, sino que crea un medio para controlar la asimilación y la transpiración a través de los poros estomáticos. De esta forma los estomas desempeñan un papel crucial en el control del equilibrio entre la pérdida de agua y la producción de biomasa. (BODLAENDER, 1998).

La producción de la biomasa es proporcional al abastecimiento y uso del agua de una planta. En consecuencia, la medición de la condición hídrica de la planta junto con la condición hídrica del suelo, son importantes para el entendimiento de la producción de la biomasa.

BEEKMAN y BOUMA (1997), al referirse a la condición hídrica de las plantas manifiesta que la cantidad de agua utilizada en las reacciones de la fotosíntesis es pequeña en comparación con la transpirada por la planta en cualquier tiempo. Algunos reportes mencionan también, que la tasa de fotosíntesis de un cultivo disminuye con la escasez del agua debido al cierre de los estomas y a los efectos de los déficit hídricos en los procesos de los cloroplastos. Además, manifiesta que el descenso de la presión de turgencia de la planta se traducirá en la disminución del crecimiento de las células, por lo tanto la tasa de elongación de los órganos del vegetal se ven afectados y permitirá descender el proceso de fotosíntesis, es decir que la disminución de la síntesis de la pared celular es correlativo a la síntesis de las proteínas, lo que implica la disminución de la enzima nitrato reductasa con el aumento del ácido abcísico que actuará en la apertura y cierre de los estomas, por lo que la planta tendrá dificultad para captar el CO₂, disminuyendo el proceso fotosintético. La eficiencia fotosintética viene limitada por dos mecanismos: El incremento del cerrado de los estomas e incremento de la resistencia mesofílica.

OCEANO (2002), anota que los efectos del estrés hídrico en las plantas se manifiestan de las siguientes formas:

- Reducción del tamaño de la planta.
- Retraso en la germinación.
- Reduce las tasas de fotosíntesis.

- Alteración del metabolismo de los carbohidratos y del nitrógeno y alteraciones de las síntesis de hormonas vegetales.
- Sensibilidad a plagas y enfermedades.
- Reducción de la producción.

Por investigaciones de campo (MARTINEZ y MORENO, 1992), se tiene la seguridad de dos periodos críticos de necesidad de agua en el cultivo de la papa; después de la emergencia y durante la tuberización. Estos periodos corresponden a las fases de crecimiento activo o división celular donde ocurren grandes cambios de algún componente de la producción de la planta (JARA, 1999).

La tuberización en tanto se considera como una de las etapas más importantes en el ciclo biológico de la papa. Se inicia cuando los tubérculos empiezan a engrosarse en los estolones producto del transporte de asimilados desde las hojas, abarcando un periodo entre las 5 a 7 semanas después de la siembra, un déficit de agua durante esta etapa tiene el mayor efecto negativo sobre el rendimiento (KING y STARK, 2000).

D. RESISTENCIA

Para reducir el daño provocado por los agentes abióticos, las plantas emplean diversos mecanismos de defensa. Por investigaciones realizadas por MAY y MILTHORPE (1962), manifiestan que la tolerancia a la sequía de las plantas se efectúa reduciendo el agua traspirada, incrementando la resistencia estomacal que consiste en un mecanismo fisiológico por el cual la planta limita la pérdida de agua, manteniendo la velocidad de absorción del agua, o mediante el control estomático. La tolerancia a la sequía soportando un bajo potencial hídrico es una característica inherente a la planta la cual, a pesar de tener un bajo potencial hídrico, mantiene turgencia y activo los procesos de crecimiento, desarrollo y producción debido a la acumulación activa de solutos acompañada de una mayor elasticidad de las membranas.

JACOBSEN et al (1968), determina tres mecanismos de defensa de las plantas frente al déficit de humedad: evasión, tolerancia y resistencia. Los mecanismos de evasión le permiten eludir los efectos de la sequía debido a las características propias de una especie o cultivar, tales como la

maduración más temprana, mayor exploración de agua por la extensión rápida de sus raíces que le permiten escapar de las épocas secas. Los mecanismos de tolerancia le permiten a la planta soportar el déficit de agua en los niveles avanzados de deshidratación, conservando su facultad de recuperación debido a los cambios en el comportamiento temporal de la planta ya sea por una menor pérdida de agua por los estomas o aumentando la capacidad de absorción de la humedad del suelo y el ambiente. Los mecanismos de resistencia de la planta le permiten soportar el déficit de humedad debido a los mecanismos controlados por los genes involucrados directamente en el proceso de la síntesis de las proteínas y almidones o por genes acondicionadores que dan a la planta características especiales de resistencia a la escasez de agua, estas características pueden transmitirse a sus descendientes.

La resistencia genética está en función de su composición genética y a la interacción con la sequía. Por lo tanto, existen genes cuyos efectos se manifiestan con la sequía (JACOBSEN y MUJICA, 1994).

La papa es una especie tetraploide altamente heterocigótico y un gran número de características pueden ser combinadas y seleccionadas. Sin embargo, estos genes no han podido ser identificados individualmente por tener una expresión cuantitativa que dificulta la selección (UMAEDERUS et al, 1983).

El estrés hídrico produce alteraciones a nivel postranscripcional que afecta los mARN y la translocación, lo que hace suponer la existencia de una secuencia de interacciones que funcionarían en forma asociada a nivel de la expresión de los genes (Mc-CUE y HANSON, 1990) reportan que los mecanismos de adaptación de ciertas plantas a la escasez del agua incluyen la síntesis de ciertos metabolitos como: los aminoácidos, aminas cuaternarias, azúcares solubles, polides, poliaminas, compuestos de sulfonio, fructanos y pigmentos.

GOMEZ et al. (1998), mencionan que el ácido abscísico cumple un rol importante en la expansión de los genes que regulan la síntesis de las distintas proteínas que aparecen bajo situaciones de estrés.

ELERGONOMISTA (2006), al referirse al mecanismo de resistencia al estrés por déficit hídrico, manifiesta que existe una relación directa entre la presión osmótica del suelo y la presión de turgencia de la planta, lo que implica que al disminuir las dos presiones, el vegetal mantendrá turgentes sus células en condiciones de sequedad del suelo.

F. ANTECEDENTES DE CLONES RESISTENTES AL ESTRÉS HÍDRICO

Por investigaciones de ROSSOUN y WAGHMARAE (1995), acerca de los efectos de la sequía en el desarrollo y rendimiento de dos cultivares en Sudáfrica, evidenciaron que las variedades de papa difieren en su habilidad para soportar la sequía, plantas con una utilidad eficaz del agua presentan resistencia a la sequedad y por consiguiente tuvieron un buen rendimiento de biomasa. Sin embargo, estos investigadores determinaron que el rendimiento del tubérculo fue limitado.

Los mismos estudiosos manifiestan que el crecimiento rápido de las plantas en sus primeras fases con un abastecimiento óptimo de agua incide en la resistencia de la sequedad ya que estos vegetales desarrollan mecanismos de protección contra este fenómeno.

En 1983 y 1984 se realizó un ensayo en relación a la respuesta y componentes del rendimiento de ocho genotipos de papa sometidos al estrés hídrico. Los resultados revelaron que los ocho genotipos tuvieron diferencias marcadas a la tolerancia del estrés hídrico. Así, en cuatro variedades de papa, la sequía tuvo más influencia en el proceso del inicio de la tuberización; mientras que el número de tallos por semilla no fue afectado. Los resultados para las cuatro variedades restantes indicaron que el desarrollo de los tallos juega un papel importante para la respuesta al estrés hídrico (LYNCH y TAI, 1989).

Estudios realizados por VAN LOON (1998), determinan que el estrés hídrico en el cultivo de la papa afecta a los siguientes procesos:

- Reduce la cantidad de follaje productivo.
- Disminuye la tasa de fotosíntesis por área foliar y
- Acorta el periodo vegetativo.

Además, considera que las condiciones de sequía retardan e inhibe la germinación de la semilla, acortando el periodo vegetativo del cultivo. El mismo autor, manifiesta que el insuficiente suministro de agua entre la fase de germinación y la acumulación de las reservas del tubérculo puede reducir el tamaño del follaje. Además, reporta que las plantas con déficit de agua cierran sus estomas con la disminución de la tasa de fotosíntesis que involucra la disminución del rendimiento.

NICHOLAS y RUF (1967), manifiestan que un déficit hídrico en variedades de tubérculo largo provocó defectos en su forma. Por otra parte se encontró que la escasez de agua durante la formación del estolón o la iniciación del tubérculo puede reducir la cantidad de los mismos, en tanto que un déficit de humedad durante la etapa de llenado puede producir una disminución del tamaño de éstos.

La escasez de agua durante la etapa de floración hasta la madurez del cultivo puede ocasionar que el follaje quite agua a los tubérculos los que pueden perder peso volviéndose flácidos (HAVERKORT, 1986).

Según KING y STARK (2000), hacia la cosecha las plantas comienzan a morir y a perder las hojas, los tubérculos disminuyen considerablemente su tasa de crecimiento como resultado de la baja en la actividad fotosintética en tanto que el llenado final del tubérculo es la resultante del desplazamiento de los materiales fotosintéticos restantes en tallos y raíces.

Según los estudios realizados por VAN LOON (1998) con seis variedades de papa, encontró buenos rendimientos de tubérculo con un suministro de agua del 50%; mientras que el agotamiento del agua durante el período vegetativo de más de dicho porcentaje se tradujo en menores rendimientos. Afirma que la presencia del follaje en niveles bajos de humedad no es un indicador del rendimiento potencial y añade que el crecimiento pequeño del follaje acumula materia seca en los tubérculos.

Al referirse a la materia seca, el mismo autor manifiesta que el contenido de materia seca en los tubérculos no es afectado cuando hay condiciones severas de estrés hídrico, plantas moderadamente estresadas y sin estrés, contenían la misma cantidad de materia seca.

Según CLARK y MECAIGH (1982), existen diferencias en el proceso de transpiración entre las variedades experimentadas a déficit hídrico. Algunas variedades pierden el agua más rápidamente que otras. El grado de deshidratación depende de la evaporación y de la magnitud de la resistencia de la relación tierra – planta – atmósfera. Los estomas intervienen en el proceso de la evapotranspiración, el cierre de este órgano (estoma) puede ser inducido por el déficit de agua provocando el marchitamiento con declives del crecimiento del vegetal; añade que la apertura y el cierre de los estomas dependen de los factores como intensidad de la radiación solar, la concentración de dióxido de carbono y humedad relativa. (VOS, s/año).

Según, BODLAENDER (1998), el efecto de la sequía reduce la transpiración de las plantas y la temperatura foliar se incrementa. En clones de papa resistentes a la sequía la temperatura foliar es menor que la temperatura del aire, lo que indica que la transpiración continúa durante periodos de severa sequía, mientras que para los clones sensibles la temperatura foliar fue mas alta que la temperatura del aire.

El mismo autor manifiesta que el estrés hídrico reduce el proceso de fotosíntesis, incluso en plantas que no mostraron señales de marchitamiento y el proceso es definitivo en las hojas marchitas ya que la sequedad disminuye el potencial del agua en las hojas. Además, observó un cierre parcial de los estomas antes de la reducción de la fotosíntesis.

Al referirse a las variaciones genotípicas en ambientes de altas temperaturas y déficit hídrico BEEKMAN y BOUMA (1997), manifiestan que la combinación de ambientes con altas temperaturas y déficit severo de agua incrementa la pérdida del rendimiento de las variedades de papa. Altas temperaturas aceleran el desarrollo vegetativo y retrasan los periodos de maduración. Sin embargo, en un grupo de variedad de papa tempranas expuestas a altas temperaturas las plantas tuberizaron pero con bajos rendimientos.

IV. MATERIALES Y MÉTODOS

A. MATERIALES

1. Insumos

Tubérculo-semilla, fertilizantes (Formulaciones: 13-32-11-3-4 y 15-17-19-3-4-0.3, Urea, Sulfato, de amonio, Nitrofoska y Alga 2000), fungicidas e insecticidas.

2. Herramientas y Equipos

Herramientas de labranza, bomba de mochila, sensores Watch dogs y Hobos, tensiómetros, GPS, altímetro, balanza, flexómetro, cámara fotográfica, estacas, piola, letreros, etiquetas, mallas, fundas, costales, libro de campo, computadora, marcadores y transporte.

B. MÉTODOS

1. Características del campo experimental

La presente investigación se realizó en tres localidades diferentes de la provincia de Chimborazo. Las características de localización, ubicación geográfica y las condiciones climáticas de cada sitio experimental se detallan en el **Cuadro1**.

2. Características del suelo

Los resultados del análisis físico-químico del suelo realizado por el departamento de Suelos y Aguas de la Estación Experimental del INIAP de las tres localidades en estudio se presentan en el **Cuadro 2**.

Cuadro 1. Características de los sitios experimentales del estudio: Evaluación y selección agronómica de 40 genotipos de papa (*Solanum tuberosum* L.) para tolerancia a estrés hídrico en la provincia de Chimborazo, 2008.

CARACTERÍSTICA	LOCALIDAD 1	LOCALIDAD 2	LOCALIDAD 3
a. Localización			
Lugar	Tiazo Bajo	Pusniag San Patricio	Santa lucia
Parroquia	San Luís	Santa Fe de Galán	San Andrés
Cantón	Riobamba	Guano	Guano
b. Ubicación geográfica ¹			
Altitud	2732msnm	3177msnm	3550msnm
Latitud	01° 42′ 19″ S	01° 36′ 14″ S	01° 35' 22" S
Longitud	78° 37' 34" W	78° 34' 06" W	78° 46' 37" W
c. Condiciones climáticas ²			
Temperatura	13.4°C	9.9°C	9.5°C
Precipitación	309.0mm	545.8mm	217.0mm
Humedad relativa	67.51%	86.37%	80.33%

Cuadro 2. Análisis físico-químico de los suelos del estudio: Evaluación y selección agronómica de 40 genotipos de papa (*Solanum tuberosum* L.) para tolerancia a estrés hídrico en la provincia de Chimborazo, 2008.

		VALOR E INTERPRETACIÓN POR LOCALIDAD			
NUTRIENTE	UNIDAD	Tiazo Bajo	Pusniag San Patricio	Santa Lucía	
Nitrógeno	ppm	19.00 Bajo	26.00 Bajo	37.00 Medio	
Fósforo	ppm	270.00 Alto	17.00 Medio	30.00 Alto	
Potasio	meq/100 ml	0.82 Alto	0.27 Medio	0.29 Medio	
Azufre	ppm	7.00 Bajo	4.50 Bajo	9.40 Bajo	
Calcio	meq/100 ml	11.10 Alto	6.20 Alto	5.00 Medio	
Magnesio	meq/100 ml	3.10 Alto	1.60 Alto	0.88 Medio	
Materia orgánica	%	1.10 Bajo	1.70 Bajo	0.85 Bajo	
рН		7.30 Neutro	5.5 Lig. Acido	5.6 Lig. Acido	
Textura		Franco arenoso	Arenoso	Arenoso	

¹Datos tomados con GPS y altímetro, 2008. ²Datos registrados con Watch dogs y Hobos durante el ensayo y tomados de la Estación de Meteorología de la ESPOCH, 2008.

3. Especificaciones del experimento

a. Variables en estudio

Se estudiaron las siguientes variables: porcentaje de emergencia, altura de planta, cobertura de suelo, vigor de planta, días a la floración, días a la senescencia, rendimientos y sus componentes, materia seca, comportamientos de la precipitación y humedad del suelo.

b. Tratamientos

Se estudiaron 40 tratamientos: 33 clones y 7 variedades (testigos) de papa provenientes del programa de mejoramiento del INIAP y del Centro Internacional de la Papa (CIP), como se indica en el **Cuadro 3**. Sin embargo, a pesar de que los genotipos habían sido seleccionados por sus grandes aptitudes agronómicas, no se obtuvo respuesta del clon I20 en las tres localidades, situación similar ocurrió con el clon I22 en Santa Lucia, debido al bajo vigor del tubérculo semilla de éstos clones, mientras que en Santa Lucia y Tiazo Bajo no se consideró a la variedad Gabriela por la incompatibilidad de las características fenotípicas del tubérculo semilla sembrado.

c. Diseño experimental

Se utilizó un diseño de Bloques Completos al Azar (BCA) con 40 tratamientos y tres repeticiones, cada sitio de evaluación fue considerado como una replica. Por las circunstancias señaladas anteriormente, el análisis de varianza se realizó considerando 39 tratamientos en Pusniag San Patricio, 38 tratamientos en Tiazo Bajo y 37 tratamientos en Santa Lucia (Cuadro 4).

d. Características de las parcelas experimentales

Las características de los sitios experimentales se encuentran en el **Cuadro 5**. Las parcelas se distribuyeron al azar en cada repetición y su disposición en el campo se presenta en el **Anexo 1**.

Cuadro 3. Genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

TRATAMIENTO	GENOTIPO	DESCRIPCION
T1	99-99-2	Clon (INIAP)
T2	99-97-4	Clon (INIAP)
T3	99-78-5	Clon (INIAP)
T4	99-66-6	Clon (INIAP)
T5	99-66-4	Clon (INIAP)
T6	99-38-5	Con (INIAP)
T7	99-32-1	Clon (INIAP)
T8	98-14-8	Clon (INIAP)
T9	98-11-6	Clon (INIAP)
T10	97-1-10	Clon (INIAP)
T11	97-1-8	Clon (INIAP)
T12	10-10-97	Clon (INIAP)
T13	05-32-2	Clon (INIAP)
T14	05-32-1	Clon (INIAP)
T15	05-28-4	Clon (INIAP)
T16	05-19-4	Clon (INIAP)
T17	05-19-1	Clon (INIAP)
T18	05-16-3	Clon (INIAP)
T19	05-8-2	Clon (INIAP)
T20	04-31-1	Clon (INIAP)
T21	04-24-1	Clon (INIAP)
T22	04-12-1	Clon (INIAP)
T23	04-6-1	Clon (INIAP)
T24	04-2-1	Clon (INIAP)
T25	04-1-1	Clon (INIAP)
T26	01-65-20	Clon (INIAP)
T27	B21	Clon (CIP)
T28	B23	Clon (CIP)
T29	B1	Clon (CIP)
T30	I20	Clon (CIP) ³
T31	I22	Clon (CIP) ⁴
T32	M9	Clon (CIP)
T33	R2	Clon (CIP)
T34	BRENDA	Variedad testigo (CIP)
T35	I-CECILIA	Variedad testigo (INIAP)
T36	I-ESTELA	Variedad testigo (INIAP)
T37	I-FRIPAPA	Variedad testigo(INIAP)
T38	I-GABRIELA	Variedad testigo(INIAP) ⁵
T39	I-PAN	Variedad testigo(INIAP)
T40	SUPERCHOLA	Variedad testigo (Bastidas-Carchi)

Genotipos sin respuesta: ³en Tiazo Bajo, Pusniag y Santa Lucia; ⁴en Santa Lucia; ⁵en Tiazo Bajo y Santa Lucia.

Cuadro 4. Esquema del análisis de varianza de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

	LOCALIDADES		
FUENTE DE		Pusniag San	
VARIACIÓN	Tiazo Bajo	Patricio	Santa Lucia
	GRA	ADOS DE LIBERTA	ΔD
Bloques	2	2	2
Tratamientos	37	38	36
Error	74	76	72
Total	113	116	110

Cuadro 5. Características de las parcelas experimentales.

CARACTERISTICA	MEDIDA
Numero de unidades experimentales	120
Área total de experimento	1480m ²
Área neta del experimento	1080m ²
Distancia entre repeticiones	1 m
Características de la parcela experimental	
Número de surcos	3
Longitud del surco	3 m
Distancia entre surcos	1 m
Distancia entre plantas	0.30 m
Numero de plantas	30
Numero de plantas evaluadas	6
Área neta	1.8m
Área total	9m ²
Forma de la parcela	cuadrada

e. Análisis funcional

Con los resultados obtenidos se calculo el coeficiente de variación y la prueba de Tukey al 5% para la separación de medias.

4. Datos registrados y método de evaluación

a. Elementos Climáticos

En los tres sitios del ensayo se ubicaron los siguientes sensores: watch dog para medir la precipitación, hobo para registrar la temperatura y humedad relativa, y el tensiómetro para medir la humedad del suelo.

b. Porcentaje de emergencia

Se evaluó a los 40 días después de la siembra, contando el número las plantas emergidas de la parcela total y se relacionó con el número de tubérculos sembrados y su valor se expresó en porcentaje.

c. Altura de planta

La altura se midió en centímetros desde la base del suelo hasta el ápice de la planta a los 45, 75 y 90 días después de la siembra.

d. Cobertura del suelo

Se realizó una estimación visual de las plantas de la parcela neta a los 45, 75, 90 y 105 días después de la siembra, para lo cual se utilizó una escala de 1 a 3 (INIAP-PNRT-papa, 2006).

Cuadro 6. Escala para determinar la cobertura de suelo de los genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

VALOR	CALIFICACION	DESCRIPCIÓN
1	Excelente	El follaje cubre entre plantas y surcos
2	Muy buena	El follaje cubre entre plantas
3	Buena	El follaje no cubre entre plantas ni entre surcos

e. Vigor de planta

Se evaluó a los 60 días después de la siembra, considerando los aspectos generales de las plantas como: sanidad, cobertura de suelo y altura de planta. Para calificar esta variable se utilizó la escala de 1 a 3 (INIAP-PNRT-papa, 2006).

Cuadro 7. Escala para determinar el vigor de planta de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

VALOR	CALIFICACIÒ	N DESCRIPCION
1	Poco vigor	La planta presenta poca frondosidad y no cubre el surco
2	Medio	La planta presenta media frondosidad y cubre la mitad del surco
3	Vigorosa	La planta presenta frondosidad y cubre el surco

f. Días a la floración

Se contabilizó los días transcurridos desde la siembra hasta que el 50 % de las plantas de la parcela neta presentaron flores abiertas según la escala del **Cuadro 8**. Los valores se expresaron en días después de la siembra (dds).

Cuadro 8. Escala para determinar los días a la floración de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

VALOR	DESCRIPCION
1	No hay botones
2	Botones inician hinchamiento
3	25% de flores abiertas
4	50% de las flores abiertas
5	75% de las flores abiertas
6	Floración completa
7	75% de las flores caídas

g. Días a la senescencia

Se contó el número de días transcurridos desde la siembra hasta que el 50% de las plantas de la parcela neta presentaron el 50% de follaje café, para la medición de esta variable se utilizo la escala del **Cuadro 9**, los valores se expresaron en días después de la siembra.

Cuadro 9. Escala para determinar los días a la senescencia de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

VALOR	DESCRIPCION
1	Plantas verdes
2	Hojas superiores con los primeros signos de amarillamiento
3	Hojas amarillentas
4	25% de tejido foliar café
5	50% de tejido foliar café
6	Más del 75% del tejido foliar café
7	Plantas muertas

h. Rendimiento y sus componentes

1) Plantas cosechadas

A la cosecha, en cada uno de los tratamientos se contabilizó el número de plantas que llegaron a esta etapa.

2) Número de tubérculos por planta

El día de la cosecha se contó el número de tubérculos de cinco plantas tomadas al azar de la parcela neta y posteriormente se sacó su promedio.

3) Rendimiento por planta

El rendimiento por planta de cada tratamiento se calculó en base a la siguiente relación: peso total de tubérculos a la cosecha dividida para el número de plantas cosechadas, el promedio obtenido se expresó en Kg/planta.

4) Rendimiento por categorías

Los tubérculos obtenidos de la parcela total se clasificaron en tres categorías: papa comercial de primera (tubérculos mayores a 60g), papa comercial de segunda "semilla" (tubérculos de 30a60 g) y papa de desecho (tubérculos menores a 30g). Los resultados se expresaron en Kg/categoría.

5) Rendimiento total

De cada genotipo se sumó la cosecha de las tres repeticiones y el resultado se expresó en Kg/parcela.

i. Materia seca del tubérculo

Se utilizó la metodología propuesta por CIP (2005), en el laboratorio, se tomo una muestra de de 200g de hojuelas de tubérculo de cada genotipo y luego se colocaron en una estufa a 80°C

21

por 72 horas hasta tener un peso seco constante. Posteriormente se peso la muestra y se registro

su valor. La materia seca se calculó en relación a la siguiente fórmula:

$$\% \ MS = \underbrace{Pms}_{Pmh} x \ 100$$

En donde: %MS = porcentaje de materia seca

Pms = peso de la muestra seca

Pmh = peso de la muestra húmeda

5. Selección de los genotipos

Para la selección de los genotipos se consideró los ocho mejores promedios de la prueba de Tukey de cada localidad y se calificó en relación a la siguiente escala de valorización: altura de planta (5 puntos); cobertura de suelo, vigor de planta y materia seca (7 puntos); senescencia (8puntos) y rendimiento total (10 puntos). Los resultados se tabularon a través de una prueba de probabilidad.

6. Manejo agronómico del ensayo

Las labores el ensayo se realizó de acuerdo a las sugerencias del Programa Nacional de Raíces y Tubérculos rubro papa del INIAP.

a. Análisis de suelos

Las muestras de suelo se tomaron en forma de zig-zag y a una profundidad de 0-20cm en cada lote del ensayo y se remitió al laboratorio de Suelos y Aguas de la Estación Experimental Santa Catalina del INIAP para su análisis físico químico.

b. Preparación del suelo

La preparación del suelo se realizó con arado mecánico, en tanto que los surcos se trazaron con arado de vertedera de tiro animal a una distancia aproximada de 1m.

c. Siembra

Para la siembra se utilizó semilla del programa de mejoramiento de papa del INIAP colocando un tubérculo a una distancia de 0.30 m y a una profundidad de 10-12 cm.

d. Trampeo

Con el propósito de evitar perdidas en la calidad del tubérculo y en rendimiento, en las localidades de Pusniag San Patricio y Santa Lucia después de la siembra se colocaron trampas para el control de insectos adultos de gusano blanco (*Premnotrypes vorax*), las trampas contenían follaje fresco de papa previamente envenenado con insecticida, los mismos que fueron cubiertos con cartón.

d. Fertilización

Se realizó en base a los resultados del análisis de suelo, la cantidad de fertilizante se dividió en dos partes: la primera parte se aplicó al momento de la siembra y al fondo del surco y la segunda se incorporó con el medio aporque; además, durante el ciclo de cultivo se aplicó fertilizante foliar.

e. Medio aporque

Se realizó por una sola vez, utilizando azadones.

f. Aporque

Con la finalidad de eliminar las malezas y aflojar el suelo para estimular la tuberización de los genotipos se realizó una labor de aporque.

g. Control de plagas y enfermedades

Se realizaron aplicaciones de pesticidas preventivos y curativos de acuerdo a la infestación eincidencia de las plagas y enfermedades en el cultivo. Las plagas que se observaron con mayor frecuencia fueron: Pulguilla saltona (*Epitrix spp*) y Trips (*Frankiniella solana*). El tizón tardío (*Phytophthora infestans*) fue la principal enfermedad que se presentó en el cultivo.

h. Cosecha

Se realizó en forma manual cuando el cultivo alcanzo la madurez fisiológica.

V. RESULTADOS Y DISCUSION

A. PORCENTAJE DE EMERGENCIA

El análisis de varianza determinó la existencia de diferencias altamente significativas entre los tratamientos en las tres localidades; además, en Pusniag San Patricio y Santa Lucia se notó una diferencia significativa y altamente significativa entre las repeticiones. Los coeficientes de variación fueron: 10.65% para Tiazo Bajo, 13.80% para Pusniag San Patricio y 15.95% para Santa Lucia (**Cuadro 10**).

Realizada la prueba de Tukey (**Cuadro 11**) se observa la existencia de 5 rangos de significación en Tiazo Bajo, en donde el tratamiento 21 (04-24-1) obtuvo el mayor porcentaje de emergencia a continuación se ubicaron los tratamientos 12 (10-10-97) y 39 (Pan), mientras que el tratamiento 17 (05-19-1) presentó el menor porcentaje de emergencia; en Pusniag San Patricio se determinaron 14 rangos de significación, el tratamiento36 (Estela) registró el mayor porcentaje de emergencia seguido de los tratamientos 38 (Gabriela) y 34 (Brenda), mientras que el tratamiento 2 (99-97-4) presentó el menor porcentaje de emergencia; en Santa Lucia se identificaron 8 rangos de significación, el tratamiento11 (97-1-8) presentó el mayor porcentaje de emergencia seguido de los tratamientos 5 (99-66-4) y 16 (05-19-4), en tanto que los tratamientos testigos 37 (Fripapa) y 39 (Pan) obtuvieron un rango intermedio y el tratamiento 18 (05-16-3) presentó el menor porcentaje de emergencia.

En términos generales, el comportamiento de los genotipos en las tres localidades fue variable pudiendo observarse respuestas notorias de los clones T21 (04-24-1) y T11 (97-1-8) en Tiazo Bajo y Santa Lucia con porcentajes de emergencia del 100 y 92.22% respectivamente, mientras que en Pusniag San Patricio predominaron las variedades testigos, sobresaliendo T36 (Estela) con el 92.22%, asimismo se observó, que el promedio de porcentaje de emergencia en Tiazo Bajo fue del 85.47%, caso que no sucedió en Pusniag y Santa Lucia cuya media fue del 66%.

El bajo porcentaje de emergencia de los genotipos en Pusniag San Patricio, se atribuye al déficit hídrico (**Gráfico 11**) que soportó el cultivo durante esta fase de desarrollo, concordando con VAN LOON (1998), quien manifiesta que el cultivo de papa en zonas con déficit hídrico retrasa

o inhibe la emergencia de los tubérculos. En Santa Lucia, la edad fisiológica del tubérculo semilla y el tamaño de los brotes fueron los factores que influyeron en los bajos porcentajes de emergencia.

B. ALTURA DE PLANTA

El análisis de varianza para la altura de planta a los 45 días encontró diferencias altamente significativas entre los tratamientos y las repeticiones en Tiazo Bajo, en Santa Lucia existió diferencias altamente significativas entre los tratamientos y una diferencia significativa entre las repeticiones y en Pusniag San Patricio no se encontraron diferencias significativas para las dos fuentes de variación. Los coeficientes de variación fueron: 15.87% para Tiazo Bajo, 24.88% para Pusniag San Patricio y 19.24% para Santa Lucia (**Cuadro 12**).

Cuadro 10. Análisis de varianza del porcentaje de emergencia (%) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

Fuente de	Tiazo Bajo		Pusn	iag SP	Santa Lucia		
variación	Grados de	Cuadrado	Grados de	Cuadrado	Grados de	Cuadrado	
	libertad	medio	libertad	medio	libertad	medio	
Bloques	2	197.977 ns	2	287.951*	2	1582.233 **	
Tratamientos	37	386.862 **	38	1020.147**	36	626.663 **	
Error	74	82.942	76	84.529	66	111.861	
Total	113		116		104		
Promedio	85.4	17%	66.58%		66.36%		
general							
Coeficiente	10.6	55%	13.80%		15.94%		
de variación							

ns = (p>0.5)

^{* = (}p < 0.5)

^{** = (}p<0.1)

Cuadro 11. Prueba de Tukey al 5% de significación para el porcentaje de emergencia (%) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

	LOCALIDADES						
TRATAMIENTOS	Tiazo Bajo	Pusniag SP	Santa Lucia				
T1	91.11 abc	40.00 klmn	65.55 abcdefg				
T2	88.89 abc	22.22 n	64.44 abcdefgh				
T3	95.55 ab	51.11 fghijklmn	70.00 abcdef				
T4	83.33 abcd	54.44 defghijklm	63.33 abcdefgh				
T5	75.55 abcde	68.89 abcdefghijk	88.89 ab				
T6	94.40 ab	90.00 ab	84.44 abc				
T7	88.88 abc	70.00 abcdefghijk	84.44 abc				
T8	86.66 abc	71.11 abcdefghij	62.22 abcdefgh				
T9	85.55 abc	76.66 abcdefgh	72.22 abcdef				
T10	81.11 abcd	61.11 bcdefghijkl	58.33 abcdefgh				
T11	96.66 ab	75.55 abcdefghi	92.22 a				
T12	98.89 ab	81.11 abcdef	76.66 abcdef				
T13	64.44 cde	46.66 hijklmn	50.00 cdefgh				
T14	85.55 abc	64.44 abcdefghijkl	72.22 abcdef				
T15	82.22 abcd	45.55 ijklmn	48.88 cdefgh				
T16	84.44 abcd	72.22 abcdefghi	86.66 ab				
T17	51.11 e	27.77 mn	32.22 gh				
T18	70.00 bcde	35.55 lmn	28.33 h				
T19	92.22 abc	80.00 abcdef	75.55 abcdef				
T20	79.99 abcde	74.44 abcdefghi	70.00 abcdef				
T21	100.00 a	88.88 ab	80.00 abcd				
T22	98.89 ab	76.66 abcdefgh	75.55 abcdef				
T23	92.22 abc	86.66 abc	70.00 abcdef				
T24	81.11 abcd	61.11 bcdefghijkl	63.33 abcdefgh				
T25	55.55 de	41.11 jklmn	42.22 efgh				
T26	91.11 abc	55.55 defghijklm	54.44 bcdefgh				
T27	88.89 abc	76.66 abcdefgh	75.55 abcdef				
T28	83.33 abcd	48.89 ghijklmn	78.88 abcd				
T29	81.11 abcd	82.22 abcde	68.88 abcdef				
T31	76.66 abcde	57.78 cdefghijklm	999				
T32	72.22 abcde	52.22 efghijklmn	66.67 abcdefg				
T33	97.77 ab	81.11 abcdef	78.33 abcde				
T34	95.55 ab	90.00 ab	67.77 abcdefg				
T35	88.89 abc	84.44 abcd	41.67 fgh				
T36	91.11 abc	92.22 a	44.44 defgh				
T37	91.11 abc	73.33 abcdefghi	72.22 abcdef				
T38	999	91.11 ab	999				
T39	97.78 ab	70.00 abcdefghijk	67.77 abcdefg				
T40	87.77 abc	77.77 abcdefg	58.88 abcdefgh				

999: sin respuesta

La prueba de Tukey para los 45 días (**Cuadro 13**), determinó 6 rangos de significación en Tiazo Bajo, en esta localidad el tratamiento 39 (Pan) obtuvo la mayor altura a continuación se ubicaron los tratamientos 21 (04-24-1) y 31 (I22), en forma descendente se ubicó el tratamiento testigo 34 (Brenda), mientras que el tratamiento 26 (01-65-20) presentó la menor altura; en Santa Lucia se identificaron 4 rangos de significación, el tratamiento 7 (99-32-1) presentó la mayor altura seguido de los tratamientos 5 (99-66-4) y 11 (97-1-8), en tanto que el tratamiento testigo 37 (Fripapa) se ubicó en un rango descendente de la tabla y el tratamiento 35 (Cecilia) presentó la menor altura de planta.

A los 75 días, el análisis de varianza mostró la existencia de diferencias altamente significativas entre los tratamientos en las tres localidades; además, en Santa Lucia se observó una diferencia altamente significativa entre las repeticiones y en Tiazo Bajo y Pusniag San Patricio no se presentaron diferencias significativas entre las repeticiones. Los coeficientes de variación fueron: 9.45% para Tiazo Bajo, 22.66% para Pusniag San Patricio y 22.65 para Santa lucia (**Cuadro 12**).

La prueba de Tukey para los 75 días (**Cuadro 14**), determinó 10 rangos de significación en Tiazo Bajo, en esta localidad el tratamiento 21 (04-24-1) obtuvo la mayor altura a continuación se ubicaron los tratamientos 33 (R2) y 1 (99-99-2), el tratamiento testigo 37 (Fripapa) ocupó un lugar descendente de la tabla mientras que el tratamiento 20 (04-31-1) presentó la menor altura; en Pusniag San Patricio se observaron 3 rangos de significación, al igual que el caso anterior, el tratamiento 21 (04-24-1) obtuvo la mayor altura seguido de los tratamientos 10 (97-1-10) y 38 (Gabriela), mientras que el tratamiento 28 (B23) presentó la menor altura; en Santa Lucia se identificaron 6 rangos de significación, el tratamiento 7 (99-31-1) presentó la mayor altura seguido de los tratamientos 11 (97-1-8), 5 (99-66-4) y 37 (Fripapa), en tanto que el tratamiento 34 (Brenda) presentó la menor altura de planta.

Luego de realizar el análisis de varianza para la altura de planta a los 90 días, existieron diferencias altamente significativas entre los tratamientos en las tres localidades y se comprobó una diferencia significativa entre las repeticiones en las localidades de Pusniag San Patricio y Santa Lucia. Los coeficientes de variación fueron: 8.54% para Tiazo Bajo, 16.48% para Pusniag San Patricio y 17.66% para Santa Lucia. (**Cuadro 12**).

La prueba de Tukey para los 90 días (**Cuadro 15**), determinó 10 rangos de significación en Tiazo Bajo y Santa Lucia. En la primera localidad y al igual que la lectura anterior, el tratamiento 21 (04-24-1) alcanzó la mayor altura, a continuación se ubicaron los tratamientos 33 (R2) y 7 (99-32-1), en tanto que el tratamiento testigo 40 (Superchola) se ubicó en un lugar descendente de la tabla y el tratamiento 20 (04-31-1) presentó la menor altura; en Pusniag San Patricio se determinaron 8 rangos de significación, los tratamientos 38 (Gabriela) y 10 (97-1-10) alcanzaron la mayor altura, seguidos por los tratamientos 21 (04-24-1) y 7 (99-32-1), mientras que el tratamiento 20 (04-31-1) presentó la menor altura; en Santa Lucia el tratamiento 21 (04-24-1) presentó la mayor altura, seguido de los tratamientos 7 (99-32-1) y 11 (97-1-8), en cambio el tratamiento testigo 37 (Fripapa) se ubicó en un lugar intermedio de la tabla y el tratamiento 20 (04-31-1) presentó la menor altura.

Al comparar la curva de desarrollo de cinco genotipos de papa: T39(Pan), T21 (04-24-1), T7 (99-32-1), T33(R2) y T1 (99-99-2) en Tiazo Bajo(**Gráfico 1**), se puede observar que a los 45 días la variedad testigo T39 presentó un rápido incremento de altura de planta para posteriormente ir declinando gradualmente su desarrollo hasta los 90 días, en tanto que los clones T21, T7, T33 y T1 demostraron una fuerza de desarrollo estable con importantes incrementos de altura a los 45 y 75 días e ir minimizando progresivamente su desarrollo a los 90 días.

El modelo de desarrollo de los genotipos T38 (Gabriela), T21 (04-24-1), T10 (97-1-10) y T7 (99-32-1) en Pusniag San Patricio (**Gráfico 2**), demostraron una misma tendencia de desarrollo en las tres lecturas realizadas. Analizando el gráfico, se puede visualizar que a los 45 días los genotipos no presentaron incrementos considerables de altura de planta, situación que se debió a la escasez de agua y a los efectos de la ceniza caída al final del mes de diciembre del 2007 e inicios del mes de enero del 2008, que interrumpieron la fase de desarrollo del cultivo. A los 75 días se aprecia incrementos considerables de altura de planta en los genotipos T21, T10 y T38, mientras que el clon T7 no mantiene la misma condición, y a los 90 días la variedad testigo T38 obtiene el más alto nivel de desarrollo seguida estrechamente de los clones T21 y T10.

Al relacionar la tasa de desarrollo de los genotipos: T37 (Fripapa), T21 (04-24-1), T7 (99-32-1), T11 (97-1-8) y T22 (04-12-1) en Santa Lucia (**Gráfico 3**), los clones T21, T7, T11 y T22 en el

mismo orden mantuvieron una tendencia de crecimiento lineal desde la emergencia hasta los 90 días, en tanto que la variedad testigo 37(Fripapa) conservó la misma predisposición de crecimiento hasta los 45 días, su tasa de desarrollo fue máxima a los 75 días y descendió progresivamente a los 90 días.

Los genotipos sembrados en Tiazo Bajo presentaron el mejor promedio de altura de planta a los 45 días (37.34 cm), debido a las buenas condiciones del clima y suelo que presentó esta localidad, concordando con ALDABE y DOGLIOTTI (2000), quienes señalan que la gran cantidad de reservas del tubérculo semilla en condiciones óptimas de temperatura permiten un rápido crecimiento del área foliar. Mencionan también que las buenas condiciones de humedad del suelo permite la asimilación del nitrógeno, el mismo que tiene su influencia en el crecimiento del follaje.

Por los resultados, la altura de planta es una variable que depende tanto del comportamiento genético como de las condiciones climáticas de un determinado lugar; así, el clon T21 (04-24-1) demostró una gran condición de desarrollo de follaje (99.38 y 41.72cm) en Tiazo Bajo y Santa Lucia, sin dejar de recalcar el tamaño de 47.13cm de la variedad T38 (Gabriela) en Pusniag San Patricio.

En general, los clones indicaron un modelo de desarrollo progresivo propio de sus fenologías de crecimiento.

C. COBERTURA DE SUELO

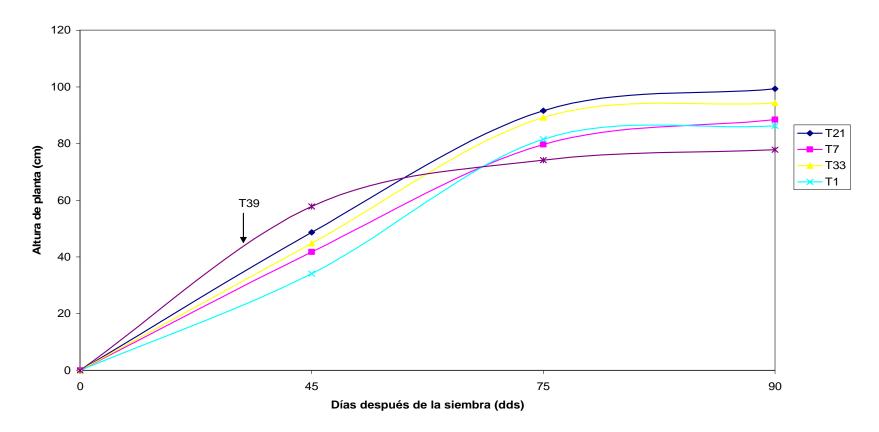
El análisis de varianza para la cobertura de suelo a los 45 días, no encontró diferencias estadísticas para ninguna fuente de variación en Tiazo Bajo, el coeficiente de variación para esta localidad fue de 15.96%; en las localidades restantes los genotipos presentaron un mismo valor, por lo que no se realizó el análisis de varianza. Los promedios de cobertura de suelo fueron: 2.18 para Tiazo Bajo y 3.00 para Pusniag San Patricio y Santa Lucia (**Cuadro 16**).

Cuadro 12. Análisis de varianza de tres evaluaciones de la altura de planta (cm) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

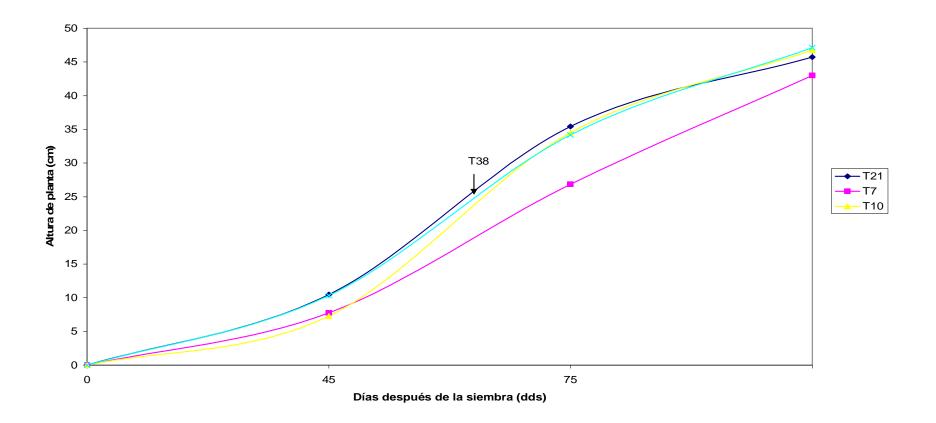
		Localidades											
Fuente de		Tia	zo Bajo			Pusniag	San Patricio)		Santa Lucia			
variación	Grados de			0	Grados de		Cuadrado medi	0	Grados de		Cuadrado medi	0	
	libertad	45 días	75 días	90 días	libertad	45 días	75 días	90 días	libertad	45 días	75 días	90 días	
Bloques	2	369.287 **	9.324 ns	1.934 ns	2	0.555 ns	84.444 ns	112.414 *	2	15.506 *	91.476 **	92.182 *	
Tratamientos	37	142.849 **	332.941 **	359.251 **	38	9.572 ns	94.193 **	159.561 **	36	12.683 **	82.413 **	217.379 **	
Error	74	35.129	38.202	37.624	76	5.059	33.469	27.282	66	3.808	16.865	18.720	
Total	113				116				104				
Promedio general		37.34cm	65.41cm	71.85cm		9.04cm	25.53cm	31.70cm		10.14cm	18.13cm	24.50cm	
Coeficiente de variación		15.87%	9.45%	8.54%		24.88%	22.66%	16.48%		19.24%	22.65%	17.66%	

ns = (p>0.5) * = (p<0.5) ** = (p<0.1)

Cuadro 13. Prueba de Tukey al 5% de significación para la altura de planta (cm) a los 45 días después de la siembra de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.


TRATAMIENTOS	LOCAL	LIDADES
	Tiazo Bajo	Santa Lucia
T1	34.17 bcdef	12.19 abcd
T2	24.09 ef	10.33 abcd
T3	37.19 bcdef	7.83 bcd
T4	39.61 abcdef	10.29 abcd
T5	36.55 bcdef	13.99 ab
T6	43.55 abcde	11.16 abcd
T7	41.80 abcdef	15.45 a
T8	36.50 bcdef	9.86 abcd
T9	37.53 bcdef	11.03 abcd
T10	39.72 abcdef	10.77 abcd
T11	44.66 abcd	13.41 abc
T12	41.75 abcdef	8.50 bcd
T13	28.89 cdef	11.95 abcd
T14	38.75 abcdef	13.03 abcd
T15	32.74 bcdef	7.44 cd
T16	37.45 bcdef	9.71 abcd
T17	38.11 bcdef	10.96 abcd
T18	29.35 bcdef	8.35 bcd
T19	39.16 abcdef	12.83 abcd
T20	32.86 bcdef	7.46 cd
T21	48.73 ab	10.39 abcd
T22	35.72 bcdef	11.58 abcd
T23	34.73 bcdef	10.22 abcd
T24	39.85 abcdef	9.97 abcd
T25	39.33 abcdef	8.94 bcd
T26	23.46 f	9.03 bcd
T27	41.22 abcdef	7.11 cd
T28	31.75 bcdef	8.65 bcd
T29	27.98 cdef	8.89 bcd
T31	46.19 abc	999
T32	31.68 bcdef	9.29 abcd
T33	44.83 abc	10.38 abcd
T34	43.05 abcde	7.54 cd
T35	25.22 def	6.88 d
T36	39.88 abcdef	8.44 bcd
T37	35.58 bcdef	12.66 abcd
T39	57.80 a	9.30 abcd
T40	37.63 bcdef	9.44 abcd

Cuadro 14. Prueba de Tukey al 5% de significación para la altura de planta (cm) a los 75 días después de la siembra de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.


	LOCALIDADES						
TRATAMIENTOS	Tiazo Bajo	Pusniag SP	Santa Lucia				
T1	81.55 abc	25.29 abc	22.00 abcdef				
T2	65.27 cdefghi	20.55 abc	22.40 abcdef				
T3	64.43 cdefghi	22.91 abc	20.14 abcdef				
T4	59.05 efghij	27.83 abc	14.94 bcdef				
T5	69.86 bcdefgh	31.42 abc	27.14 abc				
T6	73.56 abcdefg	28.72 abc	25.03 abcde				
T7	79.66 abcd	26.85 abc	28.53 a				
T8	63.95 cdefghi	25.69 abc	16.50 abcdef				
T9	59.53 defghij	28.62 abc	21.81 abcdef				
T10	69.66 bcdefgh	34.50 ab	16.60 abcdef				
T11	76.80 abcdef	28.77 abc	27.58 ab				
T12	64.60 cdefghi	33.85 ab	17.46 abcdef				
T13	52.85 hij	24.36 abc	17.50 abcdef				
T14	59.57 defghij	22.66 abc	16.30 abcdef				
T15	64.64 cdefghi	20.16 abc	13.05 def				
T16	67.65 cdefghi	20.75 abc	19.17 abcdef				
T17	59.25 efghij	17.36 abc	19.67 abcdef				
T18	60.94 defghij	20.72 abc	13.11 def				
T19	73.97 abcdefg	25.54 abc	23.70 abcde				
T20	42.13 j	16.40 abc	9.86 f				
T21	91.55 a	35.41 a	22.74 abcdef				
T22	61.66 cdefghij	30.98 abc	24.94 abcde				
T23	56.36 ghij	27.00 abc	17.72 abcdef				
T24	56.55 fghij	28.64 abc	15.53 abcdef				
T25	60.73 defghij	21.08 abc	14.05 cdef				
T26	69.36 bcdefgh	16.11 bc	13.64 def				
T27	68.19 cdefghi	28.79 abc	14.63 bcdef				
T28	50.61 hij	14.08 c	12.61 def				
T29	48.11 ij	21.56 abc	15.69 abcdef				
T31	57.80 fghij	22.90 abc	999				
T32	53.22 hij	19.51 abc	12.52 def				
T33	89.16 ab	29.07 abc	21.86 abcdef				
T34	61.65 cdefghij	27.94abc	9.63 f				
T35	65.02 cdefghi	26.15 abc	10.00 f				
T36	66.82 cdefghi	34.11 ab	11.58 ef				
T37	78.55 abcde	32.00 abc	25.13 abcd				
T38	999	34.16 ab	999				
T39	74.12 abcdefg	18.65 abc	19.29 abcdef				
T40	67.03 cdefghi	24.46 abc	16.83 abcdef				

Cuadro 15. Prueba de Tukey al 5% de significación para la altura de planta (cm) a los 90 días después de la siembra de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

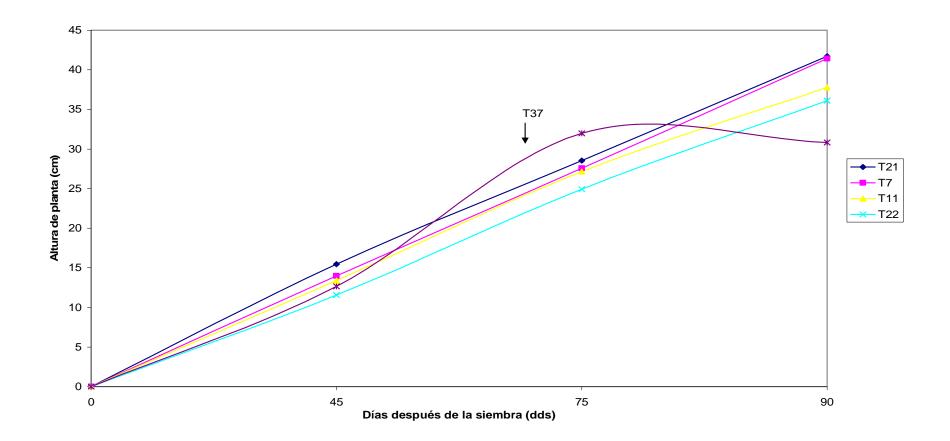

	LOCALIDADES						
TRATAMIENTOS	Tiazo Bajo	Pusniag SP	Santa Lucia				
T1	86.21 abcd	30.07 abcdefgh	34.50 abcd				
T2	71.77 cdefgh	27.83 cdefgh	34.34 abcde				
T3	71.60 cdefgh	31.16 abcdefgh	32.94 abcdef				
T4	62.19 fghij	28.52 bcdefgh	19.57 defghij				
T5	73.94 cdefg	33.30 abcdefgh	36.05 abc				
T6	79.64 abcdef	40.14 abcdef	31.00 abcdefgh				
T7	88.49 abc	43.00 abc	41.44 a				
T8	70.55 cdefghi	31.05 abcdefgh	20.46 cdefghij				
T9	58.88 ghij	31.04 abcdefgh	29.27 abcdefghi				
T10	71.50 cdefgh	46.77 a	16.80 ghij				
T11	84.45 bcde	33.34 abcdefgh	37.77 ab				
T12	70.50 defghi	34.38 abcdefgh	20.94 cdefghij				
T13	62.50 fghij	26.16 cdefgh	24.43 abcdefghij				
T14	66.61 defghij	32.15 abcdefgh	19.91 cdefghij				
T15	70.11 cdefghi	23.89 efgh	18.26 efghij				
T16	76.73 bcdefg	26.40 cdefgh	23.00 abcdefghij				
T17	72.01 cdefgh	27.91 cdefgh	28.66 abcdefghi				
T18	58.11 ghij	18.91 gh	15.45 hij				
T19	76.55 bcdefg	34.79 abcdefgh	29.35 abcdefghi				
T20	48.33 j	18.11 h	11.24 j				
T21	99.38 a	45.73 ab	41.72 a				
T22	77.05 bcdefg	41.28 abcd	36.11 abc				
T23	60.19 fghij	33.00 abcdefgh	21.39 bcdefghij				
T24	71.17 cdefgh	34.97 abcdefgh	17.39 fghij				
T25	65.50 efghij	27.22 cdefgh	16.27 ghij				
T26	74.61 bcdefg	25.81 defgh	19.83 cdefghij				
T27	79.16 bcdef	32.93 abcdefgh	19.51 efghij				
T28	50.78 ij	20.36 gh	13.71 ij				
T29	53.22 hij	26.00 cdefgh	18.66 efghij				
T31	68.82 cdefghi	23.64 fgh	999				
T32	66.27 defghij	20.97 gh	11.30 j				
T33	94.39 ab	35.74 abcdefg	32.15 abcdefg				
T34	66.94 defghij	32.17 abcdefgh	11.77 j				
T35	69.89 cdefghi	28.89 bcdefgh	14.70 hij				
T36	75.50 bcdefg	40.94 abcde	16.85 ghij				
T37	79.33 abcdef	35.04 abcdefgh	30.83 abcdefgh				
T38	999	47.13 a	999				
T39	77.89 bcdefg	31.78 abcdefgh	24.39 abcdefghij				
T40	79.39 abcdef	33.49 abcdefgh	27.48 abcdefghij				

Gráfico 1. Curva de desarrollo de cinco genotipos de papa sometidos a estrés hídrico en la localidad de Tiazo Bajo, provincia de Chimborazo.

Gráfico 2. Curva de desarrollo de cuatro genotipos de papa sometidos a estrés hídrico en la localidad de Pusniag San Patricio, provincia de Chimborazo.

Gráfico 3. Curva de desarrollo de cinco genotipos de papa sometidos a estrés hídrico en la localidad de Santa Lucia, provincia de Chimborazo.

El análisis de varianza para la cobertura de suelo a los 75 días, encontró diferencias altamente significativas entre los tratamientos en Pusniag San Patricio y Santa Lucia mientras que para las repeticiones no existió diferencias estadísticas, en Tiazo Bajo no se presentaron diferencias estadísticas para ninguna fuente de variación. Los coeficientes de variación fueron: 27.57% para Tiazo Bajo. 20.62% para Pusniag San Patricio y 14.74% para Santa Lucia (**Cuadro16**).

La prueba de Tukey para los 75 días (**Cuadro 17**), identificó tres rangos de significación en Pusniag San Patricio, donde los tratamientos 22 (04-12-1), 10 (97-1-10), 34 (Brenda) y 38 (Gabriela) presentaron una excelente cobertura de suelo mientras que los tratamientos 26 (01-65-20), 25 (04-1-1), 18 (05-16-3), 17 (05-19-1) y 32 (M9) alcanzaron una buena cobertura de suelo; en Santa Lucia existieron 2 rangos de significación, el tratamiento 19 (05-8-2) obtuvo una muy buena cobertura de suelo, en cambio los tratamientos 25 (04-1-1), 18 (05-16-3), 15 (05-28-4), 34 (Brenda) y 36 (Estela) presentaron una buena cobertura d suelo.

El análisis de varianza para la cobertura de suelo a los 90 días demostró diferencias altamente significativas entre los tratamientos en las tres localidades y no se observó diferencias estadísticas entre las repeticiones. Los coeficientes de variación fueron: 31.17% para Tiazo Bajo. 20.64% para Pusniag San Patricio y 28.69% para Santa Lucia (**Cuadro16**).

Realizada la prueba de Tukey para los 90 días, el **Cuadro 18** mostró 2 rangos de significación en las tres localidades; en Tiazo Bajo se pudo observar que 22 tratamientos alcanzaron una excelente cobertura de suelo entre ellos los tratamientos: 21 (04-24-1), 33 (R2), 7(99-32-1) y 1 (99-99-2) mientras que el tratamiento 25 (04-1-1) alcanzó una muy buena cobertura; en Pusniag San Patricio los tratamientos 10 (97-1-10), 7 (99-32-1), 22 (04-12-1) y 38 (Gabriela) alcanzaron una excelente cobertura de suelo, en tanto que los tratamientos 25 (04-1-1), 18 (05-16-3) y 32 (M9) demostraron una buena cobertura de suelo; en Santa Lucia, los tratamientos 21 (04-24-1), 13 (05-32-2) y 7 (99-32-1) alcanzaron una excelente cobertura de suelo, mientras que los tratamientos 25 (04-1-1), 20 (04-31-1) y 2 (99-97-4) presentaron una buena cobertura de suelo. El análisis de varianza para la cobertura de suelo a los 105 días estableció diferencias altamente significativas entre los tratamientos en las localidades de Pusniag San Patricio y Santa Lucia; además, en la primera localidad se observó diferencias altamente significativas entre las

repeticiones. Los coeficientes de variación fueron: 20.94% para Pusniag San Patricio y 27.52% para Santa Lucia (**Cuadro 16**).

Realizada la prueba de Tukey para los 105 días, en el **Cuadro 19** se observa 3 rangos de significación en Pusniag San Patricio y en Santa Lucia, en la primera localidad, los tratamientos 21(04-24-1), 10 (97-1-10), 7 (99-32-1), 38 (Gabriela) y 31 (I22) mostraron una excelente cobertura de suelo, mientras que los tratamientos 25 (04-1-1) y 32 (M9) presentaron una buena cobertura de suelo; en Santa Lucia, una excelente cobertura de suelo alcanzó el tratamiento 21 (04-24-1) y buenas coberturas de suelo presentaron 6 tratamientos, entre ellos T20 (04-31-1), T10 (97-1-10), 34 (Brenda), etc.

El comportamiento de los genotipos en las tres localidades fue diferente. En Tiazo Bajo la mayoría de los genotipos presentaron muy buenas coberturas de suelo a los 45 días para posteriormente alcanzar una excelente cobertura a los 90 días, en esta localidad los siguientes genotipos sobresalieron: T21 (04-24-1), T7 (99-32-1), T1 (99-32-1) y T33 (R2).

En Pusniag San Patricio, la expansión del área foliar de los genotipos fue lenta, los tratamientos T10 (97-1-10) y T38 (Gabriela) prevalecieron desde los 75 hasta los 105 días con excelentes coberturas de suelo y el clon T7 (99-32-1) demostró una excelente cobertura desde los 90 hasta los 105 días.

En Santa Lucia, el aumento del área foliar de los genotipos fue gradual y el clon 21 (04-24-1) imperó desde los 90 hasta los 105 días con una excelente cobertura de suelo.

Por lo expuesto, el crecimiento en diámetro del área foliar de los genotipos se debe a las características genéticas de cada material vegetal, más la influencia del clima y suelo, lo que explica el mayor crecimiento de las plantas en Tiazo Bajo, lo cual concuerda con ALDABE Y DOGLIOTTI (2000), quienes manifiestan que el cultivo de papa en condiciones óptimas de crecimiento puede llegar a cubrir totalmente el suelo entre los 40 a 45 días después de la emergencia.

Cuadro 16. Análisis de varianza de cuatro evaluaciones de la cobertura de planta de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

						Loca	alidades						
		Tia	zo Bajo			Pusniag	San Patricio)		Santa Lucia			
Fuente de	Grados de		Cuadrado med	io	Grados de		Cuadrado medi	0	Grados de		Cuadrado med	io	
variación	libertad	45 días	75 días	90 días	libertad	75 días	90 días	105 días	libertad	75 días	90 días	105 días	
Bloques	2	0.184 ns	0.000 ns	0.246 ns	2	0.214 ns	0.179 ns	1.060 **	2	0.009 ns	0.966 ns	0.838 ns	
Tratamientos	37	0.211 ns	0.228 ns	0.344 **	38	1.202 **	0.623 **	0.945 **	36	0.428 **	0.843 **	0.812 **	
Error	74	0.121	0.171	0.147	76	0.170	0.179	0.165	66	0.111	0.346	0.380	
Total	113				116				104				
Promedio general		2.18	1.50	1.23		2.00	2.05	1.94		2.26	2.05	2.25	
Coeficiente de variación		15.96%	27.57%	31.17%		20.62%	20.64%	20.94%		14.74%	28.69%	27.40%	

ns = (p>0.5) * = (p<0.5) ** = (p<0.1)

Cuadro 17. Prueba de Tukey al 5% de significación para la cobertura de suelo a los 75 días después de la siembra de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

TRATAMIENTOS	LOCAL	LIDADES
	Pusniag SP	Santa Lucia
T1	1.67 abc	2.00 ab
T2	2.67 bc	2.00 ab
T3	2.00 abc	2.00 ab
T4	2.67 bc	2.33 ab
T5	1.33 ab	2.33 ab
T6	1.33 ab	2.00 ab
T7	1.33 ab	2.00 ab
T8	1.33 ab	2.33 ab
Т9	2.00 abc	2.33 ab
T10	1.00 a	2.00 ab
T11	2.00 abc	2.00 ab
T12	1.33 ab	2.33 ab
T13	2.67 bc	2.67 ab
T14	2.00 abc	2.33 ab
T15	2.67 bc	3.00 b
T16	2.33 abc	2.00 ab
T17	3.00 c	2.67 ab
T18	3.00 c	3.00 b
T19	1.67 abc	1.67 a
T20	2.00 abc	2.67 ab
T21	1.33 ab	2.00 ab
T22	1.00 a	2.00 ab
T23	2.00 abc	2.00 ab
T24	2.67 bc	2.00 ab
T25	3.00 c	3.00 b
T26	3.00 c	2.00 ab
T27	1.67 abc	2.00 ab
T28	2.67 bc	2.00 ab
T29	2.00 abc	2.00 ab
T31	2.33 abc	999
T32	3.00 c	2.33 ab
T33	1.67 abc	2.00 ab
T34	1.00 a	3.00 b
T35	2.00 abc	2.67 ab
T36	1.67 abc	3.00 b
T37	2.00 abc	2.00 ab
T38	1.00 a	999
T39	2.33 abc	2.00 ab
T40	2.00 abc	2.00 ab

Cuadro 18. Prueba de Tukey al 5% de significación para la cobertura de suelo a los 90 días después de la siembra de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

	LOCALIDADES						
TRATAMIENTOS	Tiazo Bajo	Pusniag SP	Santa Lucia				
T1	1.00 a	1.67 ab	2.00 ab				
T2	1.33 ab	2.00 ab	3.00 b				
T3	1.33 ab	2.00 ab	1.33 ab				
T4	1.33 ab	2.33 ab	1.67 ab				
T5	1.33 ab	1.67 ab	1.33 ab				
T6	1.00 a	1.67 ab	1.67 ab				
T7	1.00 a	1.33 a	1.00 a				
T8	1.00 a	1.67 ab	2.00 ab				
T9	1.00 a	2.00 ab	1.67 ab				
T10	1.33 ab	1.33 a	2.67 ab				
T11	1.00 a	2.00 ab	2.33 ab				
T12	1.00 a	1.67 ab	2.00 ab				
T13	1.67 ab	2.67 ab	1.00 a				
T14	1.00 a	2.00 ab	2.67 ab				
T15	1.00 a	2.67 ab	2.00 ab				
T16	1.00 a	2.33 ab	2.67 ab				
T17	1.00 a	2.67 ab	2.00 ab				
T18	1.00 a	3.00 b	2.00 ab				
T19	1.00 a	1.67 ab	2.00 ab				
T20	1.67 ab	2.33 ab	3.00 b				
T21	1.00 a	2.00 ab	1.00 a				
T22	1.00 a	1.33 a	1.67 ab				
T23	2.00 ab	2.00 ab	2.00 ab				
T24	1.33 ab	2.00 ab	2.00 ab				
T25	2.33 b	3.00 b	3.00 b				
T26	1.33 ab	2.00 ab	2.33 ab				
T27	1.00 a	2.00 ab	2.33 ab				
T28	1.67 ab	2.67 ab	2.00 ab				
T29	2.00 ab	2.00 ab	2.00 ab				
T31	1.33 ab	2.33 ab	999				
T32	1.00 a	3.00 b	2.50 ab				
T33	1.00 a	2.00 ab	2.00 ab				
T34	1.33 ab	1.67 ab	2.67 ab				
T35	1.33 ab	1.33 a	2.67 ab				
T36	1.00 a	2.00 ab	1.67 ab				
T37	1.00 a	1.67 ab	2.00 ab				
T38	999	2.00 ab	999				
T39	1.00 a	2.33 ab	2.00 ab				
T40	1.00 a	2.00 ab	2.00 ab				

Cuadro 19. Prueba de Tukey al 5% de significación para la cobertura de suelo a los 105 días después de la siembra de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

	LOCALIDADES				
TRATAMIENTOS	Pusniag SP	Santa Lucia			
T1	1.67 abc	2.00 abc			
T2	2.00 abc	3.00 c			
Т3	2.33 abc	1.67 abc			
T4	2.67 bc	2.33 abc			
T5	2.00 abc	1.67 abc			
T6	1.33 ab	1.67 abc			
T7	1.00 a	1.33 ab			
T8	1.67 abc	2.33 abc			
Т9	1.67 abc	2.00 abc			
T10	1.00 a	3.00 c			
T11	2.00 abc	2.67 bc			
T12	2.00 abc	2.33 abc			
T13	2.00 abc	1.33 ab			
T14	2.00 abc	2.67 bc			
T15	2.67 bc	2.67 bc			
T16	2.33 abc	2.67 bc			
T17	2.67 bc	2.00 abc			
T18	2.67 bc	2.00 abc			
T19	1.67 abc	2.00 abc			
T20	2.33 abc	3.00 c			
T21	1.00 a	1.00 a			
T22	1.33 ab	1.67 abc			
T23	2.00 abc	2.33 abc			
T24	2.00 abc	2.67 bc			
T25	3.00 c	2.67 bc			
T26	2.00 abc	2.67 bc			
T27	1.67 abc	2.33 abc			
T28	2.33 abc	2.00 abc			
T29	2.67 bc	2.33 abc			
T31	1.00 a	999			
T32	3.00 c	3.00 c			
T33	2.00 abc	2.00 abc			
T34	1.33 ab	3.00 c			
T35	2.00 abc	3.00 c			
T36	1.33 ab	2.00 abc			
T37	2.00 abc	2.00 abc			
T38	1.00 a	999			
T39	2.33 abc	2.00 abc			
T40	2.00 abc	2.00 abc			

D. VIGOR DE PLANTA

El análisis de varianza no encontró diferencias estadísticas para ninguna fuente de variación en las tres localidades. Los promedios generales y los coeficientes de variación fueron: 2.53 y 20.76% para Tiazo Bajo, 1.44 y 33.05% para Pusniag San Patricio, 1.38 y 38.55% para Santa Lucia. Los altos porcentajes de los coeficientes de dispersión se debieron a la amplitud de variación de la escala propuesta (**Cuadro 20**).

Cuadro 20. Análisis de varianza del vigor de planta de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

Fuente de	Tiaz	o Bajo	Pusn	niag SP	Santa Lucia		
variación	Grados de	Cuadrado	Grados de	Cuadrado	Grados de	Cuadrado	
	libertad	medio	libertad	medio	libertad	medio	
Bloques	2	0.061 ns	2	0.369 ns	2	0.154 ns	
Tratamientos	37	0.262 ns	38	0.367 ns	36	0.271 ns	
Error	74	0.278	76	0.266	66	0.283	
Total	113		116		104		
Promedio general	2.53		1.44		1.38		
Coeficiente de variación	20.	20.84%		33.05%		38.55%	

ns = (p>0.5)

E. DÍAS A LA FLORACION

El análisis de varianza estableció diferencias altamente significativas entre los tratamientos en Tiazo Bajo y el coeficiente de variación para esta localidad fue de 4.20% (**Cuadro 21**).

La prueba de Tukey (**Cuadro 22**) determinó 4 rangos de significación en Tiazo Bajo, en donde los tratamientos 4 (99-66-6), 8 (98-14-8), 10 (97-1-10), 14 (05-32-1), 18 (05-16-3), 24 (04-2-1) y

^{* = (}p < 0.5)

^{** = (}p<0.1)

32 (M9) fueron los más precoces mientras que el tratamiento 2 (99-97-4) fue el más tardío y los tratamientos 3 (99-78-5) y 34 (Brenda) no florecieron.

En Pusniag San Patricio y Santa Lucia no se encontraron respuestas para esta variable, en la primera localidad la caída de granizo del día 12 de marzo del 2008, ocasionó graves daños en el follaje, que interrumpió el normal desarrollo de las plantas. En Santa Lucia considero que su elevada altitud impidió la floración de la mayoría de los genotipos.

De acuerdo a los resultados de Tiazo Bajo, los clones presentaron un comportamiento precoz en comparación con las variedades testigos. La floración es una fase fenológica que permite identificar si un genotipo es precoz o tardío, en la mayoría de los materiales es un indicativo de que la planta inicia la tuberización (Andrade ,1998).

Cuadro 21. Análisis de varianza de los días a la floración (dds) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

Fuente de Variación	Tiazo Bajo					
	Grado de libertad	Cuadrado medio				
Bloques	2	1.370 ns				
Tratamientos	35	94.040 **				
Error	70	8.647				
Total	107					
Promedio general	69.93					
Coeficiente de variación	4.20%					

ns = (p>0.5)

^{* = (}p<0.5)

^{** = (}p < 0.1)

Cuadro 22. Prueba de Tukey al 5% de significación para los días a la floración de genotipos de papa sometidos a estrés hídrico en Tiazo Bajo provincia de Chimborazo, 2008.

TRATAMIENTOS	Tiazo Bajo
T1	77.00 cd
T2	81.00 d
T3	nf
T4	63.00 a
T5	71.66 abcd
T6	79.00 d
T7	77.00 cd
T8	63.00 a
T9	65.00 ab
T10	63.00 a
T11	67.00 ab
T12	73.66 bcd
T13	67.00 ab
T14	63.00 a
T15	69.00 abc
T16	69.00 abc
T17	69.00 abc
T18	63.00 a
T19	69.00 abc
T20	69.00 abc
T21	69.00 abc
T22	79.00 d
T23	74.33 bcd
T24	63.00 a
T25	67.00 ab
T26	79.00 d
T27	69.00 abc
T28	77.00 cd
T29	77.00 cd
T31	65.00 ab
T32	63.00 a
T33	71.66 abcd
T34	nf
T35	74.33 bcd
T36	65.00 ab
T37	69.00 abc
T38	999
T39	71.66 abcd
T40	65.00 ab

nf: no presentaron floración

F. DÍAS A LA SENESCENCIA

El análisis de varianza estableció diferencias altamente significativas entre los tratamientos en Pusniag San Patricio, en tanto que en Tiazo Bajo y Santa Lucia no se establecieron diferencias estadísticas para ninguna fuente de variación. Los promedios y coeficientes de variación fueron: 5.72 y 13.05% para Tiazo Bajo, 6.12 y 11.49% para Pusniag San Patricio, 4.99 y 32.44% para Santa Lucia (**Cuadro 23**).

La prueba de Tukey (**Cuadro 24**) determinó 2 rangos de significación en Pusniag San Patricio donde los tratamientos: T5 (99-66-4), T18 (98-14-8), T20 (97-1-10), T24 (05-32-1), T25 (05-16-3), T27 (04-2-1) y T29 (M9) presentaron una senescencia precoz mientras que el tratamiento 26 (99-97-4) presento una senescencia tardía.

La senescencia es la etapa fenológica que ocurre cuando el crecimiento del follaje comienza a declinar y las hojas bajeras empiezan a amarillarse en esta época los tubérculos se encuentran en la fase de máximo crecimiento que paulatinamente va disminuyendo a medida que el follaje va muriendo ALDABE Y DOGLIOOTTI (2000).

Cuadro 23. Análisis de varianza de los días a la senescencia (dds) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

Fuente de	Tiazo Bajo		Pusn	niag SP	Santa Lucia	
variación	Grados de	Cuadrado	Grados de	Cuadrado	Grados de	Cuadrado
	libertad	medio	libertad	medio	libertad	medio
Bloques	2	0.552 ns	2	1.900 ns	2	1.125 ns
Tratamientos	37	0.605 ns	36	2.329 **	36	3.426 ns
Error	42	0.557	69	0.495	66	2.620
Total	81		107		104	
Promedio general	5.72		6.12		4.91	
Coeficiente de variación	13.05%		11.49%		32.97%	

ns = (p>0.5)

^{* = (}p < 0.5)

^{** = (}p < 0.1)

Cuadro 24. Prueba de Tukey al 5% de significación para los días a la senescencia (dds) de genotipos de papa sometidos a estrés hídrico en Pusniag San Patricio provincia de Chimborazo, 2008.

TRATAMIENTOS	Tiazo Bajo
T1	163 ab
T2	163 ab
T3	163 ab
T4	156 ab
T5	149 a
T6	163 ab
T7	163 ab
T8	163 ab
T9	156 ab
T10	167 ab
T11	160 ab
T12	156 ab
T13	160 ab
T14	160 ab
T15	156 ab
T16	156 ab
T17	167 ab
T18	149 a
T19	160 ab
T20	149 a
T21	163 ab
T22	169 ab
T23	156ab
T24	149 a
T25	149 a
T26	175 b
T27	149 a
T28	156ab
T29	149 a
T31	149 a
T35	156 ab
T36	160 ab
T37	160 ab
T38	163 ab
T39	160 ab
T40	160 ab

G. RENDIMIENTO Y SUS COMPONENTES

1. Número de plantas cosechadas

El análisis de varianza encontró diferencias altamente significativas entre los tratamientos en las tres localidades, también en Santa Lucia se presentó una diferencia altamente significativa entre las repeticiones. Los coeficientes de variación fueron: 12.67% para Tiazo Bajo, 18.66% para Pusniag San Patricio y 19.14% para Santa Lucia (**Cuadro 25**).

Realizada la prueba de Tukey, en el **Cuadro 26** se pudo apreciar 2 rangos de significación en Tiazo Bajo, en esta localidad 9 tratamientos entre los cuales: 21 (04-24-1), 3 (99-78-5), 37 (Fripapa), 11 (97-1-8) alcanzaron el mayor número de plantas cosechadas, mientras que el tratamiento 25 (04-1-1) presentó el menor número de plantas cosechadas; en Pusniag San Patricio se identificaron 6 rangos de significación, al igual que el caso anterior, un segmento de tratamientos encabezado por: 22 (04-12-1), 33 (R2), T35 (Cecilia), 7 (99-32-1), 39(Pan), 21 (04-24-1) entre otros, presentaron el mayor número de plantas cosechadas, mientras que el menor número de plantas cosechadas lo obtuvo el tratamiento 25 (04-1-1); en Santa Lucia se observaron 10 rangos de significación, el tratamiento 21 (04-24-1) alcanzó el mayor número de plantas cosechadas a continuación se ubicaron los tratamientos 2 (99-97-4) y 7 (99-32-1); en cambio el tratamiento testigo 37(Fripapa) se ubicó en un rango descendente de la tabla y el tratamiento 18 (05-16-3) alcanzó el menor número de plantas cosechadas.

Al analizar lo que sucedió con esta variable, es importante señalar que en Tiazo Bajo y Pusniag San Patricio el mismo número de plantas emergidas también fueron cosechadas, situación que se debió a la presencia de las precipitaciones durante el ciclo de cultivo, a pesar de que las localidades habían sido escogidas por la deficiencia hídrica. En Santa Lucia esta situación no ocurrió de la misma forma, el número de plantas emergidas disminuyeron en un 7% a la cosecha por la infección de *Erwinia spp* que mermó la población de las plantas en las parcelas.

En las tres localidades el clon T21 (04-24-1) demostró una gran capacidad de adaptación y un amplio rango de crecimiento, sin dejar de considerar las buenas condiciones de los clones: T22 (04-12-1), T33 (R2), T7 (99-32-1), T11 (97-1-8) y T2 (99-97-4) en los 3 sitios experimentales.

Cuadro 25. Análisis de varianza del número de plantas cosechadas de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

Fuente de	Tiaz	o Bajo	Pusniag SP Santa Lucia			a Lucia
variación	Grados de	Cuadrado	Grados de	Cuadrado	Grados de	Cuadrado
	libertad	medio	libertad	medio	libertad	medio
Bloques	2	29.535 ns	2	15.718 ns	2	58.507 **
Tratamientos	37	21.541 **	38	121.260 **	36	122.711 **
Error	74	10.409	76	14.183	66	11.651
Total	113		116		104	
Promedio	25	5.46	20	0.18	17.82	
general						
Coeficiente	12.67%		18.66%		19.15%	
de variación						

ns = (p>0.5)

2. <u>Número de tubérculos por planta</u>

El análisis de varianza reveló la existencia de diferencias altamente significativas entre los tratamientos en las tres localidades y ninguna significación estadística para las repeticiones. Los coeficientes de variación fueron: 30.21% para Tiazo Bajo, 27.98% para Pusniag San Patricio y 26.02% para Santa Lucia (**Cuadro 27**).

Realizada la prueba de Tukey, el **Cuadro 28** mostró 2 rangos de significación en Tiazo Bajo en donde el tratamiento 33(R2) obtuvo el mayor número de tubérculos seguido de los tratamientos 8 (98-14-8) y 12 (10-10-97), mientras que el tratamiento testigo 35 (Cecilia) se ubicó en un rango descendente de la tabla y el tratamiento 23 (04-6-1) obtuvo el menor número de tubérculos; en Pusniag San Patricio se observaron 7 rangos de significación, el tratamiento 38 (Gabriela) presentó la mayor proporción de tubérculos a continuación se ubicaron los tratamientos 6 (99-38-5) y 11 (97-1-8), en tanto que el tratamiento 32(M9) presentó la menor cantidad de tubérculos; en Santa Lucia se determinaron 7 rangos de significación, el tratamiento 3 (99-78-5) presentó el mayor número de tubérculos seguido de los tratamientos 11 (97-1-8) y 33 (R2), en cambio el tratamiento testigo 40 (Superchola) se ubicó en un rango descendente de la tabla y el tratamiento 34 (Brenda) presentó el menor número de tubérculos por planta.

^{* = (}p < 0.5)

^{** = (}p < 0.1)

Cuadro 26. Prueba de Tukey al 5% de significación para número de plantas cosechadas de genotipos de papa sometidos a estrés hídrico en Tiazo Bajo provincia de Chimborazo, 2008.

	LOCALIDADES						
TRATAMIENTOS	Tiazo Bajo	Pusniag SP	Santa Lucia				
T1	25.33 ab	25.33 a	24.00 abcde				
T2	27.66 a	19.00 abcdef	26.66 ab				
T3	29.00 a	21.00 abcde	25.66 ab				
T4	24.66 ab	12.66 bcdef	13.33 cdefghij				
T5	27.33 ab	24.66 ab	25.00 abc				
T6	25.33 ab	24.33 ab	25.66 ab				
T7	24.00 ab	26.66 a	26.00 ab				
T8	26.00 ab	22.00 abcd	17.33 abcdefghi				
T9	27.00 ab	18.33 abcdef	20.66 abcdefgh				
T10	26.33 ab	26.33 a	13.00 defghij				
T11	28.66 a	25.00 ab	25.66 ab				
T12	26.66 ab	24.00 abc	20.66 abcdefgh				
T13	25.33 ab	10.33 def	11.00 fghij				
T14	27.66 a	18.66 abcdef	12.00 fghij				
T15	23.66 ab	12.66 bcdef	7.33 ij				
T16	26.66 ab	20.66 abcde	21.50 abcdefg				
T17	24.00 ab	11.66 cdef	8.33 ij				
T18	21.33 ab	8.00 f	5.50 j				
T19	24.33 ab	24.00 abc	22.33 abcdef				
T20	23.00 ab	15.00 abcdef	13.66 cdefghij				
T21	29.33 a	26.00 a	27.66 a				
T22	28.66 a	27.33 a	24.66 abcd				
T23	23.00 ab	26.00 a	16.66 abcdefghij				
T24	21.33 ab	12.66 bcdef	9.00 hij				
T25	17.00 b	7.00 f	9.66 hij				
T26	28.00 a	25.00 ab	20.66 abcdefgh				
T27	24.00 ab	22.00 abcd	18.66 abcdefghi				
T28	22.00 ab	19.33 abcdef	15.66 bcdefghij				
T29	27.00 ab	10.00 def	18.00 abcdefghi				
T31	21.33 ab	12.66 bcdef	999				
T32	23.33 ab	9.00 ef	10.00 ghij				
T33	28.33 a	26.66 a	24.50 abcd				
T34	27.33 ab	24.66 ab	16.66 abcdefghij				
T35	26.00 ab	26.66 a	12.50 efghij				
T36	26.00 ab	24.33 ab	7.33 ij				
T37	28.66 a	24.66 ab	24.66 abcd				
T38	999	26.00 a	999				
T39	27.33 ab	26.33 a	21.66 abcdefg				
T40	25.00 ab	21.00 abcde	16.66 abcdefghij				

Cuadro 27. Análisis de varianza del número de tubérculos por planta de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

Fuente de	Tiaz	Tiazo Bajo		Tiazo Bajo Pusniag SP		niag SP	Santa Lucia		
variación	Grados de	Cuadrado	Grados de	Cuadrado	Grados de	Cuadrado			
	libertad	medio	libertad	medio	libertad	medio			
Bloques	2	19.491 ns	2	1.547 ns	2	29.186 ns			
Tratamientos	37	89.616 **	38	123.747 **	36	175.088 **			
Error	74	34.176	76	23.493	66	22.803			
Total	113		116		104				
Promedio	19	0.34	1'	7.32	18.35				
general									
Coeficiente	30.23%		27.98%		26.	26.02%			
de variación									

ns = (p>0.5)

Al analizar el comportamiento de los genotipos para esta variable, en las tres localidades los promedios no difieren significativamente; así, en Tiazo Bajo el promedio fue de 19.34, en Pusniag San Patricio 17.32 y en Santa Lucia 18.35 tubérculos por planta.

Si bien el comportamiento de los genotipos fue diferente de una localidad a otra, por los resultados obtenidos, es posible afirmar que los clones: T33 (R2) y T3 (99-78-5) presentaron el mayor número de tubérculos por planta con 36.8 y 38.2 en Tiazo Bajo y Santa Lucia respectivamente, que superaron el valor de las variedades testigos. La variación dada entre los genotipos se debe eminentemente a las características genéticas de cada uno de ellos sin descartar la influencia de las condiciones ambientales.

Por otro lado, a pesar de no tener los valores más altos, el clon T11 (97-1-8) presentó un comportamiento similar en Pusniag San Patricio y Santa Lucia.

^{* = (}p < 0.5)

^{** = (}p < 0.1)

Cuadro 28. Prueba de Tukey al 5% de significación para número de tubérculos por planta de genotipos de papa sometidos a estrés hídrico en Tiazo Bajo provincia de Chimborazo, 2008.

	LOCALIDADES					
TRATAMIENTOS	Tiazo Bajo	Pusniag SP	Santa Lucia			
T1	24.00 ab	22.33 abcdefg	30.40 abcd			
T2	11.70 b	9.13 fg	14.20 defg			
T3	17.53 b	21.40 abcdefg	38.26 a			
T4	16.20 b	15.46 bcdefg	17.20 bcdefg			
T5	15.36 b	13.73 cdefg	14.46 defg			
T6	20.36 ab	30.53 ab	31.86 abc			
T7	19.53 ab	14.73 bcdefg	19.93 bcdefg			
T8	28.03 ab	17.46 bcdefg	21.86 bcdefg			
T9	22.66 ab	21.33 abcdefg	21.80 bcdefg			
T10	19.33 ab	21.46 abcdefg	11.10 fg			
T11	27.80 ab	29.20 abc	33.00 ab			
T12	27.86 ab	18.20 abcdefg	12.00 fg			
T13	19.60 ab	9.26 fg	13.93 efg			
T14	20.00 ab	13.73 cdefg	10.20 fg			
T15	22.40 ab	15.26 bcdefg	12.60 fg			
T16	21.46 ab	14.66 bcdefg	20.60 bcdefg			
T17	14.70 b	15.80 bcdefg	22.53 abcdefg			
T18	22.40 ab	15.46 bcdefg	10.70 fg			
T19	18.63 ab	15.60 bcdefg	17.13 bcdefg			
T20	14.76 b	9.80 fg	17.26 bcdefg			
T21	17.33 b	27.80 abcd	23.46 abcdefg			
T22	16.86 b	19.33 abcdefg	24.80 abcdef			
T23	11.60 b	15.06 bcdefg	15.86 cdefg			
T24	12.76 b	15.66bcdefg	12.53 fg			
T25	16.20 b	13.06defg	10.46 fg			
T26	20.73 ab	23.73 abcdefg	23.46 abcdefg			
T27	18.73 ab	12.46defg	11.53 fg			
T28	18.06 ab	15.00 bcdefg	9.66 fg			
T29	15.96 b	12.00 defg	14.06 defg			
T31	12.06 b	10.13 efg	999			
T32	16.90 b	8.20 h	9.40 fg			
T33	36.80 a	23.60 abcdefg	32.7 ab			
T34	19.46 ab	17.20 bcdefg	8.26 g			
T35	24.80 ab	12.06 defg	18.20 bcdefg			
T36	24.50 ab	25.00 abcdef	19.13 bcdefg			
T37	11.80 b	10.86 efg	12.40 fg			
T38	999	33.66 a	999			
T39	11.80 b	10.20 efg	11.66 fg			
T40	24.36 ab	25.86 abcde	30.26 abcde			

3. Rendimiento por planta

El análisis de varianza encontró diferencias altamente significativas entre los tratamientos en las tres localidades, mientras que para las repeticiones no se encontraron diferencias estadísticas. Los coeficientes de variación fueron: 29.87% para Tiazo Bajo, 36.24% para Pusniag San Patricio y 26.37% para Santa Lucia (**Cuadro 29**).

La prueba de Tukey (**Cuadro 30**), mostró 3 rangos de significación en las tres localidades. En Tiazo Bajo se pudo observar que el tratamiento 34 (Brenda) obtuvo el mayor rendimiento seguido de los tratamientos 7 (99-32-1), 33 (R2) y 36 (Estela) y el tratamiento 37 (Fripapa) obtuvo el menor rendimiento por planta; en Pusniag San Patricio, el tratamiento 3 (99-78-5) presentó el mayor rendimiento a continuación se ubicaron los tratamientos 21 (04-24-1) y 39 (Pan), en tanto que el tratamiento 20 (04-31-1) presentó el menor rendimiento por planta; en Santa Lucia, el tratamiento 13 (05-32-2) alcanzó el mayor rendimiento, seguido de los tratamientos 7 (99-32-1) y 8 (98-14-8), en cambio los tratamientos testigos se ubicaron en un lugar intermedio de la tabla y el tratamiento 20 (04-31-1) alcanzó el menor rendimiento por planta.

Se pudo apreciar que el rendimiento planta de los genotipos fue independiente para cada localidad; así, en Tiazo Bajo la variedad testigo T34 (Brenda) con un rendimiento de 1.65Kg prevaleció en relación a los clones evaluados, en Pusniag San Patricio y Santa Lucia sobresalieron los clones T3 (99-78-5) y T13 (05-32-2) con rendimientos de 1.22 y 0.97Kg respectivamente, que dominaron a las variedades testigos. No obstante a lo anterior, el clon T7 (99-32-1) obtuvo un rendimiento muy cercano a la variedad testigo T34 (Brenda) en Tiazo Bajo y su tendencia de producción fue muy similar en Pusniag San Patricio y Santa Lucia, asimismo el clon T21 (04-24-1) rindió en igual forma en Pusniag San Patricio y Tiazo Bajo.

El rendimiento de los genotipos en las tres localidades fue influenciado por las condiciones de suelo y precipitación (Gráfico 10, 11 y 12) debido a esto se explica el menor rendimiento de los genotipos en Santa Lucia.

Cuadro 29. Análisis de varianza del rendimiento planta (Kg) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

Fuente de	Tiaz	o Bajo	Pusn	niag SP	Santa	a Lucia
variación	Grados de	Cuadrado	Grados de	Cuadrado	Grados de	Cuadrado
	libertad	medio	libertad	medio	libertad	medio
Bloques	2	0.234 ns	2	0.003 ns	2	0.042 ns
Tratamientos	37	0.215 **	38	0.105 **	36	0.072 **
Error	74	0.078	76	0.051	66	0.022
Total	113		116		104	
Promedio	0.9	4Kg	0.6	52Kg	0.56Kg	
general						
Coeficiente	29.71%		36.42%		26.49%	
de variación						

ns = (p>0.5)

4. Rendimiento por categorías

El análisis de varianza para el rendimiento categoría 1 reveló la existencia de diferencias altamente significativas entre los tratamientos en las tres localidades y la misma condición se presentó para las repeticiones en Tiazo Bajo. Los coeficientes de variación fueron: 46.01% para Tiazo Bajo, 45.07% para Pusniag San Patricio y 61.24% para Santa Lucia. (**Cuadro 31**).

Realizada la prueba de Tukey para la categoría 1 (**Cuadro 32**), en Tiazo Bajo y Santa Lucia se observó 3 rangos de significación, en la primera localidad, el tratamiento 34 (Brenda) obtuvo el más alto rendimiento seguido de los tratamientos 7 (99-32-1) y 21 (04-24-1), en tanto que el tratamiento 35 (Cecilia) tuvo el menor rendimiento; en Pusniag San Patricio se registraron 7 rangos de significación, el tratamiento 39 (Pan) presentó el más alto rendimiento, a continuación se ubicaron los tratamientos 7 (99-32-1) y 37 (Fripapa), mientras que el tratamiento 20 (04-31-1) presentó el menor rendimiento; en Santa Lucia el tratamiento 7 (99-32-1) registró el más alto rendimiento seguido de los tratamientos 5 (99-66-4) y 29(B1), mientras que el tratamiento testigo 37 (Fripapa) se ubicó en un rango intermedio y el tratamiento 20 (04-31-1) registró el más bajo rendimiento de la categoría 1.

^{* = (}p<0.5)

^{** = (}p < 0.1)

Cuadro 30. Prueba de Tukey al 5% de significación para el rendimiento planta (Kg) de genotipos de papa sometidos a estrés hídrico en Tiazo Bajo provincia de Chimborazo.

	LOCALIDADES					
TRATAMIENTOS	Tiazo Bajo	Pusniag SP	Santa Lucia			
T1	1.12 abc	0.59 abc	0.64 abc			
T2	0.58 bc	0.56 abc	0.32 bc			
T3	0.98 abc	1.22 a	0.55 abc			
T4	0.94 abc	0.70 abc	0.68 abc			
T5	0.78 abc	0.71 abc	0.71 abc			
T6	1.14 abc	0.65 abc	0.61 abc			
T7	1.43 ab	0.79 abc	0.80 ab			
T8	1.04 abc	0.68 abc	0.79 ab			
T9	1.02 abc	0.73 abc	0.78 ab			
T10	0.73 bc	0.74 abc	0.51 abc			
T11	1.16 abc	0.71 abc	0.60 abc			
T12	1.03 abc	0.67 abc	0.53 abc			
T13	0.82 abc	0.74 abc	0.97 a			
T14	0.89 abc	0.50 abc	0.41 bc			
T15	0.90 abc	0.47 bc	0.64 abc			
T16	0.82 abc	0.36 bc	0.34 bc			
T17	0.60 bc	0.55 abc	0.55 abc			
T18	0.78 abc	0.59 abc	0.72 abc			
T19	1.21 abc	0.50 abc	0.48 abc			
T20	0.54 bc	0.22 c	0.25 c			
T21	0.97 abc	0.97 ab	0.60 abc			
T22	0.90 abc	0.68 abc	0.62 abc			
T23	0.88 abc	0.54 abc	0.56 abc			
T24	0.97 abc	0.73 abc	0.56 abc			
T25	0.85 abc	0.73 abc	0.41 bc			
T26	0.86 abc	0.55 abc	0.37 bc			
T27	1.19 abc	0.60 abc	0.55 abc			
T28	0.86 abc	0.55 abc	0.56 abc			
T29	1.04 abc	0.55 abc	0.68 abc			
T31	0.73 bc	0.40 bc	999			
T32	0.88 abc	0.35 bc	0.26 c			
T33	1.41 ab	0.54 abc	0.66 abc			
T34	1.65 a	0.68 abc	0.32 bc			
T35	0.38 c	0.25 bc	0.33 bc			
T36	1.23 abc	0.75 abc	0.63 abc			
T37	0.33 c	0.61 abc	0.56 abc			
T38	999	0.67 abc	999			
T39	0.91 abc	0.93 abc	0.53 abc			
T40	0.84 abc	0.46 bc	0.59 abc			
	J.0 1 400	0.10.00	0.00 0.00			

Cuadro 31. Análisis de varianza del rendimiento por categorías (kg/parcela) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

		Localidades										
Fuente de		Tia	zo Bajo			Pusniag S	San Patricio)		San	ta Lucia	
variación	Grados de		Cuadrado medi	О	Grados de	(Cuadrado medi	0	Grados de		Cuadrado medi	io
	libertad	Categoría 1	Categoría 2	Categoría 3	libertad	Categoría 1	Categoría 2	Categoría 3	libertad	Categoría 1	Categoría 2	Categoría 3
Bloques	2	77.362 **	38.352 **	214.754 **	2	4.094 ns	4.711 *	9.767 *	2	7.374 ns	3.063 ns	4.637 ns
Tratamientos	37	36.265 **	14.499 **	59.930 **	38	20.752 **	8.186 **	30.932 **	36	12.560 **	10.144 **	14.516 **
Error	74	12.270	4.258	29.587	76	3.117	1.385	2.624	66	3.262	2.214	2.025
Total	113				116				104			
Promedio general		7.60Kg	5.62Kg	10.38Kg		3.92Kg	3.69Kg	4.88Kg		2.95Kg	3.74Kg	3.39Kg
Coeficiente de variación		46.09%	36.72%	52.40%		45.04%	31.89%	33.19%		61.22%	39.78%	41.98%

ns = (p>0.5)* = (p<0.5)

^{** = (}p<0.1)

Cuadro 32. Prueba de Tukey al 5% de significación para el rendimiento 1 (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en Tiazo Bajo provincia de Chimborazo, 2008.

	LOCALIDADES					
TRATAMIENTOS	Tiazo Bajo	Pusniag SP	Santa Lucia			
T1	7.10 bc	4.93 bcdef	2.56 bc			
T2	4.80 bc	6.00 bcde	2.73 bc			
T3	7.03 bc	4.13 bcdef	0.76 c			
T4	5.53 bc	3.66 bcdef	2.63 bc			
T5	7.63 bc	7.10 abcd	8.36 ab			
T6	4.93 bc	1.60 def	1.86 c			
T7	13.56 ab	8.83 ab	9.30 a			
T8	10.40 abc	6.70 abcd	4.93 abc			
Т9	11.86 abc	5.36 bcdef	4.86 abc			
T10	5.06 bc	4.16 bcdef	2.85 bc			
T11	6.20 bc	2.83 cdef	3.13 abc			
T12	10.86 abc	5.86 bcde	3.73 abc			
T13	7.06 bc	4.50 bcdef	5.73 abc			
T14	11.23 abc	3.83 bcdef	3.06 bc			
T15	8.16 bc	2.03 def	1.73 c			
T16	4.66 bc	2.86 cdef	0.75 c			
T17	5.00 bc	1.70 def	0.83 c			
T18	5.13 bc	2.03 def	1.40 c			
T19	8.36 bc	3.13 bcdef	2.13 c			
T20	3.90 bc	0.00 g	0.13 c			
T21	12.06 ab	5.26 bcdef	3.9 abc			
T22	8.13 bc	5.70 bcdef	2.30 bc			
T23	6.53 bc	4.20 bcdef	2.86 bc			
T24	5.60 bc	3.26 bcdef	2.00 c			
T25	4.83 bc	1.86 def	1.93 c			
T26	8.60 abc	1.50 def	1.03 c			
T27	10.86 abc	5.06 bcdef	4.23 abc			
T28	6.70 bc	2.00 def	4.40 abc			
T29	10.93 abc	4.00 bcdef	6.10 abc			
T31	4.10 bc	1.56 def	999			
T32	8.96 abc	0.70 ef	0.85 c			
T33	5.93 bc	3.80 bcdef	2.05 c			
T34	19.96 a	7.23 abcd	1.83 c			
T35	0.40 c	0.50 ef	0.45 c			
T36	10.10 abc	3.40 bcdef	1.46 c			
T37	5.66 bc	8.46 abc	4.16 abc			
T38	999	0.00 g	999			
T39	6.53 bc	12.16 a	4.73 abc			
T40	4.80 bc	0.76 ef	1.26 c			

Al realizar los análisis de varianza para las categorías 2 y 3 se encontraron diferencias altamente significativas entre los tratamientos en las tres localidades, también se identificó diferencias altamente significativas y una diferencia significativa entre las repeticiones en Tiazo Bajo y Pusniag San Patricio respectivamente. Los coeficientes de variación para el rendimiento 2 y 3 fueron: 36.72% y 52.40% para Tiazo Bajo, 31.91% y 33.26% para Pusniag San Patricio, 39.89% y 42.10% para Santa Lucia (**Cuadro 30**).

La prueba de Tukey para la categoría 2 (**Cuadro 33**) identificó 4 rangos de significación en Tiazo Bajo, en esta localidad el tratamiento 36 (Estela) presentó el mayor rendimiento seguido de los tratamientos 21 (04-24-1) y 11 (97-1-8), en cambio el tratamiento 5 (99-66-4) obtuvo el menor rendimiento; en Pusniag San Patricio se establecieron 8 rangos de significación, el tratamiento 21(04-24-1) registró el más alto rendimiento a continuación se ubicaron los tratamientos 39 (Pan) y 36 (Estela), en tanto que el tratamiento 32(M9) alcanzó el menor rendimiento; en Santa Lucia se identificaron 6 rangos de significación, donde el tratamiento 7 (99-32-1) presentó el mayor rendimiento, seguido de los tratamientos 21 (04-24-1) y 22 (04-12-1), mientras que los tratamiento testigo 37 (Fripapa) se ubicó en un lugar intermedio de la tabla y el tratamiento 32 (M9) obtuvo el menor rendimiento de la categoría 2.

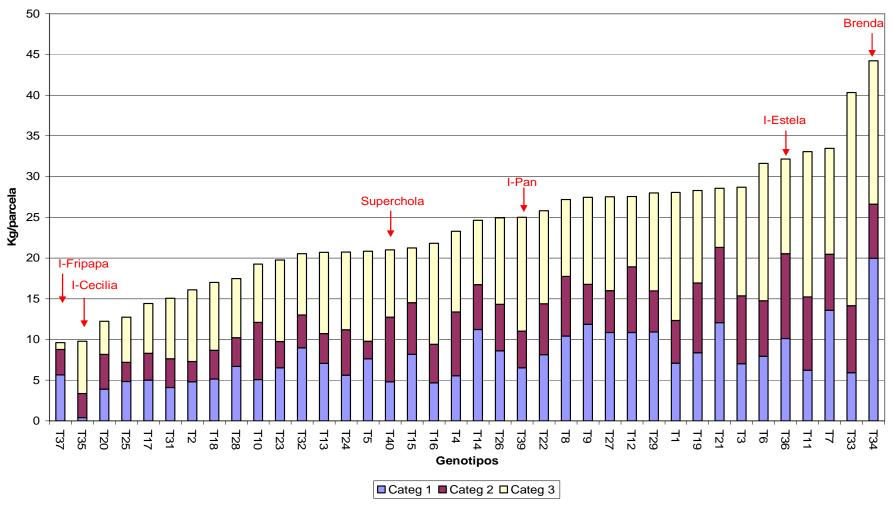
Luego de realizar la prueba de Tukey para la categoría 3 (**Cuadro 34**) se identificó 2 rangos de significación en Tiazo Bajo, en donde el tratamiento 33 (R2) obtuvo el más alto rendimiento, seguido de los tratamientos 11 (97-1-8) y 34 (Brenda), en tanto que el tratamiento 37 (Fripapa) registró el más bajo rendimiento; en Pusniag San Patricio se observaron 7 rangos de significación, el tratamiento 21 (04-24-1) presentó el más alto rendimiento a continuación se ubicaron los tratamientos 38 (Gabriela) y 3 (99-78-5), mientras que el tratamiento 32 (M9) tuvo el más bajo rendimiento; en Santa Lucia se identificaron 7 rangos de significación , el tratamiento 3 (99-78-5) obtuvo el más alto rendimiento, seguido de los tratamientos 1 (99-99-2) y 33 (R2), mientras que el tratamiento testigo 37 (Fripapa) se ubicó en un lugar descendente de la tabla y el tratamiento 14 (05-32-1) presentó el más bajo rendimiento de la categoría 3.

Los elevados porcentajes de los coeficientes de variación fueron el reflejo de la variabilidad realizada al momento de la clasificación de los tubérculos para las categorías.

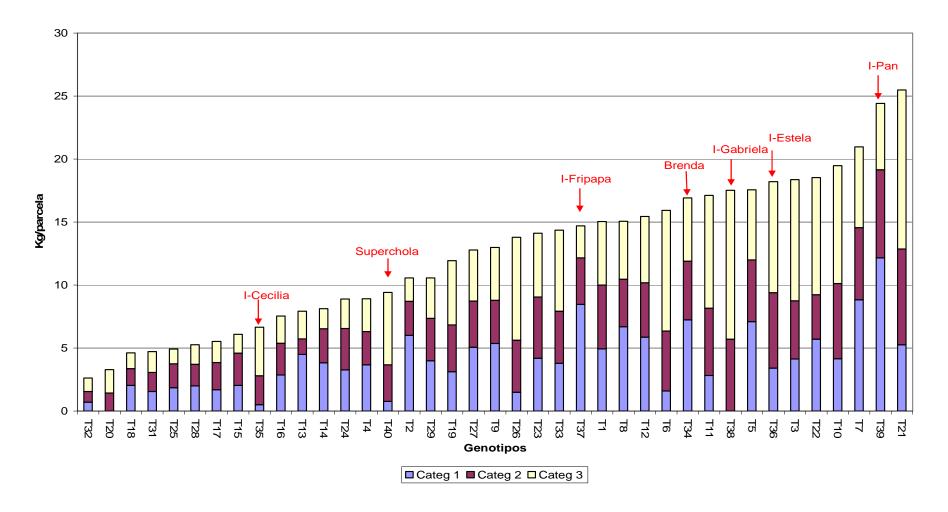
Al examinar los rendimientos de los genotipos por localidad (**Gráficos 4, 5 y 6**), estos mostraron gran variación en sus comportamientos. Así, en Tiazo Bajo en el rendimiento categoría 1 la variedad testigo T34 (Brenda) con 19.96Kg superó considerablemente a la producción de los clones, en la categoría 2, los clones T21 y T11 obtuvieron valores muy cercanos a la variedad testigo T36 (Estela) que alcanzó el más alto rendimiento (10.43Kg) y el clon T21 (04-24-1) demostró el menor rendimiento de la categoría 3 (7.26Kg) a pesar de que éste no alcanzó los mayores rendimientos en a categoría 1 y 2. En Pusniag San Patricio, la variedad testigo T39 (Pan) y el clon T21 (04-24-1) presentaron los mejores rendimientos para las categorías 1 y 2 con 12.16 y 7.6Kg respectivamente, mientras que el clon T2 (99-97-4) obtuvo el menor rendimiento (5.06Kg) de la categoría 3. En Santa Lucia, el clon T7 (99-32-1) exhibió los mayores rendimientos en la categorías 1 y 2 con 9.3 y 8 Kg respectivamente, y en la categoría 3, el mismo clon presentó el menor rendimiento de tubérculo desecho.

Es lógico observar que los materiales con menor rendimiento en la categoría 3, también obtuvieron bajos rendimientos en las categorías 1 y 2. Debe recalcarse, entonces que los materiales que se consideraron para el rendimiento categoría 3 fueron aquellos que presentaron menor cantidad de tubérculo desecho y guardaron una estrecha relación entre los rendimientos de las categorías 1 y 2.

Si bien las variedades testigos 34 (Brenda) y 39 (Pan) prevalecieron en la categoría 1 en Tiazo Bajo y en Pusniag San Patricio respectivamente, no se debe dejar de considerar la respuesta positiva del clon T7 (99-32-1) en las tres categorías en Santa Lucia y de los buenos rendimientos del clon T21 (04-24-1) en Pusniag San Patricio y Tiazo Bajo.


En general, los diversos contrastes del rendimiento por categoría de los genotipos se debieron a las características genéticas más la influencia de la fertilidad del suelo y las condiciones del clima de cada localidad.

Cuadro 33. Prueba de Tukey al 5% de significación para el rendimiento categoría 2 (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en Tiazo Bajo provincia de Chimborazo, 2008.


	LOCALIDADES						
TRATAMIENTOS	Tiazo Bajo	Pusniag SP	Santa Lucia				
T1	5.23 abcd	5.06 abcdef	5.16 abcdef				
T2	2.50 bcd	2.70 cdefg	3.83 abcdef				
T3	8.33 abcd	4.63 abcdefg	5.26 abcdef				
T4	7.86 abcd	2.66 cdefg	3.30 abcdef				
T5	2.16 d	4.90 abcdef	3.43 abcdef				
T6	6.83 abcd	4.76 abcdef	5.90 abcdef				
T7	6.90 abcd	5.73 abcd	8.00 a				
T8	7.33 abcd	3.76 abcdefg	5.56 abcdef				
Т9	4.90 abcd	3.43 bcdefg	6.80 abcd				
T10	7.03 abcd	5.96 abc	1.70 ef				
T11	9.03 abc	5.33 abcde	5.80 abcdef				
T12	8.06 abcd	4.33 abcdefg	4.13 abcdef				
T13	3.56 bcd	1.23 fg	3.33 abcdef				
T14	5.50 abcd	2.70 cdefg	1.63 ef				
T15	6.36 abcd	2.56 cdefg	2.00 cdef				
T16	4.76 abcd	2.53 cdefg	2.45 bcdef				
T17	3.30 bcd	2.16 cdefg	2.13 bcdef				
T18	3.53 bcd	1.33 fg	1.30 f				
T19	8.56 abcd	3.70 bcdefg	4.03 abcdef				
T20	4.26 abcd	1.43 fg	1.53 f				
T21	9.23 ab	7.60 a	7.13 ab				
T22	6.26 abcd	3.53 bcdefg	7.00 abc				
T23	3.23 bcd	4.86 abcdef	3.76 abcdef				
T24	5.60 abcd	3.30 bcdefg	1.80 def				
T25	2.36 cd	1.9 defg	1.53 f				
T26	5.73 abcd	4.13 abcdefg	3.50 abcdef				
T27	5.13 abcd	3.66 bcdefg	2.93 abcdef				
T28	3.50 bcd	1.70 efg	2.30 bcdef				
T29	5.03 abcd	3.36 bcdefg	3.90 abcdef				
T31	3.53 bcd	1.50 efg	999				
T32	4.03 abcd	0.86 h	1.10 f				
T33	8.20 abcd	4.13 abcdefg	6.65 abcde				
T34	6.66 abcd	4.66 abcdefg	1.76 def				
T35	2.96 bcd	2.30 cdefg	1.80 def				
T36	10.43 a	6.00 abc	2.30 bcdef				
T37	3.10 bcd	3.70 bcdefg	4.96 abcdef				
T38	999	5.70 abcd	999				
T39	4.50 abcd	7.00 ab	4.06 abcdef				
T40	7.93 abcd	2.90 cdefg	4.40 abcdef				

Cuadro 34. Prueba de Tukey al 5% de significación para el rendimiento categoría 3 (kg/parcela) de genotipos de papa sometidos a estrés hídrico en Tiazo Bajo provincia de Chimborazo, 2008.

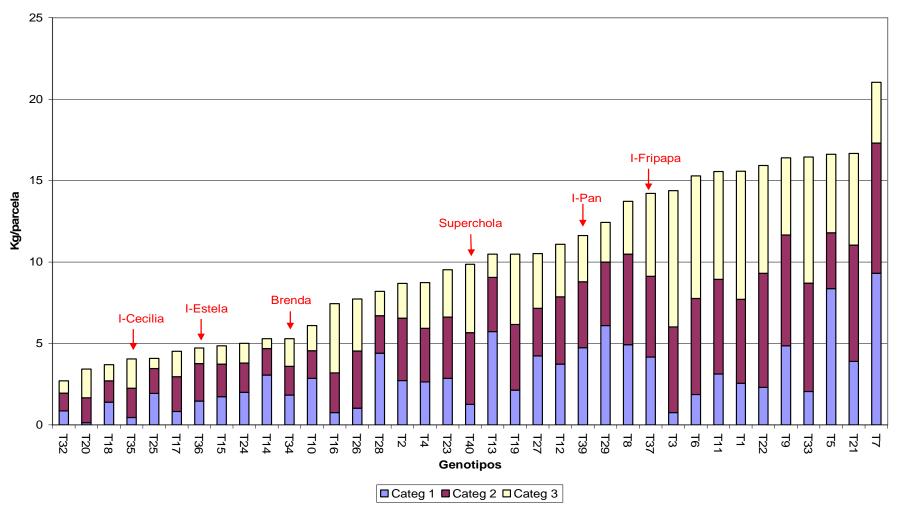

		LOCALIDAD	ES
TRATAMIENTOS	Tiazo Bajo	Pusniag SP	Santa Lucia
T1	15.73 ab	5.06 bcdefg	7.86 ab
T2	8.80 ab	1.86 fg	2.13 efg
T3	13.33 ab	9.60 ab	8.36 a
T4	9.90 ab	2.60 fg	2.8 defg
T5	11.06 ab	5.56 bcdefg	4.83 abcdefg
T6	16.86 ab	9.56 ab	7.53 abcd
T7	13.00 ab	6.40 bcdefg	3.73 abcdefg
T8	9.46 ab	4.60 bcdefg	3.23 bcdefg
T9	10.70 ab	4.20 cdefg	4.73 abcdefg
T10	7.16 b	9.36 abc	1.55 fg
T11	17.83 ab	8.96 abcd	6.63 abcde
T12	8.63 ab	5.26 bcdefg	3.23 bcdefg
T13	10.00 ab	2.20 fg	1.43 fg
T14	7.90 b	1.60 fg	0.60 g
T15	6.73 b	1.50 fg	1.13 fg
T16	12.40 ab	2.16 fg	4.25 abcdefg
T17	6.10 b	1.66 fg	1.56 fg
T18	8.33 ab	1.26 fg	1.00 fg
T19	11.36 ab	5.10 bcdefg	4.33 abcdefg
T20	4.06 b	1.86 fg	1.76 efg
T21	7.26 b	12.63 a	5.63 abcdef
T22	11.40 ab	9.30 abc	6.63 abcde
T23	10.00 ab	5.06 bcdefg	2.90 cdefg
T24	9.53 ab	2.33 fg	1.20 fg
T25	5.56 b	1.16 fg	0.63 g
T26	10.60 ab	8.16 abcde	3.20 bcdefg
T27	11.53 ab	4.06 cdefg	3.36 bcdefg
T28	7.26 b	1.56 fg	1.50 fg
T29	12.03 ab	3.20 efg	2.43 efg
T31	7.43 b	1.66 fg	999
T32	7.53 b	1.06 g	0.75 g
T33	26.20 a	6.43 bcdef	7.75 abc
T34	17.60 ab	5.03 bcdefg	1.70 fg
T35	6.43 b	3.86 defg	1.80 efg
T36	11.63 ab	8.80 abcd	0.96 fg
T37	0.86 b	2.53 fg	5.10 abcdefg
T38	999	11.83 a	999
T39	13.96 ab	5.26 bcdefg	2.83 defg
T40	8.26 b	5.76 bcdefg	4.20 abcdefg

Gráfico 4. Rendimiento por categorías de genotipos de papa sometidos a estrés hídrico en la localidad de Tiazo Bajo, provincia de Chimborazo.

Gráfico 5. Rendimiento por categorías de genotipos de papa sometidos a estrés hídrico en la localidad de Pusniag San Patricio, provincia de Chimborazo.

Gráfico 6. Rendimiento por categorías de genotipos de papa sometidos a estrés hídrico en la localidad de Santa Lucia, provincia de Chimborazo.

7. Rendimiento total

El análisis de varianza reveló la existencia de diferencias altamente significativas entre los tratamientos en las tres localidades, en Tiazo Bajo también se encontró una diferencia significativa entre las repeticiones. Los coeficientes de variación fueron: 25.80% para Tiazo Bajo. 23.50% para Pusniag San Patricio y 33.48% para Santa Lucia (**Cuadro 35**).

Realizada la prueba de Tukey, en el **Cuadro 36** se aprecia 3 rangos de significación en las tres localidades. En Tiazo Bajo, el tratamiento 34 (Brenda) presentó el mayor rendimiento seguido de los tratamientos 33 (R2) y 7 (99-32-1), mientras que el tratamiento 37(Fripapa) exhibió el menor rendimiento; en Pusniag San Patricio el tratamiento 21 (04-24-1) obtuvo el mayor rendimiento seguido de los tratamientos 39 (Pan) y 7 (99-32-1), en cambio el tratamiento 32 (M9) alcanzó el menor rendimiento; en Santa Lucia el tratamiento 7 (99-32-1) mostró el mayor rendimiento a continuación se ubicaron los tratamientos 21 (04-24-1) y 5 (99-66-4), el tratamiento 37 (Fripapa) se ubicó en un lugar intermedio de la tabla y el tratamiento 20 (04-31-1) registró el menor rendimiento.

En general, los genotipos mostraron grandes diferencias en sus rendimientos. En Tiazo Bajo, al igual que las variables anteriores, la variedad testigo T34 (Brenda) presentó el mejor rendimiento (44.23Kg/parcela). En Pusniag San Patricio y en Santa Lucia los clones T21 (04-24-1) y T7 (99-32-1) con rendimientos de 25.5 y 21.03Kg/parcela prevalecieron en relación a las variedades testigos; además, estos clones mostraron una relación directamente proporcional entre el desarrollo del follaje y el rendimiento total. El promedio del rendimiento total fue bueno en Tiazo Bajo con una producción de 23.61Kg/parcela, mientras que en Pusniag San Patricio y Santa Lucia los rendimientos fueron bajos en relación a la primera localidad, con una producción de 12.48 y 10.07 Kg/parcela respectivamente.

No es posible realizar conclusiones claras con respecto a esta variable; sin embargo, la deficiencia de agua en el proceso de germinación del cultivo en Pusniag San Patricio y la escasez de agua durante el llenado de los tubérculos en Santa Lucia probablemente influyó negativamente en el rendimiento total de los genotipos.

Cuadro 35. Análisis de varianza del rendimiento total (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

Fuente de	Tiaz	o Bajo	Pusn	niag SP	Santa	a Lucia
variación	Grados de	Cuadrado	Grados de	Cuadrado	Grados de	Cuadrado
	libertad	medio	libertad	medio	libertad	medio
Bloques	2	152.087 *	2	10.613 ns	2	31.475 ns
Tratamientos	37	176.919 **	38	104.111 **	36	67.805 **
Error	74	37.136	76	8.605	66	11.378
Total	113		116		104	
Promedio	23.0	51Kg	12.48Kg		10.07Kg	
general						
Coeficiente	25.81%		23.50%		33.50%	
de variación						

ns = (p>0.5)

8. Rendimiento hectárea

Luego de realizar el análisis de varianza, se encontró diferencias altamente significativas entre los tratamientos en las tres localidades. Los coeficientes de variación fueron: 29.84% para Tiazo Bajo, 36.12% para Pusniag San Patricio y 26.34% para Santa Lucia (**Cuadro 37**).

La prueba de Tukey (**Cuadro 38**), identificó 3 rangos de significación en las tres localidades. En Tiazo Bajo, el tratamiento 34 (Brenda) exhibió el mayor rendimiento a continuación se ubicaron los tratamientos 7 (99-32-1) y 33(R2) y el menor rendimiento lo obtuvo el tratamiento 37 (Fripapa); En Pusniag San Patricio, el tratamiento 3 (99-78-5) alcanzó el mayor rendimiento seguido de los tratamientos 21 (4-24-1) y 39 (Pan) y el tratamiento 20 (04-31-1) obtuvo el menor rendimiento; en Santa Lucia, el tratamiento 13 (05-32-2) presentó el más alto rendimiento a continuación se ubicaron los tratamientos 7 (99-32-1) y 11 (98-14-8), mientras que el tratamiento testigo 36 (Estela) se ubicó en un rango intermedio y el tratamiento 20 (04-31-1) obtuvo el más bajo rendimiento por hectárea.

^{* = (}p < 0.5)

^{** = (}p < 0.1)

Cuadro 36. Prueba de Tukey al 5% de significación para rendimiento total (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en Tiazo Bajo provincia de Chimborazo, 2008.

		LOCALIDADES	
TRATAMIENTOS	Tiazo Bajo	Pusniag SP	Santa Lucia
T1	28.06 bcde	15.06 bcdefghij	15.60 abcdef
T2	16.10 cde	10.56 defghijklmnñ	8.70 bcdefghi
T3	28.70 abcde	18.36 abcde	14.40 abcdefgh
T4	23.30 bcde	8.93 efghijklmnñ	8.73 abcdefghi
T5	20.86 bcde	17.56 abcdef	16.63 ab
T6	28.63 bcde	15.93 abcdefgh	15.30 abcdefg
T7	33.46 abc	20.96 abc	21.03 a
T8	27.20 bcde	15.06 bcdefghij	13.73 abcdefghi
Т9	27.46 bcde	13.00 cdefghijklm	16.40 abcd
T10	19.26 cde	19.50 abcd	6.10 bcdefghi
T11	33.06 abc	17.13 abcdefg	15.56 abcdefg
T12	27.56 bcde	15.46 bcdefghi	11.10 abcdefghi
T13	20.63 bcde	7.93 fghijklmnñ	10.50 abcdefghi
T14	24.63 bcde	8.13 fghijklmnñ	5.30 bcdefghi
T15	21.26 bcde	6.10 ijklmnñ	4.86 defghi
T16	21.83 bcde	7.56 ghijklmnñ	7.45 bcdefghi
T17	14.40 cde	5.53 jklmnñ	4.53 efghi
T18	17.00 cde	4.63 mnñ	3.70 hi
T19	28.30 bcde	11.93 cdefghijklmnñ	10.50 abcdefghi
T20	12.23 de	3.30 mn	3.43 hi
T21	28.56 bcde	25.50 a	16.66 ab
T22	25.80 bcde	18.53 abcde	15.93 abcde
T23	19.76 cde	14.13 cdefghijklm	9.53 abcdefghi
T24	20.73 bcde	8.90 efghijklmnñ	5.00 cdefghi
T25	12.76 de	4.93 lmnñ	4.10 fghi
T26	24.93 bcde	13.80 cdefghijklm	7.73 bcdeefghi
T27	27.53 bcde	12.80 cdefghijklmn	10.53 abcdefghi
T28	17.46 cde	5.26 klmnñ	8.20 bcdefghi
T29	28.00 bcde	10.56 defghijklmnñ	12.43 abcdefghi
T31	15.06 cde	4.73 lmnñ	999
T32	20.53 bcde	2.63 n	2.70 i
T33	40.33 ab	14.36 cdefghijkl	16.45 abc
T34	44.23 a	16.93 abcdefg	5.30 bcdefghi
T35	9.80 e	6.66 hijklmnñ	4.05 ghi
T36	32.16 abcd	18.20 abcde	4.73 efghi
T37	9.63 e	14.70 cdefghijk	14.23 abcdefghi
T38	999	17.53 abcdef	999
T39	25.00 bcde	24.43 ab	11.63 abcdefghi
T40	21.00 bcde	9.43 efghijklmnñ	9.86 abcdefghi

Los genotipos presentaron un rendimiento muy diferente en los tres sitios experimentales. En Tiazo Bajo, los clones T7 (99-32-1) y T33 (R2) obtuvieron valores muy cercanos (47.83 y 47.1T/ha) a la variedad testigo T34 (Brenda) que alcanzó el mejor rendimiento (55.1T/ha). En Pusniag San Patricio se observó que la mejor respuesta a la producción por hectárea la obtienen los clones, sobresaliendo la producción del T3 (99-78-5) y T21 (04-24-1) con 40.5 y 32.5 T//ha respectivamente, situación similar se observó en Santa Lucia en donde los clones presentaron respuestas positivas en relación a las variedades testigos, prevaleciendo los rendimientos de los clones T13 (05-32-2) y T7 (99-32-1) con 32.41 y 26.93T/ha respectivamente.

Los resultados demuestran que bajo condiciones óptimas de desarrollo, los clones pueden alcanzar rendimientos muy próximos a las variedades, en tanto que en condiciones menos favorables el rendimiento de los clones predominó.

Cuadro 37. Análisis de varianza del rendimiento por hectárea (Kg) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

Fuente de	Tiaz	o Bajo	Pusn	niag SP	Santa	a Lucia	
variación	Grados de	Cuadrado	Grados de	Cuadrado	Grados de	Cuadrado	
	libertad	medio	libertad	medio	libertad	medio	
Bloques	2	269.459 ns	2	2.482 ns	2	51.452 ns	
Tratamientos	37	239.274 **	38	117.387 **	36	79.108 **	
Error	74	86.601	76	56.234	66	24.240	
Total	113		116		104		
Promedio	31.	.19T	20.76T		18.70T		
general							
Coeficiente	29.	84%	36	.12%	26.33%		
de variación							

ns = (p>0.5)

^{* = (}p<0.5)

^{** = (}p<0.1)

Cuadro 38. Prueba de Tukey al 5% de significación para rendimiento por hectárea (Kg) de genotipos de papa sometidos a estrés hídrico en Tiazo Bajo provincia de Chimborazo, 2008.

		LOCALIDAD	DES
TRATAMIENTOS	Tiazo Bajo	Pusniag SP	Santa Lucia
T1	37.36 abc	19.83 abc	21.69 abc
T2	19.36 bc	18.84 abc	10.95 bc
T3	32.96 abc	40.59 a	18.63 abc
T4	31.46 abc	23.35 abc	22.96 abc
T5	26.20 abc	23.74 abc	22.00 abc
T6	38.13 abc	21.71 abc	20.34 abc
T7	47.83 ab	26.38 abc	26.93 ab
T8	34.86 abc	22.80 abc	26.47 ab
T9	34.06 abc	24.34 abc	26.29 ab
T10	24.43 bc	24.64 abc	17.10 abc
T11	38.66 abc	23.62 abc	20.17 abc
T12	34.46 abc	22.46 abc	17.89 abc
T13	27.40 abc	24.68 abc	32.41 a
T14	29.76 abc	15.73 bc	13.77 bc
T15	30.13 abc	12.21 bc	21.40 abc
T16	27.26 abc	18.31 abc	11.40 bc
T17	19.96 bc	16.63 abc	18.55 abc
T18	26.26 abc	19.80 abc	23.87 abc
T19	40.53 abc	16.61 abc	16.08 abc
T20	18.16 c	7.20 c	8.38 c
T21	32.56 abc	32.59 ab	20.05 abc
T22	30.00 abc	22.68 abc	20.84 abc
T23	29.76 abc	18.08 abc	18.89 abc
T24	32.40 abc	24.34 abc	18.63 abc
T25	28.53 abc	24.57 abc	13.65 bc
T26	29.83 abc	18.40 abc	12.48 bc
T27	39.90 abc	20.07 abc	18.57 abc
T28	28.90 abc	18.47 abc	18.70 abc
T29	34.86 abc	18.33 abc	22.71 abc
T31	24.23 bc	13.29 bc	999
T32	29.16 abc	11.66 bc	8.66 c
T33	47.10 ab	17.99 abc	22.05 abc
T34	55.10 a	22.77 abc	10.57 bc
T35	12.56 c	8.28 bc	10.99 bc
T36	41.23 abc	25.18 abc	21.20 abc
T37	11.20 c	20.39 abc	18.85 abc
T38	999	22.49 abc	999
T39	30.50 abc	31.05 abc	17.75 abc
T40	28.10 abc	15.36 bc	19.81 abc

9. Porcentaje de materia seca del tubérculo

Los promedios generales de materia seca fueron: 23.36% para Tiazo Bajo. 25.07% para Pusniag San Patricio y 24.13% para Santa Lucia.

Como se puede observar en los **Gráficos 7, 8 y 9** la mayor parte de los genotipos presentaron porcentajes de materia seca mayor al 20 %, en Santa lucia el clon T15 (05-28-4) presentó el más alto porcentaje de materia seca, debido a su característica varietal más la influencia del ambiente.

El porcentaje de materia seca es un concepto genérico que se utiliza para medir el contenido de los sólidos de los tubérculos. En términos generales, los genotipos exhibieron excelente calidad de tubérculo para el procesamiento agroindustrial.

H. SELECCIÓN DE LOS GENOTIPOS

La tabulación de los datos se encuentra en los **Cuadros 39** y **40**. En Tiazo Bajo, los genotipos T21 (04-24-1), T11 (97-1-8), T7 (99-32-1), T34 (Brenda) y T33 (R2) presentaron una probabilidad del 79.2% de selección, mientras que en Pusniag San Patricio, los genotipos T10 (99-1-10), T21 (04-24-1), T7 (99-32-1) T5 (99-38-5), T3 (99-78-5), T22 (04-12-1) y T39 (Pan) mostraron una probabilidad de selección del 92% y en Santa Lucia, los clones T7 (99-32-1), T21 (04-24-1), T33 (R2), T5 (99-38-5) y T1 (99-99-2) correspondieron al 81.4% de probabilidad de selección.

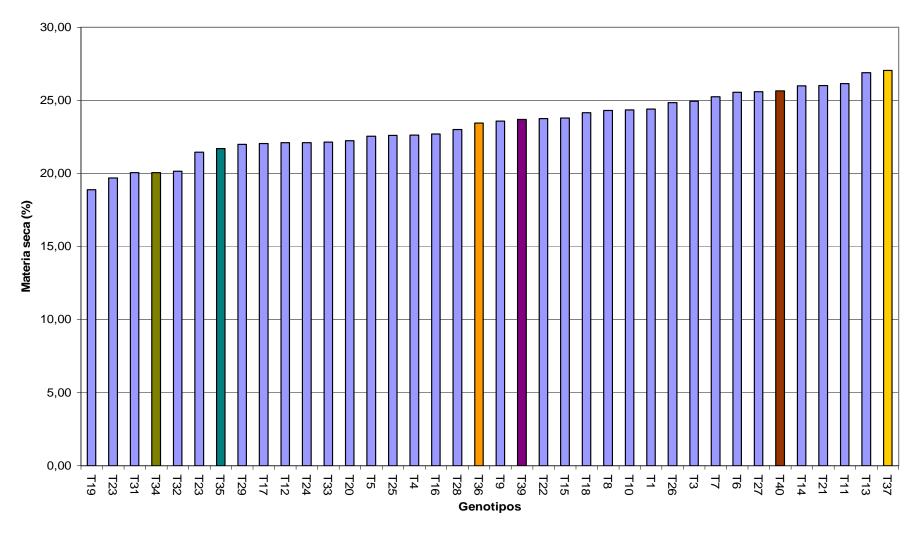
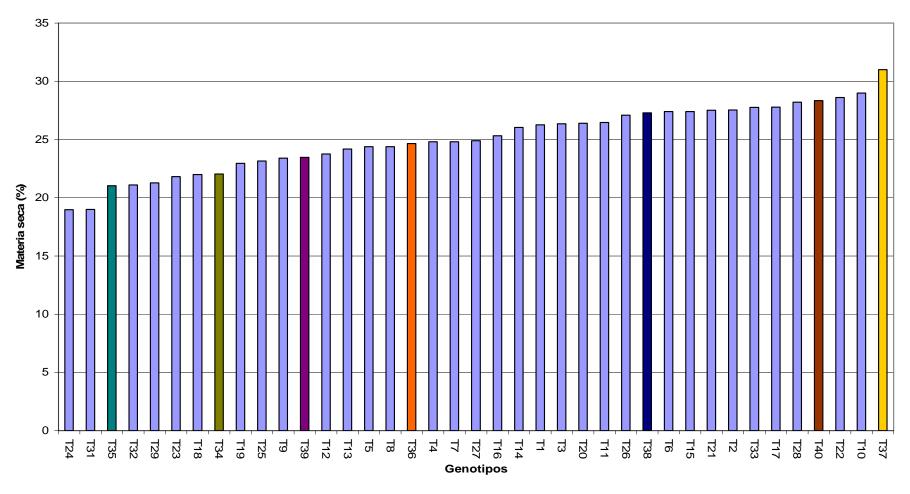



Gráfico 7. Porcentaje de materia seca de genotipos de papa sometidos a estrés hídrico en la localidad de Tiazo Bajo, provincia de Chimborazo.

Gráfico 8. Porcentaje de materia seca de genotipos de papa sometidos a estrés hídrico en la localidad de Pusniag San Patricio, provincia de Chimborazo.

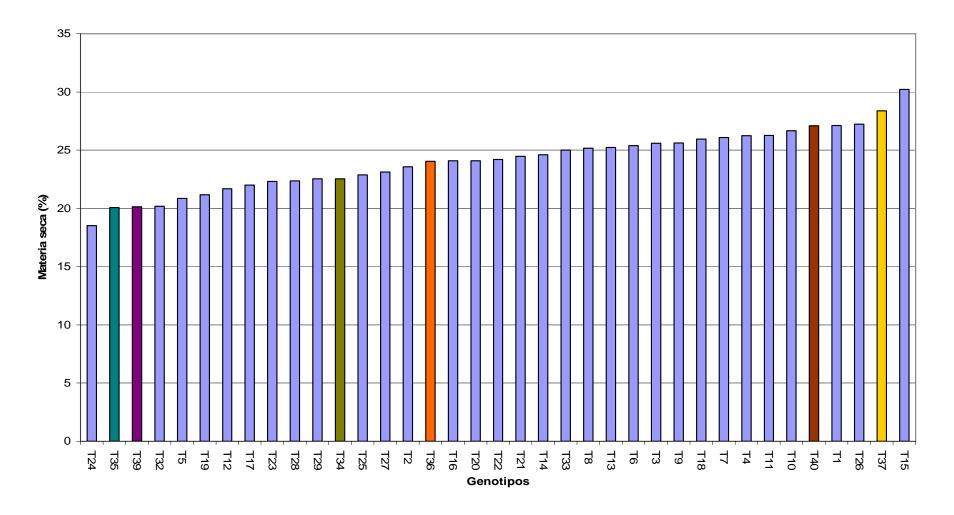


Gráfico 9. Porcentaje de materia seca de genotipos de papa sometidos a estrés hídrico en la localidad de Santa Lucia, provincia de Chimborazo.

Cuadro 39. Puntajes de calificación para la selección de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

											L	ocalid	ades											
Variable				Tiazo	Bajo					Pusniag San Patricio				Santa Lucia										
	T33	T34	T7	T11	T21	T5	T22	T36	Т7	T38	T21	T10	Т3	T39	T22	T5	T18	T5	T1	T7	T11	T33	T4	T21
Altura de planta	5	0	5	5	5	5	0	0	5	5	5	5	0	0	0	0	0	5	0	5	5	5	0	5
Cobertura de suelo	0	0	7	7	7	7	7	0	7	7	7	7	0	0	0	0	7	7	0	7	0	0	7	7
Vigor de planta	0	0	0	7	0	0	0	0	0	0	0	0	0	7	0	0	7	0	0	0	0	0	0	0
Senescencia	0	8	0	0	0	0	0	0	0	0	0	0	7	0	0	8	0	0	8	8	0	8	0	8
Rendimiento total	10	10	10	0	10	0	0	0	10	0	0	10	10	10	10	10	0	10	0	10	0	10	0	10
Materia seca	0	0	0	7	7	0	0	10	0	0	10	7	0	0	7	0	0	0	7	0	0	0	0	0
Puntaje Total	15	18	22	26	29	12	7	10	22	12	22	29	17	17	17	18	14	22	15	30	5	23	7	25

Cuadro 40. Prueba de probabilidad para la selección de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo, 2008.

	Tratamientos	Puntaje total	Probabilidad %	Probabilidad
				acumulada %
	T21	29	20.9	20.9
ajo	T11	26	18.7	39.6
B	T7	22	15.8	55.4
Tiazo Bajo	T34	18	13.0	68.4
ΪΞ	T33	15	10.8	79.2
	T5	12	7.2	86.4
	T36	10	8.6	95.0
	T22	7	5.0	100.0
0				
Pusniag San Patricio	T10	29	19.0	19
-Satı	T21	22	14.2	33.2
l m	T7	22	14.2	47.4
SS	T6	18	11.6	59.0
iiag	T3	17	11.0	70.0
nsr	T22	17	11.0	81.0
<u>A</u>	T39	17	11.0	92.0
	T38	12	8.0	100.0
	T7	30	21.2	21.2
 cia	T21	25	17.7	38.9
Lu	T33	23	16.3	55.2
nta	T5	22	15.6	70.8
Santa Lucia	T1	15	10.6	81.4
	T18	14	10.0	91.4
	T4	7 5	5.0	96.4
	T1	5	3.6	100.0

I. DEFICIT HÍDRICO Y HUMEDAD DEL SUELO

JEREZ Y SIMPENDÖRFER (2000), mencionan que la precipitación efectiva condiciona las etapas de desarrollo de la papa, precipitaciones mayores a 10mm diarios son consideradas efectivas, mientras que precipitaciones menores a ésta cantidad quedan retenidas en el follaje de las plantas y se evaporan antes de llegar al suelo. HAVERKORT, (1986), señala que un buen cultivo de papa requiere en promedio de 600 a 800 milímetros de agua dependiendo de las condiciones climáticas y de la duración del periodo vegetativo.

En Tiazo Bajo la precipitación acumulada durante el periodo de crecimiento de los genotipos fue de 309mm, al analizar el diagrama de precipitación de esta localidad (**Gráfico 10**), se puede apreciar que no existieron periodos prolongados de deficiencia de lluvia; sin embargo, se observó 3 periodos cortos de déficit hídrico.

En el caso de Pusniag San Patricio, la suma de las precipitaciones durante el ciclo del cultivo fue de 525mm, según el diagrama de precipitación (**Gráfico 11**), existió un periodo prolongado de déficit hídrico entre 6 de diciembre y el 14 de enero, luego de esta etapa se aprecia una buena disponibilidad hídrica para el cultivo.

En tanto que, en Santa Lucia la precipitación acumulada de los 5 meses fue de 217mm (en el primer del mes del cultivo no se obtuvo datos por falta del sensor de precipitación) y de acuerdo a la tasa de precipitación (**Gráfico 12**) se identificó dos periodos de déficit hídrico que correspondieron: 12 de febrero al 18 de marzo y del 3 de junio al 8 de julio, debe recalcarse que el segundo período la ausencia de lluvias fue significativa.

Con respecto a la humedad del suelo, los resultados (Anexo 2) mostraron una deficiencia de agua temporal en Tiazo Bajo, mientras que en Pusniag San Patricio y Santa Lucia el suelo no llego al punto de marchitez permanente.

Durante la época de crecimiento del cultivo no se observaron manifestaciones morfológicas de estrés hídrico; sin embargo, existieron periodos cortos de deficiencia de agua que de alguna manera influenciaron en el rendimiento de los genotipos. En Santa Lucia existió un periodo

prolongado de escasez de agua; pero es necesario señalar, que las lecturas del tensiómetro determinaron un suelo a capacidad de campo.

Las cantidades de precipitación de las tres localidades fueron inferiores a las requeridas por el cultivo, por lo cual es posible afirmar que los genotipos toleraron un déficit hídrico.

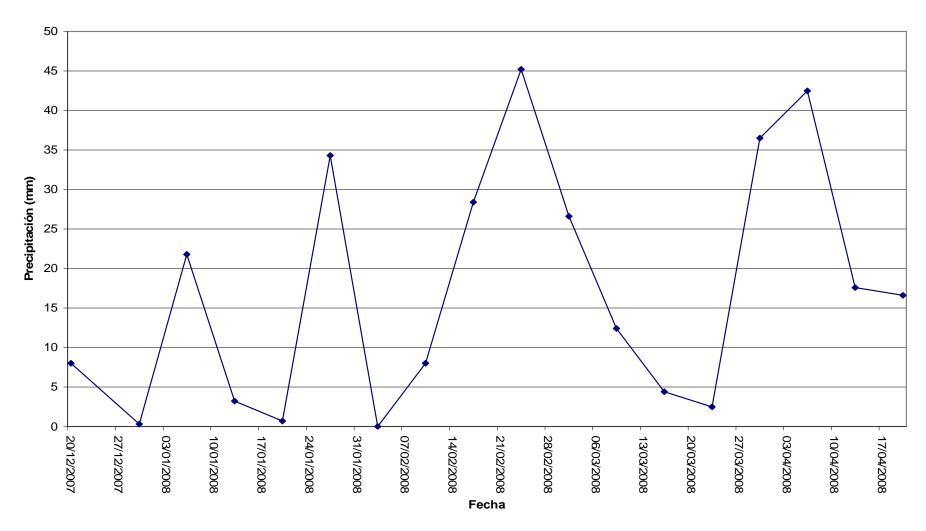


Gráfico10. Régimen de precipitación en la localidad de Tiazo Bajo, provincia de Chimborazo.

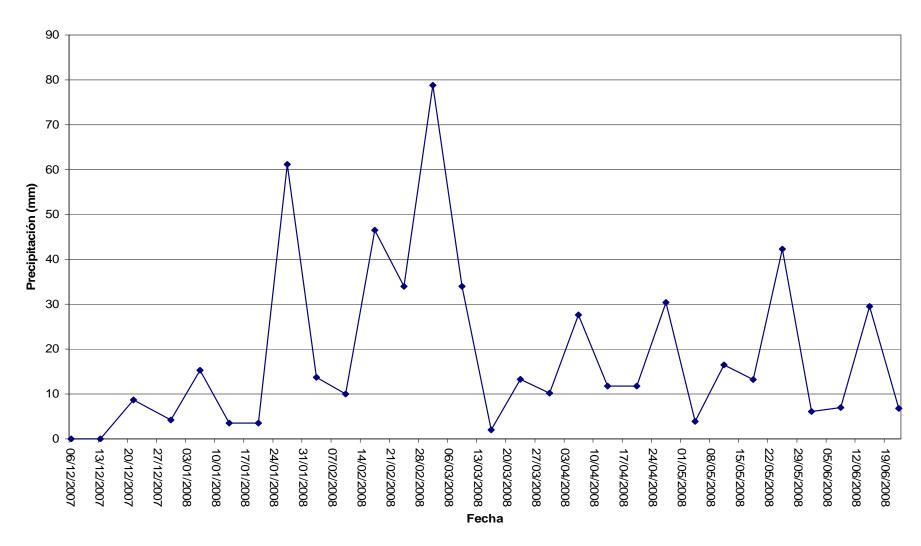


Gráfico 11. Régimen de precipitación en la localidad de Pusniag San Patricio, provincia de Chimborazo.

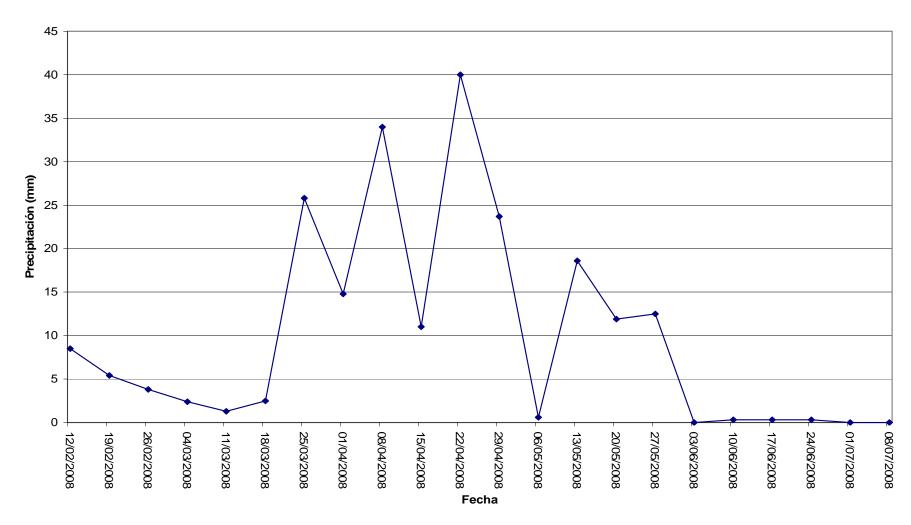


Gráfico 12. Régimen de precipitación en la localidad de Santa Lucia, provincia de Chimborazo.

VI. <u>CONCLUSIONES</u>

A partir de los resultados obtenidos en el presente estudio se puede concluir que:

- 1. Los bajos porcentajes de emergencia (66%) registrados en Pusniag San patricio y Santa Lucia se debieron al déficit hídrico y a la edad fisiológica del tubérculo semilla. Los mejores porcentajes de emergencia presentaron los genotipos: T21 (04-24-1), T11 (97-1-8) y T36 (Estela).
- 2. En la localidad de Santa Lucia, los clones presentaron un incremento constante de altura de planta. En Tiazo Bajo, los genotipos alcanzaron una altura de planta mayor (37.34 cm) que en las otras localidades, a los 45 días. En las tres localidades el clon T21 (04-24-1) exhibió un desarrollo de planta estable y de gran tamaño.
- 3. En los tres sitios experimentales, los clones T21 (04-24-1) y T7 (99-32-1) exhibieron excelentes coberturas de suelo.
- 4. En Tiazo Bajo los clones: T32 (M9), T4 (99-66-6), T8 (98-14-8), T10 (97-1-10), T14 (05-32-1), T18 (05-16-3) y T21 (04-2-1) presentaron una floración precoz (63 días).
- 5. El clon T21 (04-24-1) en Tiazo Bajo y Santa Lucia obtuvo el mayor número de plantas cosechadas (29.33 y 27.66), mientras que en Pusniag San Patricio el clon T22 (04-12-1) prevaleció con 27.33 plantas.
- 6. El número de tubérculos estuvo en función de las características genéticas de cada genotipo y de su interacción con el ambiente, en cada localidad los genotipos: T33 (R2), T38 (Gabriela) y T3 (99-78-5) presentaron el mayor número de tubérculos por planta.
- 7. Los genotipos mostraron una gran variabilidad en el rendimiento por categorías. En Tiazo Bajo los siguientes genotipos sobresalieron: T34 (Brenda) en la categoría 1 con 19.96Kg/parcela, T36 (Estela) en la categoría 2 con 10.43Kg/parcela y el clon T21 (04-24-1) en la categoría 3 con 7.26Kg/parcela. En Pusniag San Patricio, los genotipos: T39 (Pan) en la categoría 1 con 12.16Kg/parcela, el clon T21 (04-24-1) en la categoría 2 con

- 7.6Kg/parcela y el clon T2 (99-97-4) en la categoría 3 con 1.86Kg/parcela alcanzaron los mejores rendimientos y en Santa Lucia el clon T7 (99-32-1) prevaleció en las tres categorías con 9.3, 8.0 y 3.73Kg/parcela.
- 8. En la localidad de Tiazo Bajo, la variedad T34 (Brenda) predominó con los siguientes rendimientos: 1.65Kg/planta, 44.23Kg rendimiento total y 55.1 T/ha. En la localidad de Pusniag San Patricio, los mayores rendimientos obtuvieron los clones: T3 (99-78-5) con 1.22Kg/planta y 40.59T/ha y el clon T21 (04-24-1) con 25.5Kg rendimiento total. En la localidad de Santa Lucia, los mejores rendimientos presentaron los clones: T13 (05-32-2) con 0.97Kg/planta y 32.41T/ha y el clon T7 (99-32-1) con 21.03Kg de rendimiento total.
- 9. Durante el periodo de desarrollo de los genotipos no se presentaron síntomas de estrés hídrico; sin embargo, se seleccionaron a los siguientes genotipos de papa por las buenas condiciones agronómicas y de rendimiento: T21 (04-24-1), T11 (97-1-8), T7 (99-32-1), T34 (Brenda) y T33 (R2) en Tiazo Bajo; T10 (97-1-10), T21(04-24-1), T7 (99-32-1), T3 (99-78-5), T6 (99-38-5), T22 (04-12-1) y T39 (Pan) en Pusniag San Patricio y T7 (99-32-1), T21 (04-24-1), T33 (R2), T5 (99-66-4) y T1 (99-99-2) en Santa Lucia.
- 10. Los genotipos presentaron condiciones óptimas de calidad de tubérculo para el procesamiento agroindustrial.
- 11. Las cantidades de precipitación en las tres localidades fueron inferiores a las requeridas por el cultivo, por lo que es posible afirmar que durante el ciclo del cultivo existió déficit hídrico.
- 12. El comportamiento variable de los genotipos se debió a las características genéticas más la influencia del clima y suelo de cada localidad.

VII. RECOMENDACIONES

- Será necesario continuar con la evaluación de los clones: T21 (04-24-1), T7 (99-32-1), T10 (97-1-10), T11 (97-1-8), T33 (R2), T6 (99-38-5), T3 (99-78-5), T22 (04-12-1) y T1 (99-99-2) en el segundo ciclo de la investigación para comprobar las condiciones de tolerancia a la sequía.
- 2. A partir de los resultados obtenidos en este estudio, se recomienda que las próximas investigaciones se realicen tanto en el laboratorio como en el campo y se escojan lugares más secos.
- 3. Se recomienda utilizar tubérculo semilla con la misma edad fisiológica y con brotación uniforme.
- 4. La amplitud de variación de las escalas arbitrarias debe ser pequeña para evitar grandes coeficientes de variación.
- 5. No evaluar la variable número de días a la floración en altitudes mayores a los 3500 msnm.

VIII. <u>RESUMEN</u>

En la provincia de Chimborazo se instalaron tres ensayos con el propósito de evaluar y seleccionar genotipos de papa con tolerancia a la sequía. El experimento incluyó a 33 clones y 7 variedades testigos que se sembraron en parcelas experimentales de 9m² y en base al diseño de Bloques Completos al Azar con tres repeticiones.

En la localidad de Tiazo Bajo, el clon T21 (04-24-1) presentó las mejores características de porcentaje de emergencia, altura de planta, número de plantas cosechadas y conjuntamente con el clon T7 (99-32-1) alcanzaron excelentes coberturas de suelo y la variedad T34 (Brenda) presentó el máximo rendimiento total (44.23Kg) y por hectárea (55.1T).

En la localidad de Pusniag San Patricio, la variedad T38 (Gabriela) mostró los más altos valores de altura de planta, plantas cosechadas y de tubérculos por planta, mientras que el clon T21 (04-24-1) exhibió excelente cobertura de suelo con buen rendimiento total (25.5Kg) y el clon T3(99-78-5) alcanzó el mayor rendimiento por hectárea (40.59T).

En la localidad de Santa Lucia, los clones T21 (04-24-1) y T7 (99-32-1) presentaron plantas de gran tamaño con excelente expansión de follaje, el mismo clon T7 (21.0Kg) y el clon T13 (05-32-2) (32.41T) alcanzaron los mayores rendimientos total y por hectárea respectivamente.

En las tres localidades, el cultivo no fue afectado por períodos prolongados de sequedad; sin embargo la cantidad de lluvia no satisfizo la demanda de agua del cultivo por lo que es posible afirmar la tolerancia de los genotipos al estrés hídrico, seleccionándose los siguientes materiales vegetales: T21(04-24-1), T11 (97-1-8), T7 (99-32-1), T34 (Brenda) y T33 (R2) en Tiazo Bajo; T10 (97-1-10), T21 (04-24-1), T7 (99-32-1), T6 (99-38-5), T3 (99-78-5), T22 (04-12-1) y T39 (Pan) en Pusniag San Patricio y T7 (99-32-1), T21 (04-24-1), T33 (R2), T5 (99-66-4), y T1(99-99-2) en Santa Lucia.

IX. SUMMARY

In the province of Chimborazo, three tests were carried about in order to evaluate and to select potato genotypes capable of tolerating droughts. The experiment included 33 clones together with 7 proof varieties which were sowed on experimental plots of 9m² each, and also based on three repetitions of randomly complete block designs.

At the site of Tiazo Bajo, the T21 (04-24-1) clone showed the best emergency percentage, characteristics like plant height, number of harvested plants which together with the T7 (99-32-1) clone reached an excellent soil covering. The T34 (Brenda) variety showed a total of 44.23 Kg maximum yielding per hectare (55.1 T).

At the site of Pusniag San Patricio, on one hand the T38 (Gabriela) variety showed the highest values of plant height, harvested plants and tubercles per plant, and on the other hand the T21 (04-24-1)clone exhibited excellent soil covering with good 25.5 Kg total yielding. The T3 (99-78-5) clone got the greatest yield per hectare (40.59 T).

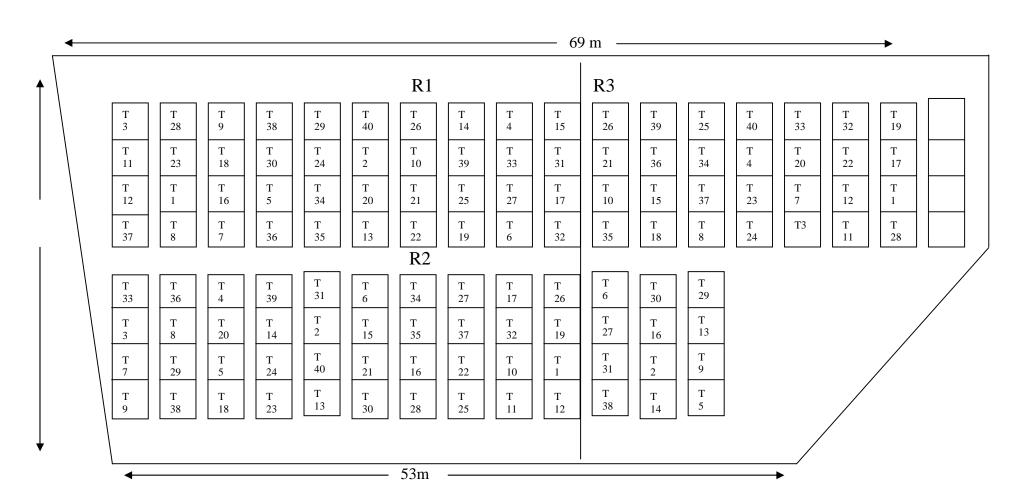
At the site of Santa Lucia, the T21 (04-24-1) clone and the T7 (99-32-1) clone produced good height plants with excellent foliage expansion. Clones T7 (21.0 Kg) and T13 (05-32-2) (32.41 T) provided the greatest total yieldings.

At the three sites, the potato sowing did not suffer from long drought periods; however, the amount of rains did not satisfy the cultivation water need, for this reason, it is possible to affirm that the genotypes used in this investigation tolerated hydric stress; in this context, the following plant materials were chosen: T21 (04-24-1), T11 (97-1-8), T7 (99-32-1), T34 (Brenda) and T33 (R2) at Tiazo Bajo; T10 (97-1-10), T21 (04-24-1) ,T7 (99-32-1), T5 (99-66-4) ,T3 (99-78-5), T22 (04-12-1), and T39 (Pan) at Pusniag San Patricio; T7 (99-32-1), T21 (04-24-1),T33 (R2),T5 (99-66-4) and T1 (99-99-2) at Santa Lucia.

X. BIBLIOGRAFIA

- ALDABE, L. y DOGLIOTTI, S. 2000. Bases fisiológicas del crecimiento y desarrollo del cultivo de la papa: documento electrónico, fuente en Internet. Universidad de la república del Uruguay (fecha de consulta 18 de octubre, 2008) disponible en www/fagroed.uy/cultivos/hortalizas/repartidofisiologíapapa.
- 2. ANDRADE, H. 1998. Plan de mejoramiento de papa. INIAP. PNRT-papa, FORTIPAPA. Quito-Ecuador. 50p.
- 3. BEEKMAN. & BOUMA. 1997. A possible screening technique for drought tolerance in potato. Foundation for agricultural plant Breeding, Wagemingen the Netherlands, pp 67 –71.
- 4. BODLAENDER, K 1998. Effects of drought on water use, photosynthesis and transpiration of potatoes I. Drought resistance and water use. Centre foragrobiological research Wagemingen the Netherlands, pp 36-42
- 5. BOOKS, 1998. Biblioteca de la agricultura, Segunda Edición, Barcelona España, pp 50-51; 732-733.
- CALISPA, F et al. 2000 Manejo y Conservación de suelos, Consorcio de Capacitación para el Manejo de los Recursos Naturales, Quito Ecuador, pp. 169-170.
- CULTURAL, 2004. Manual Práctico de Agricultura, Edición MMVI, Madrid España. pp 56-83 y 132-135.
- 8. DOOREMBOS, J. y KASSAN, A. 1986. Yield response to water. Irrigation and drainage. FAO. Roma-Italia. P193.
- 9. ELERGONOMISTA, 2006. Estrés Hídrico: documento electrónico, fuente en Internet [fecha de consulta: 17 noviembre del 2007] disponible en http://www.elergonomista.com/fisiologiavegetal/factor.htm

- 10. GOMEZ, et al 1988. Agene induced by the plant hormone abscisic in response to water stress encodes a glycine rich protein. Natura 334. p 262-264.
- 11. HANSON, D & W HITZE. 1982. Metabolic responses of mesophytes to plan water deficits. Plant physiologic, pp 10-22.
- 12. HAVERKORT, A. 1986. Manejo de agua en la producción de papa. Boletín de información técnica 15. Lima-Perú. Editorial agropecuaria hemisferio sur.CIP. 24p
- 13. JACOBSEN, S y A MUJICA. 1997. Mecanismo de resistencia a la sequía de la quinua. Libro de resumen del congreso internacional de Agricultura para las zonas áridas. Arica – Chile, 68p.
- 14. JACOBSEN, <u>et al</u> 2006. ¿Qué sabemos sobre la resistencia de la quinua a la sequía?: documento electrónico, fuente en Internet, Universidad Nacional del Altiplano, Puno-Perú (fecha de consulta 18 de noviembre del 2007), disponible en http/www.rlc.fao.or/es/agricultura/prod/libro5/cap7.
- 15. JEREZ, J. y SIMPFENDÖRFER, C. 2000. Efecto del riego en el cultivo de papa. Especial del riego y drenaje. INIA (34). 36-38p.
- 16. KALAZICH, J. 1993. Nuevas variedades de papa, objetivos, aptitudes y usos. Manejo agronómico del cultivo de papa y las perspectivas de mercado. Universidad Católica de Temuco, Temuco-Chile.
- 17. KING, B. y STARK, J. 2000. Potato irrigation management: documento electrónico, fuente en Internet. University of Idazo, coperative extensión System, collage of agriculture [fecha de consulta 15 de septiembre 2008] disponible en http/info.ag.uidaho.edu/resources/PDFs.
- 18. KRAMER, P 1983. Water relations of plants. Academic Press. New York. pp 342-389.


- 19. LEVITT J, 1967. Crop responses to water at different stages of growth. Common wealth Bureau Hortic. East Malling 2, pp. 93–97.
- 20. LYNCH, D and G. TAI 1989. Yield and yield component response of eight Potato genotypes to water stress. Canada Res. 63p
- 21. MARTINEZ, C y MORENO, U. 1992. Expresiones fisiológicas de resistencia a la sequía de dos variedades de papa sometidas a estrés hídrico en condiciones de campo. Revista Brasileira de Fisiología Vegetal. 33-38p.
- 22. MAY, L y MILTHORPE, F 1962. Drought resistence of crop plants. Fiel crop Abstracts15, pp 171 179.
- NICHOLS, D.F & R.H RUF, 1967. Relation between moisture stress and potato tuber development. Proceedings of the American Society for Horticultural Science pp 443.447
- 24. Mc CUE, y HANSON. 1990. Excess and deficient water stress effect on 30 years of a roostook contry potatoes yields. American potato Journal 62, pp 49-55
- 25. OCEANO, Enciclopedia Práctica de la Agricultura y Ganadería, Barcelona España, 2002 pp 96-98.
- 26. PRADO <u>et al.</u> 1995. Changes in soluble carbohydrates and invertase activity in Chenopdium quinoa Developer for saline stress during germination, 14-15 p
- 27. ROSSOUW. F y J WAGHMARAE. 1995. The effect of drought and yield of two South African potato cultivars. Departament of Genetics. University the Witwatersrand, p149-150
- 28. SALISBURY, F y C. ROSS. 1994. Fisiología Vegetal. Editorial Iberoamericana. Science148. 339 346p
- 29. SHIMSI, D. & M. SUSNOSHI 1985. Growth and yiel studies of potato development in asemi arid region, pp177-191

- 30. VAN LOON, D. 1998. Drought a major contain in potato production and possibilities for screening for drought resistence; Research station for arable forming and field production of vegetables lelystad, the Netherlands, pp7-15.
- 31. VOS. J. s/año. Research on water relations and stomatal conductance in potatoes an introduction to concepts, techniques and procedures. Centre for. Agro biological Research, Wagemingen the Netherlands, pp 29-31
- 32. UMADERUS et al. 1983. Drought tolerance in potato. p 375-376.

XI. ANEXOS

ANEXO 1. Esquema de la distribución de los tratamientos en el campo.

a. Tiazo Bajo

ANEXO 1. Esquema de la distribución de los tratamientos en el campo (continuación).

b. Pusniag San Patricio

4					37m					>
	T25	T31	T8	T40	T23	T15	T36	T33	T27	T35
	T24	Т7	T22	T37	T18	T16	T11	T26	T32	T12
	T13	T20	T38	T17	T21	T14	T5	T34	T4	T10
	T28	T30	T6	T1	T19	Т3	T2	T29	T39	Т9
		1	1		1	1	1	1	1	
	T36	T9	T39	T16	T34	T11	T25	T1	T17	T31
	Т32	T35	T14	T10	Т38	T13	Т7	T19	T22	T11
	T27	T26	T5	T4	T29	T30	Т37	T15	T20	T23
	Т33	T12	T18	T2	T28	Т6	Т3	T21	T24	T40
	T10	T20	T34	T16	То	T24	T20	Тэр	T40	T4
	110	T39	134	110	T2	T24	T30	T28	T40	T4
	T1	T17	Т9	T36	T7	T13	T22	T38	T15	T37
	T30	T19	T32	T20	T14	T12	Т8	T33	T35	T5
	T11	T25	T23	T3	T6	T21	T18	T24	T26	T27

ANEXO 1. Esquema de la distribución de los tratamientos en el campo (continuación).

c. Santa Lucia

T4	T37	Т8	T19	T40	T23	T25	T1	T20	T26
T38	T17	T33	T36	Т9	T32	T24	T28	T39	T27
T22	T29	Т7	T16	T13	Т6	T21	T10	T34	T30
T5	T11	T35	T18	T2	T15	Т3	T14	T12	T31
T40	T32	T28	T13	T7	T11	T4	T12	T35	T8
T9	T25	T6	T27	T29	T10	T37	T3	T15	T17
T36	T23	T14	T2	T16	T20	T31	T39	T38	T5
T19	T1	T21	T26	T24	T34	T30	T33	T22	T18
T2	T11	T5	T18	T19	T17	T25	T14	T28	T29
T16	T13	T38	T26	T22	Т3	T27	T23	Т9	T21
T39	T7	T35	T12	T33	T15	T37	T32	T10	T31
T20	T24	T8	T4	T34	T1	T6	T36	T40	T30

ANEXO 2. Datos registrados de la humedad del suelo (bares) durante el ciclo de cultivo de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo.

Mes		Localidades	
Mes	Tiazo Bajo	Pusniag SP	Santa Lucia
Enero	22	10	sr
	16	20	sr
	20	21	sr
	20	20	sr
Febrero	18	18	8
	24	22	10
	20	20	8
	18	9	9
Marzo	18	9	16
	33	8	14
	35	6	12
	56	8	8
Abril	20	14	9
	18	10	10
	24	14	8
		15	10
Mayo		18	18
		20	16
		24	17
		18	22
Junio		22	25
			28
			30

sr: sin registro de datos

ANEXO 3. Datos registrados del porcentaje de emergencia (%) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo.

a. Tiazo Bajo

		Repeticiones		
Tratamientos	I	II	III	Promedio
T1	83,33	100,00	90,00	91,11
T2	96,67	90,00	80,00	88,89
T3	93,33	100,00	93,33	95,55
T4	86,67	86,67	76,67	83,34
T5	83,33	100,00	43,33	75,55
T6	96,67	96,67	90,00	94,45
T7	80,00	93,33	93,33	88,89
T8	80,00	93,33	86,67	86,67
T9	93,33	93,33	70,00	85,55
T10	86,67	76,67	80,00	81,11
T11	93,33	100,00	96,67	96,67
T12	96,67	100,00	100,00	98,89
T13	70,00	70,00	53,33	64,44
T14	96,67	80,00	80,00	85,56
T15	83,33	73,33	90,00	82,22
T16	93,33	73,33	86,67	84,44
T17	46,67	40,00	66,67	51,11
T18	83,33	70,00	56,67	70,00
T9	93,33	96,67	86,67	92,22
T20	93,33	83,33	63,33	80,00
T21	100,00	100,00	100,00	100,00
T22	100,00	96,67	100,00	98,89
T23	90,00	93,33	93,33	92,22
T24	90,00	80,00	73,33	81,11
T25	60,00	50,00	56,67	55,56
T26	90,00	83,33	100,00	91,11
T27	96,67	90,00	80,00	88,89
T28	83,33	80,00	86,67	83,33
T29	93,33	83,33	66,67	81,11
T31	86,67	63,33	80,00	76,67
T32	73,33	60,00	83,33	72,22
T33	100,00	93,33	100,00	97,78
T34	93,33	93,33	100,00	95,55
T35	90,00	80,00	96,67	88,89
T36	90,00	93,33	90,00	91,11
T37	90,00	96,67	86,67	91,11
Т9	100,00	96,67	96,67	97,78
T40	80,00	93,33	90,00	87,78
Promedio				85,47

ANEXO 3. Datos registrados del porcentaje de emergencia (%) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

b. Pusniag San Patricio

		Repeticione	es	
Tratamientos	I	II	III	Promedio
T1	30,00	46,67	43,33	40,00
T2	20,00	26,67	20,00	22,22
T3	36,67	50,00	66,67	51,11
T4	53,33	53,33	56,67	54,44
T5	70,00	56,67	80,00	68,89
T6	80,00	90,00	100,00	90,00
T7	73,33	70,00	66,67	70,00
T8	76,67	70,00	66,67	71,11
T9	73,33	70,00	86,67	76,67
T10	50,00	60,00	73,33	61,11
T11	66,67	70,00	90,00	75,56
T12	86,67	73,33	83,33	81,11
T13	53,33	46,67	40,00	46,67
T14	76,67	43,33	73,33	64,44
T15	60,00	36,67	40,00	45,56
T16	60,00	73,33	83,33	72,22
T17	33,33	26,67	23,33	27,78
T18	23,33	40,00	43,33	35,55
T19	76,67	83,33	80,00	80,00
T20	80,00	66,67	76,67	74,45
T21	90,00	93,33	83,33	88,89
T22	70,00	80,00	80,00	76,67
T23	93,33	93,33	73,33	86,66
T24	76,67	50,00	56,67	61,11
T25	46,67	33,33	43,33	41,11
T26	43,33	63,33	60,00	55,55
T27	73,33	66,67	90,00	76,67
T28	53,33	36,67	56,67	48,89
T29	90,00	76,67	80,00	82,22
T31	66,67	56,67	50,00	57,78
T32	60,00	46,67	50,00	52,22
T33	73,33	90,00	80,00	81,11
T34	93,33	90,00	86,67	90,00
T35	80,00	80,00	93,33	84,44
T36	96,67	86,67	93,33	92,22
T37	86,67	60,00	73,33	73,33
T38	86,67	96,67	90,00	91,11
T39	63,33	66,67	80,00	70,00
T40	90,00	63,33	80,00	77,78
Promedio				66,58

ANEXO 3. Datos registrados del porcentaje de emergencia (%) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

		Repeticiones	<u> </u>	
Tratamientos	I	II	III	Promedio
T1	66,67	63,33	66,67	65,56
T2	60,00	66,67	66,67	64,45
T3	83,33	70,00	56,67	70,00
T4	80,00	60,00	50,00	63,33
T5	100,00	80,00	86,67	88,89
T6	86,00	100,00	66,67	84,22
T7	67,00	80,00	86,67	77,89
T8	83,33	56,67	46,67	62,22
Т9	86,67	76,67	53,33	72,22
T10	63,33	53,33	70,00	62,22
T11	96,67	80,00	100,00	92,22
T12	83,33	73,33	73,33	76,66
T13	60,00	46,67	43,33	50,00
T14	70,00	76,67	70,00	72,22
T15	43,33	60,00	43,33	48,89
T16	93,33	80,00	83,33	85,55
T17	26,67	33,33	36,67	32,22
T18	43,33	13,33	13,33	23,33
T19	83,33	80,00	63,33	75,55
T20	100,00	63,33	46,67	70,00
T21	86,67	86,67	66,67	80,00
T22	83,33	73,33	70,00	75,55
T23	73,33	76,67	60,00	70,00
T24	73,33	80,00	36,67	63,33
T25	63,33	43,33	20,00	42,22
T26	60,00	46,67	56,67	54,45
T27	80,00	80,00	66,67	75,56
T28	90,00	73,33	73,33	78,89
T29	73,33	60,00	73,33	68,89
T32	80,00	66,67	66,67	71,11
T33	96,67	83,33	73,33	84,44
T34	73,33	76,67	53,33	67,78
T35	36,67	43,33	46,67	42,22
T36	33,33	36,67	63,33	44,44
T37	80,00	66,67	70,00	72,22
T39	83,33	56,67	63,33	67,78
T40	60,00	63,33	53,33	58,89
Promedio				66,36

ANEXO 4. Datos registrados de la altura de planta (cm) a los 90 días de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo.

	R	Repeticiones		
Tratamientos	I	II	III	Promedio
T1	78,50	94,30	85,83	86,21
T2	74,83	70,00	70,50	71,78
T3	63,50	76,50	74,80	71,60
T4	61,67	60,25	64,67	62,20
T5	81,50	76,00	64,33	73,94
T6	76,33	77,60	85,00	79,64
T7	90,83	77,33	97,33	88,50
T8	70,50	68,67	72,50	70,56
Т9	54,00	62,33	60,33	58,89
T10	74,17	64,67	75,67	71,50
T11	88,17	82,00	83,20	84,46
T12	67,67	76,50	67,33	70,50
T13	67,17	53,33	67,00	62,50
T14	69,00	69,33	61,50	66,61
T15	72,67	67,50	70,17	70,11
T16	81,50	73,50	75,20	76,73
T17	62,25	78,20	75,60	72,02
T18	59,83	64,17	50,33	58,11
T9	79,33	79,17	71,17	76,56
T20	46,67	45,17	53,17	48,34
T21	102,83	95,83	99,50	99,39
T22	73,33	75,50	82,33	77,05
T23	56,25	61,33	63,00	60,19
T24	70,17	64,17	79,17	71,17
T25	75,17	61,00	60,33	65,50
T26	68,67	81,67	73,50	74,61
T27	97,17	73,50	66,83	79,17
T28	50,17	56,50	45,67	50,78
T29	48,67	54,67	56,33	53,22
T31	68,17	63,80	74,50	68,82
T32	68,33	59,67	70,83	66,28
T33	99,17	91,17	92,83	94,39
T34	62,50	75,17	63,17	66,95
T35	72,17	69,67	67,83	69,89
T36	76,33	77,17	73,00	75,50
T37	75,50	83,00	79,50	79,33
Т9	79,00	81,67	73,00	77,89
T40	76,17	81,33	80,67	79,39
Promedio				71,85

ANEXO 4. Datos registrados de la altura de planta (cm) a los 90 días de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

		Repeticiones		
Tratamientos	I	II	III	Promedio
T1	30,20	31,83	28,20	30,08
T2	28,00	22,00	33,50	27,83
T3	20,50	36,33	36,67	31,17
T4	27,00	34,83	23,75	28,53
T5	36,50	24,25	39,17	33,31
T6	33,00	40,60	46,83	40,14
T7	42,17	45,75	41,17	43,03
T8	29,00	25,50	38,67	31,06
T9	29,80	25,83	37,50	31,04
T10	48,00	47,33	45,00	46,78
T11	34,00	32,83	33,20	33,34
T12	38,33	30,50	34,33	34,39
T13	25,33	29,00	24,17	26,17
T14	29,50	31,75	35,20	32,15
T15	30,67	17,00	24,00	23,89
T16	18,20	28,83	32,17	26,40
T17	14,00	37,00	32,75	27,92
T18	23,25	9,00	24,50	18,92
T19	36,17	32,00	36,20	34,79
T20	19,00	16,33	19,00	18,11
T21	52,83	40,17	44,20	45,73
T22	40,67	40,00	43,17	41,28
T23	36,60	31,00	31,40	33,00
T24	35,60	32,00	37,33	34,98
T25	25,00	33,67	23,00	27,22
T26	24,60	23,83	29,00	25,81
T27	30,17	33,83	34,80	32,93
T28	16,50	15,25	29,33	20,36
T29	25,17	25,33	27,50	26,00
T31	23,17	20,75	27,00	23,64
T32	21,67	15,25	26,00	20,97
T33	38,40	31,33	37,50	35,74
T34	28,33	36,00	32,20	32,18
T35	33,67	24,50	28,50	28,89
T36	44,83	36,33	41,67	40,94
T37	41,50	33,83	29,80	35,04
T38	41,00	52,20	48,20	47,13
T39	33,17	27,17	35,00	31,78
T40	40,80	24,50	35,17	33,49
Promedio				31,70

ANEXO 4. Datos registrados de la altura de planta (cm) a los 90 días de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

		Repeticiones		
Tratamientos	I	II	III	Promedio
T1	36,83	28,67	38,00	34,50
T2	35,83	31,40	35,80	34,34
T3	35,83	30,33	32,67	32,94
T4	13,00	19,40	26,33	19,58
T5	40,33	27,00	40,83	36,05
T6	27,83	28,50	36,67	31,00
T7	38,50	36,33	49,50	41,44
T8	21,00	13,80	26,60	20,47
T9	29,17	31,33	27,33	29,28
T10	17,60	16,00	33,33	22,31
T11	33,83	37,50	42,00	37,78
T12	16,50	17,83	28,50	20,94
T13	22,80	21,50	29,00	24,43
T14	15,00	23,33	21,40	19,91
T15	18,80	16,83	19,17	18,27
T16	27,33	18,67	34,17	26,72
T17	30,33	27,17	28,50	28,67
T18	13,50	9,83	17,40	13,58
T19	33,83	31,83	22,40	29,35
T20	12,33	12,80	8,60	11,24
T21	37,17	39,50	48,50	41,72
T22	39,33	33,17	35,83	36,11
T23	22,17	20,33	21,67	21,39
T24	17,00	17,67	17,50	17,39
T25	16,00	19,83	13,00	16,28
T26	21,67	16,33	21,50	19,83
T27	17,50	24,20	16,83	19,51
T28	11,33	21,20	8,60	13,71
T29	15,00	22,17	18,83	18,67
T32	11,20	13,60	9,00	11,27
T33	29,83	24,80	39,50	31,38
T34	11,00	9,50	14,83	11,78
T35	13,40	16,33	16,00	15,24
T36	18,40	12,33	19,83	16,85
T37	34,00	27,50	31,00	30,83
T39	23,00	19,17	31,00	24,39
T40	24,80	30,33	27,33	27,49
Promedio				24,50

ANEXO 5. Datos registrados de la cobertura de suelo (escala) a los 90 días de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo.

	Repeticiones			
Tratamientos	I	II	III	Promedio
T1	1	1	1	1,00
T2	1	2	1	1,33
T3	2	1	1	1,33
T4	1	2	1	1,33
T5	1	1	2	1,33
T6	1	1	1	1,00
T7	1	1	1	1,00
T8	1	1	1	1,00
Т9	1	1	1	1,00
T10	1	2	1	1,33
T11	1	1	1	1,00
T12	1	1	1	1,00
T13	2	2	1	1,67
T14	1	1	1	1,00
T15	1	1	1	1,00
T16	1	1	1	1,00
T17	1	1	1	1,00
T18	1	1	1	1,00
Т9	1	1	1	1,00
T20	1	2	2	1,67
T21	1	1	1	1,00
T22	1	1	1	1,00
T23	2	2	2	2,00
T24	1	2	1	1,33
T25	1	3	3	2,33
T26	1	2	1	1,33
T27	1	1	1	1,00
T28	2	1	2	1,67
T29	2	2	2	2,00
T31	1	2	1	1,33
T32	1	1	1	1,00
T33	1	1	1	1,00
T34	1	1	2	1,33
T35	2	1	1	1,33
T36	1	1	1	1,00
T37	1	1	1	1,00
Т9	1	1	1	1,00
T40	1	1	1	1,00
Promedio				1,23

ANEXO 5. Datos registrados de la cobertura de suelo (escala) a los 105 días de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

Tratamientos	I	II	III	Promedio
T1	2	1	2	1,67
T2	2	2	2	2,00
Т3	3	2	2	2,33
T4	3	2	3	2,67
T5	2	2	2	2,00
T6	2	1	1	1,33
T7	1	1	1	1,00
Т8	2	2	1	1,67
Т9	2	2	1	1,67
T10	1	1	1	1,00
T11	2	2	2	2,00
T12	2	2	2	2,00
T13	3	2	1	2,00
T14	2	2	2	2,00
T15	2	3	3	2,67
T16	3	2	2	2,33
T17	3	2	3	2,67
T18	3	3	2	2,67
T19	2	1	2	1,67
T20	2	2	3	2,33
T21	1	1	1	1,00
T22	2	1	1	1,33
T23	2	2	2	2,00
T24	2	2	2	2,00
T25	3	3	3	3,00
T26	2	2	2	2,00
T27	2	2	1	1,67
T28	3	2	2	2,33
T29	3	3	2	2,67
T31	1	1	1	1,00
T32	3	3	3	3,00
T33	2	2	2	2,00
T34	2	1	1	1,33
T35	2	2	2	2,00
T36	2	1	1	1,33
T37	2	2	2	2,00
T38	1	1	1	1,00
T39	2	3	2	2,33
T40	2	2	2	2,00
Promedio				1,94

ANEXO 5. Datos registrados de la cobertura de suelo (escala) a los 105 días de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

	Re	peticiones		
Tratamientos	I	II	III	Promedio
T1	3	2	1	2,00
T2	3	3	3	3,00
T3	2	2	1	1,67
T4	2	3	2	2,33
T5	2	2	1	1,67
T6	2	2	1	1,67
T7	2	1	1	1,33
T8	2	3	2	2,33
T9	2	2	2	2,00
T10	3	3	3	3,00
T11	2	3	3	2,67
T12	3	2	2	2,33
T13	1	2	1	1,33
T14	3	2	3	2,67
T15	3	3	2	2,67
T16	2	3	3	2,67
T17	2	1	3	2,00
T18	2	3	1	2,00
T19	1	2	3	2,00
T20	3	3	3	3,00
T21	1	1	1	1,00
T22	1	3	1	1,67
T23	2	2	3	2,33
T24	2	3	3	2,67
T25	3	3	999	2,92
T26	2	3	3	2,67
T27	3	2	2	2,33
T28	3	2	1	2,00
T29	2	2	3	2,33
T32	999	3	3	3,00
T33	3	2	1	2,00
T34	3	3	3	3,00
T35	3	3	3	3,00
T36	2	3	1	2,00
T37	2	2		2,00
T39	2	2 2	2 2	2,00
T40	2	2	2	2,00
Promedio				2,25

ANEXO 6. Datos registrados del vigor de planta (escala) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo.

Tratamientos	I	II	III	Promedio
T1	2	3	2	2,33
T2	3	3	3	3,00
Т3	3	3	3	3,00
T4	3	2	2	2,33
T5	2	3	2 3	2,67
T6	2	2	3	2,33
T7	3	2	2	2,33
T8	3	2	2	2,33
Т9	2	2		2,00
T10	2	2	2 3	2,33
T11	3	3	2	2,67
T12	3	2	2	2,33
T13	2	3	2 2 3	2,67
T14	999	2	2	2,00
T15	3	3	3	3,00
T16	3	2	2	2,33
T17	2	3	3	2,67
T18	3	2	2	2,33
Т9	3	3	3 3 3	3,00
T20	2	2	3	2,33
T21	3	3	3	3,00
T22	2	2	3	2,33
T23	1	3	3	2,33
T24	2	999	3	2,66
T25	2	3	3	2,67
T26	3	2	3	2,67
T27	3	3	2	2,67
T28	2	2	2 3 3	2,00
T29	2	3	3	2,67
T31	3	2	3	2,67
T32	3	3	3	3,00
T33	2	2	999	2,33
T34	3	2 3	3 2	2,67
T35	3		2	2,67
T36	3	3	2	2,67
T37	3	3	2 3	2,67
Т9	2	3		2,67
T40	2	2	2	2,00
Promedio				2,53

ANEXO 6. Datos registrados del vigor de planta (escala) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

	Repeticiones			
Tratamientos	I	II	III	Promedio
T1	1	2	2	1,67
T2	2	1	1	1,33
Т3	2	2	2	2,00
T4	1	1	1	1,00
T5	2	1	2	1,67
T6	2	1	1	1,33
T7	1	1	2	1,33
T8	2	1	1	1,33
Т9	2	1	3	2,00
T10	2	1	2	1,67
T11	3	1	1	1,67
T12	2	2	2	2,00
T13	2	1	1	1,33
T14	2	2	2	2,00
T15	1	2	1	1,33
T16	1	1	1	1,00
T17	2	3	1	2,00
T18	1	2	2	1,67
T19	2	1	1	1,33
T20	1	1	2	1,33
T21	1	1	2	1,33
T22	1	1	1	1,00
T23	1	1	2	1,33
T24	2	2	2	2,00
T25	2	2	1	1,67
T26	1	1	1	1,00
T27	1	1	2	1,33
T28	1	1	1	1,00
T29	1	1	1	1,00
T31	2	1	1	1,33
T32	1	2	1	1,33
T33	1	2	2	1,67
T34	1	1	1	1,00
T35	1	1	1	1,00
T36	1	1	1	1,00
T37	1	1	1	1,00
T38	2	1	2	1,67
T39	2	2	2	2,00
T40	2	1	2	1,67
Promedio				1,44

ANEXO 6. Datos registrados del vigor de planta (escala) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

	Repeticiones			
Tratamientos	I	II	III	Promedio
T1	1	2	2	1,67
T2	1	1	2	1,33
T3	2	1	1	1,33
T4	3	2	1	2,00
T5	2	1	2	1,67
T6	1	1	1	1,00
T7	1	1	2	1,33
Т8	2	1	1	1,33
Т9	1	1	3	1,67
T10	1	2	2	1,67
T11	2	1	1	1,33
T12	1	2	1	1,33
T13	1	1	1	1,00
T14	1	2	1	1,33
T15	1	2	1	1,33
T16	1	1	1	1,00
T17	1	2	2	1,67
T18	2	1	2	1,67
T19	1	1	2	1,33
T20	1	1	1	1,00
T21	1	2	1	1,33
T22	1	1	2	1,33
T23	1	1	1	1,00
T24	1	1	2	1,33
T25	1	1	1	1,00
T26	1	1	1	1,00
T27	2	2	2	2,00
T28	2	2	2	2,00
T29	2	1	1	1,33
T32	1	1	1	1,00
T33	1	1	1	1,00
T34	2	1	2	1,67
T35	_ 1			1,67
T36	1	2 2	2 2	1,67
T37	2	1	1	1,33
T39	_ 1	2	1	1,33
T40	1	1	1	1,00
Promedio				1,38

ANEXO 7. Datos registrados de los días a la floración (dds) de genotipos de papa sometidos a estrés hídrico en Tiazo Bajo.

		Repeticiones		
Tratamientos	I	II	III	Promedio
T1	77	77	77	77,00
T2	83	77	83	81,00
T4	63	63	63	63,00
T5	69	69	77	71,67
T6	83	77	77	79,00
T7	77	77	77	77,00
T8	63	63	63	63,00
T9	63	69	63	65,00
T10	63	63	63	63,00
T11	69	63	69	67,00
T12	69	83	69	73,67
T13	63	69	69	67,00
T14	63	63	63	63,00
T15	69	69	69	69,00
T16	69	69	69	69,00
T17	69	69	69	69,00
T18	63	63	63	63,00
Т9	69	69	69	69,00
T20	69	69	69	69,00
T21	69	69	69	69,00
T22	83	77	77	79,00
T23	77	77	69	74,33
T24	63	63	63	63,00
T25	63	69	69	67,00
T26	77	77	83	79,00
T27	69	69	69	69,00
T28	77	77	77	77,00
T29	77	77	77	77,00
T31	63	69	63	65,00
T32	63	63	63	63,00
T33	77	69	69	71,67
T35	69	77	77	74,33
T36	69	63	63	65,00
T37	69	69	69	69,00
Т9	77	69	69	71,67
T40	63	69	63	65,00
Promedio				69,93

ANEXO 8. Datos registrados de los días a la senescencia de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo.

		Repeticiones		
Tratamientos	I	II	III	Promedio
T1	5	6	999	5,53
T2	5	5	6	5,33
T3	6	5	6	5,67
T4	6	5	999	5,53
T5	6	999	7	6,56
T6	999	6	6	5,91
T7	5	5	999	5,03
T8	6	7	5	6,00
Т9	5	7	6	6,00
T10	999	7	7	6,91
T11	7	6	4	5,67
T12	5	999	5	5,06
T13	6	6	7	6,33
T14	5	5	6	5,33
T15	6	6	6	6,00
T16	5	6	5	5,33
T17	6	999	999	6,17
T18	999	5	7	5,91
T19	5	999	999	5,18
T20	6	999	6	6,06
T21	5	6	6	5,67
T22	999	6	999	5,88
T23	999	6	5	5,41
T24	5	6	5	5,33
T25	6	999	5	5,56
T26	5	6	999	5,53
T27	999	6	6	5,91
T28	7	6	999	6,53
T29	4	999	7	5,56
T31	6	999	7	6,56
T32	999	999	4	3,94
T33	999	6	999	5,88
T34	999	7	7	6,91
T35	6	999	6	6,06
T36	999	5	999	4,88
T37	5	6	5	5,33
T39	6	999	6	6,06
T40	5	5	999	5,03
Promedio				5,72

ANEXO 8. Datos registrados de los días a la senescencia de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

Tratamientos	I	II	III	Promedio
T1	5	6	6	5,67
T2	6	6	5	5,67
Т3	7	4	6	5,67
T4	7	7	6	6,67
T5	7	7	7	7,00
T6	6	5	6	5,67
T7	6	5	6	5,67
T8	5	6	6	5,67
Т9	6	6	7	6,33
T10	5	5	6	5,33
T11	5	6	7	6,00
T12	7	5	7	6,33
T13	7	5	6	6,00
T14	6	6	6	6,00
T15	5	7	7	6,33
T16	7	5	6	6,00
T17	4	6	6	5,33
T18	7	7	7	7,00
T19	6	6	6	6,00
T20	999	7	7	6,94
T21	5	6	6	5,67
T22	5	5	5	5,00
T23	5	7	7	6,33
T24	7	7	7	7,00
T25	7	7	7	7,00
T26	4	4	5	4,33
T27	7	7	7	7,00
T28	7	7	5	6,33
T29	7	7	7	7,00
T31	999	7	7	4,67
T32	999	999	999	999
T33	5	7	7	6,33
T34	999	999	999	999
T35	6	7	7	6,67
T36	6	6	6	6,00
T37	6	6	6	6,00
T38	6	5	6	5,67
T39	6	5	7	6,00
T40	6	6	6	6,00
Promedio				6,10

ANEXO 8. Datos registrados de los días a la senescencia de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

		Repeticiones		
Tratamientos	I	II	III	Promedio
T1	6	7	6	6,33
T2	3	6	6	5,00
Т3	4	7	6	5,67
T4	6	7	5	6,00
T5	6	7	7	6,67
T6	4	7	7	6,00
T7	7	7	5	6,33
T8	6	6	5	5,67
T9	6	7	6	6,33
T10	6	5	5	5,33
T11	5	7	4	5,33
T12	7	6	5	6,00
T13	5	2	7	4,67
T14	3	4	3	3,33
T15	4	4	3	3,67
T16	2	4	5	3,67
T17	3	4	5	4,00
T18	5	5	5	5,00
T19	2	3	5	3,33
T20	4	7	999	3,84
T21	7	4	6	5,67
T22	7	3	5	5,00
T23	3	7	2	4,00
T24	2	7	3	4,00
T25	7	2	999	3,17
T26	7	4	3	4,67
T27	5	5	5	5,00
T28	4	7	3	4,67
T29	3	3	3	3,00
T32	5	6	3	4,67
T33	7	7	7	7,00
T34	7	2	4	4,33
T35	7	4	3	4,67
T36	2	4	4	3,33
T37	3	2	7	4,00
T39	7	6	7	6,67
T40	3	7	7	5,67
Promedio				4,91

ANEXO 9. Datos registrados del número de plantas cosechadas de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo.

		Repeticiones		
Tratamientos	I	II	III	Promedio
T1	26	28	22	25,33
T2	28	28	27	27,67
T3	30	29	28	29,00
T4	28	21	25	24,67
T5	24	30	28	27,33
T6	29	26	21	25,33
T7	26	27	19	24,00
T8	26	26	26	26,00
T9	28	28	25	27,00
T10	26	27	26	26,33
T11	29	27	30	28,67
T12	30	21	29	26,67
T13	24	25	27	25,33
T14	30	25	28	27,67
T15	22	23	26	23,67
T16	27	26	27	26,67
T17	26	18	28	24,00
T18	25	22	17	21,33
T9	29	29	15	24,33
T20	24	19	26	23,00
T21	28	30	30	29,33
T22	26	30	30	28,67
T23	25	25	19	23,00
T24	23	20	21	21,33
T25	23	10	18	17,00
T26	28	27	29	28,00
T27	29	25	18	24,00
T28	22	17	27	22,00
T29	26	25	30	27,00
T31	24	20	20	21,33
T32	25	17	28	23,33
T33	30	29	26	28,33
T34	26	26	30	27,33
T35	25	25	28	26,00
T36	26	26	26	26,00
T37	28	30	28	28,67
T9	27	27	28	27,33
T40	26	24	25	25,00
Promedio				25,46

ANEXO 9. Datos registrados del número de plantas cosechadas de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

	Repeticiones				
Tratamientos	I	II	III	Promedio	
T1	28	23	25	25,33	
T2	15	24	18	19,00	
T3	7	27	29	21,00	
T4	8	15	15	12,67	
T5	24	24	26	24,67	
T6	23	24	26	24,33	
T7	27	28	25	26,67	
T8	24	21	21	22,00	
T9	15	17	23	18,33	
T10	26	24	29	26,33	
T11	21	28	26	25,00	
T12	26	24	20	23,33	
T13	7	12	12	10,33	
T14	26	15	15	18,67	
T15	21	8	9	12,67	
T16	12	26	24	20,67	
T17	12	15	8	11,67	
T18	6	8	10	8,00	
T19	23	24	25	24,00	
T20	13	15	17	15,00	
T21	30	26	22	26,00	
T22	26	29	27	27,33	
T23	27	26	25	26,00	
T24	16	12	10	12,67	
T25	6	6	9	7,00	
T26	25	25	25	25,00	
T27	24	18	24	22,00	
T28	8	9	13	10,00	
T29	18	20	20	19,33	
T31	12	16	10	12,67	
T32	7	7	13	9,00	
T33	28	27	25	26,67	
T34	24	26	24	24,67	
T35	25	28	27	26,67	
T36	22	24	27	24,33	
T37	20	27	27	24,67	
T38	24	27	27	26,00	
T39	28	25	26	26,33	
T40	25	16	22	21,00	
Promedio				20,18	

ANEXO 9. Datos registrados del número de plantas cosechadas de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

		Repeticiones		
Tratamientos	I	II	III	Promedio
T1	25	21	26	24,00
T2	25	25	30	26,67
T3	26	24	27	25,67
T4	18	11	11	13,33
T5	28	20	27	25,00
T6	28	29	20	25,67
T7	26	27	25	26,00
T8	23	13	16	17,33
T9	25	18	19	20,67
T10	17	9	999	12,62
T11	25	23	29	25,67
T12	22	19	21	20,67
T13	14	8	11	11,00
T14	12	16	8	12,00
T15	6	7	9	7,33
T16	22	21	999	21,12
T17	9	7	9	8,33
T18	7	999	4	5,11
T19	22	20	25	22,33
T20	20	14	7	13,67
T21	29	28	26	27,67
T22	30	17	27	24,67
T23	21	17	12	16,67
T24	10	12	5	9,00
T25	12	9	8	9,67
T26	20	21	21	20,67
T27	14	23	19	18,67
T28	17	21	9	15,67
T29	20	19	15	18,00
T32	10	15	5	10,00
T33	999	22	27	25,26
T34	17	14	19	16,67
T35	13	999	12	12,12
T36	8	6	8	7,33
T37	23	22	29	24,67
T39	25	21	19	21,67
T40	18	17	15	16,67
Promedio				17,82

ANEXO 10. Datos registrados del número de tubérculos por planta de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo.

		Repeticiones		
Tratamientos	I	II	III	Promedio
T1	29,4	22,0	20,6	24,00
T2	10,2	9,6	15,3	11,68
T3	14,6	19,4	18,6	17,53
T4	12,3	22,5	13,8	16,18
T5	24,3	9,2	12,6	15,35
T6	20,0	24,8	16,3	20,35
T7	20,8	19,0	18,8	19,50
T8	32,3	19,0	32,8	28,02
Т9	19,8	27,6	20,6	22,67
T10	15,8	10,4	31,8	19,32
T11	35,4	23,8	24,2	27,80
T12	28,4	26,4	28,8	27,87
T13	22,8	14,8	21,2	19,58
T14	31,0	14,8	14,2	20,00
T15	14,4	30,0	22,8	22,40
T16	22,8	16,6	25,0	21,47
T17	22,5	11,0	10,6	14,70
T18	19,0	22,2	26,0	22,40
T9	18,8	18,6	18,5	18,62
T20	14,2	14,3	15,8	14,75
T21	16,8	17,6	17,6	17,32
T22	23,0	12,6	15,0	16,87
T23	12,6	14,6	7,6	11,60
T24	13,0	10,0	15,3	12,75
T25	13,8	16,0	18,8	16,18
T26	24,0	18,4	19,8	20,73
T27	18,0	22,2	16,0	18,73
T28	11,5	27,0	15,7	18,06
T29	15,2	17,2	15,5	15,97
T31	13,0	9,4	13,8	12,07
T32	16,5	16,2	18,0	16,90
T33	29,0	56,6	24,8	36,80
T34	21,8	15,8	20,8	19,47
T35	32,6	24,0	17,8	24,80
T36	20,8	30,4	22,3	24,48
T37	14,0	11,0	10,4	11,80
Т9	12,0	10,8	12,6	11,80
T40	22,8	34,8	15,5	24,37
Promedio				19,34

ANEXO 10. Datos registrados del número de tubérculos por planta de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

		Repeticiones		
Tratamientos	I	II	III	Promedio
T1	23,2	22,8	21,0	22,33
T2	7,6	8,8	11,0	9,13
Т3	10,2	26,2	27,8	21,40
T4	16,0	16,4	14,0	15,47
T5	14,6	14,0	12,6	13,73
T6	23,0	30,4	38,2	30,53
T7	14,2	15,2	14,8	14,73
T8	16,2	15,2	21,0	17,47
T9	25,0	16,0	23,0	21,33
T10	27,6	17,6	19,2	21,47
T11	30,2	34,8	22,6	29,20
T12	14,8	17,2	22,6	18,20
T13	6,2	12,8	8,8	9,27
T14	13,2	15,2	12,8	13,73
T15	29,0	5,8	11,0	15,27
T16	10,6	17,6	15,8	14,67
T17	11,2	18,2	18,0	15,80
T18	16,2	15,6	14,6	15,47
T19	11,4	18,0	17,4	15,60
T20	7,6	11,6	10,2	9,80
T21	26,2	28,8	28,4	27,80
T22	17,0	14,8	26,2	19,33
T23	12,6	15,4	17,2	15,07
T24	15,2	13,8	18,0	15,67
T25	11,2	15,0	13,0	13,07
T26	22,4	28,8	20,0	23,73
T27	10,4	13,2	13,8	12,47
T28	13,6	12,4	19,0	15,00
T29	14,4	10,2	11,4	12,00
T31	9,0	10,4	11,0	10,13
T32	9,6	6,4	8,6	8,20
T33	23,6	20,4	26,8	23,60
T34	31,4	11,2	9,0	17,20
T35	13,0	14,4	8,8	12,07
T36	29,6	22,0	23,4	25,00
T37	16,0	7,8	8,8	10,87
T38	27,2	44,8	29,0	33,67
T39	10,4	11,8	8,4	10,20
T40	28,4	22,2	27,0	25,87
Promedio				17,32

ANEXO 10. Datos registrados del número de tubérculos por planta de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

		Repeticiones		
Tratamientos	I	II	III	Promedio
T1	26,40	25,60	39,20	30,40
T2	16,20	13,20	13,20	14,20
T3	38,40	41,20	35,20	38,27
T4	25,20	8,60	17,80	17,20
T5	14,00	11,00	18,40	14,47
T6	24,80	26,60	44,20	31,87
T7	19,00	23,20	17,60	19,93
T8	18,40	25,20	22,00	21,87
Т9	22,40	19,00	24,00	21,80
T10	7,40	14,80	999	11,56
T11	31,80	31,60	35,60	33,00
T12	14,20	11,20	10,60	12,00
T13	13,40	11,80	16,60	13,93
T14	10,60	10,60	9,40	10,20
T15	14,60	12,40	10,80	12,60
T16	21,60	19,60	999	21,06
T17	18,20	33,60	15,80	22,53
T18	11,80	999	9,60	10,71
T19	19,80	18,60	13,00	17,13
T20	10,00	16,40	25,40	17,27
T21	28,20	18,80	23,40	23,47
T22	24,60	28,40	21,40	24,80
T23	17,60	16,80	13,20	15,87
T24	13,80	12,80	11,00	12,53
T25	10,60	12,20	8,60	10,47
T26	22,00	17,20	31,20	23,47
T27	10,20	16,00	8,40	11,53
T28	8,40	8,60	12,00	9,67
T29	9,20	14,40	18,60	14,07
T32	999	13,20	5,60	8.93
T33	999	26,80	38,60	32,23
T34	6,80	8,40	9,60	8,27
T35	13,80	999	22,60	18,21
T36	16,00	21,80	19,60	19,13
T37	10,40	12,60	14,20	12,40
T39	10,40	9,40	15,20	11,67
T40	25,00	38,80	27,00	30,27
Promedio				18.35

ANEXO 11. Datos registrados del rendimiento por planta (Kg) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo.

		Repeticiones		
Tratamientos	I	II	III	Promedio
T1	1,18	0,92	1,26	1,12
T2	0,65	0,55	0,55	0,58
T3	0,86	1,23	0,87	0,99
T4	1,15	1,09	0,59	0,94
T5	1,28	0,84	0,24	0,79
T6	1,03	1,13	1,28	1,15
T7	1,32	1,17	1,82	1,44
T8	1,14	1,02	0,97	1,04
T9	0,77	1,15	1,14	1,02
T10	0,83	0,66	0,71	0,73
T11	1,31	1,29	0,88	1,16
T12	1,11	1,06	0,93	1,03
T13	0,91	0,96	0,60	0,82
T14	0,88	0,98	0,83	0,90
T15	0,77	1,20	0,75	0,91
T16	0,89	0,78	0,79	0,82
T17	0,48	0,62	0,70	0,60
T18	0,75	0,96	0,65	0,79
T9	1,07	1,08	1,49	1,21
T20	0,45	0,70	0,49	0,55
T21	1,08	1,01	0,83	0,97
T22	0,90	0,90	0,90	0,90
T23	0,71	0,75	1,19	0,88
T24	0,90	0,90	1,11	0,97
T25	0,69	1,42	0,46	0,86
T26	0,68	1,13	0,77	0,86
T27	1,27	0,57	1,75	1,20
T28	0,49	1,53	0,58	0,87
T29	1,13	1,13	0,88	1,05
T31	0,39	0,79	1,01	0,73
T32	0,92	0,84	0,88	0,88
T33	1,20	1,97	1,07	1,41
T34	1,51	2,52	0,93	1,65
T35	0,40	0,36	0,38	0,38
T36	1,38	1,30	1,03	1,24
T37	0,34	0,33	0,34	0,34
Т9	0,81	1,03	0,90	0,91
T40	0,80	1,03	0,70	0,84
Promedio				0,94

ANEXO 11. Datos registrados del rendimiento por planta (Kg) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

		Repeticiones		
Tratamientos	I	II	III	Promedio
T1	0,60	0,60	0,58	0,59
T2	0,57	0,48	0,64	0,57
T3	2,26	0,59	0,81	1,22
T4	0,68	0,51	0,91	0,70
T5	0,75	0,68	0,71	0,71
T6	0,53	0,72	0,71	0,65
T7	0,63	0,76	0,99	0,79
T8	0,70	0,71	0,64	0,68
T9	0,79	0,84	0,56	0,73
T10	0,60	0,80	0,82	0,74
T11	0,90	0,33	0,90	0,71
T12	0,52	0,00	0,79	0,67
T13	0,57	0,98	0,67	0,74
T14	0,18	0,64	0,68	0,50
T15	0,51	0,56	0,34	0,47
T16	0,36	0,31	0,43	0,37
T17	0,38	0,27	1,00	0,55
T18	0,70	0,56	0,52	0,59
T19	0,56	0,48	0,46	0,50
T20	0,15	0,27	0,24	0,22
T21	1,01	0,97	0,95	0,98
T22	0,81	0,64	0,59	0,68
T23	0,64	0,42	0,56	0,54
T24	0,59	0,63	0,97	0,73
T25	0,77	0,93	0,51	0,74
T26	0,68	0,43	0,55	0,55
T27	0,46	0,83	0,52	0,60
T28	0,43	0,92	0,32	0,55
T29	0,65	0,46	0,54	0,55
T31	0,43	0,23	0,54	0,40
T32	0,30	0,66	0,09	0,35
T33	0,59	0,43	0,61	0,54
T34	0,63	0,80	0,62	0,68
T35	0,18	0,23	0,34	0,25
T36	0,77	0,91	0,58	0,76
T37	0,78	0,59	0,47	0,61
T38	0,69	0,55	0,79	0,67
T39	0,79	0,95	1,06	0,93
T40	0,50	0,61	0,27	0,46
Promedio				0,62

ANEXO 11. Datos registrados del rendimiento por planta (Kg) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

		Repeticiones		
Tratamientos	I	II	III	Promedio
T1	0,44	0,70	0,80	0,65
T2	0,37	0,32	0,29	0,33
T3	0,57	0,50	0,60	0,56
T4	0,49	0,67	0,90	0,69
T5	0,68	0,59	0,88	0,71
T6	0,58	0,52	0,74	0,61
T7	0,79	0,85	0,78	0,81
T8	0,74	0,70	0,94	0,79
T9	0,82	0,69	0,85	0,79
T10	0,37	0,66	999	0,54
T11	0,84	0,43	0,54	0,61
T12	0,40	0,47	0,74	0,54
T13	0,73	0,93	1,26	0,97
T14	0,36	0,57	0,31	0,41
T15	0,48	0,64	0,80	0,64
T16	0,54	0,15	999	0,37
T17	0,51	0,71	0,44	0,56
T18	0,56	999	0,88	0,71
T19	0,64	0,56	0,25	0,48
T20	0,21	0,34	0,21	0,25
T21	0,68	0,52	0,61	0,60
T22	0,69	0,49	0,69	0,63
T23	0,61	0,54	0,55	0,57
T24	0,60	0,52	0,56	0,56
T25	0,46	0,63	0,14	0,41
T26	0,40	0,26	0,47	0,37
T27	0,55	0,65	0,47	0,56
T28	0,45	0,49	0,74	0,56
T29	0,68	0,81	0,55	0,68
T32	999	0,28	0,24	0,25
T33	999	0,56	0,76	0,65
T34	0,32	0,31	0,33	0,32
T35	0,18	999	0,48	0,32
T36	0,64	0,53	0,74	0,64
T37	0,70	0,33	0,67	0,57
T39	0,60	0,46	0,54	0,53
T40	0,42	0,79	0,57	0,59
Promedio				0,56

ANEXO 12. Datos registrados del rendimiento categoría 1 (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo.

		Repeticiones		
Tratamientos	I	II	III	Promedio
T1	7,7	6,2	7,4	7,10
T2	5,1	8,1	1,2	4,80
Т3	8,5	7,5	5,1	7,03
T4	9,6	0,0	5,5	5,03
T5	12,7	7,0	3,2	7,63
T6	6,4	4,4	4,0	4,93
T7	21,0	6,2	13,5	13,57
T8	9,9	13,0	8,3	10,40
T9	11,0	9,8	14,8	11,87
T10	3,5	6,5	5,2	5,07
T11	7,6	7,0	4,0	6,20
T12	13,8	10,4	8,4	10,87
T13	11,5	6,5	3,2	7,07
T14	13,0	13,6	7,1	11,23
T15	7,7	11,5	5,3	8,17
T16	5,4	4,4	4,2	4,67
T17	5,5	2,0	7,5	5,00
T18	7,7	6,9	0,8	5,13
T9	14,7	2,5	7,9	8,37
T20	3,9	3,9	3,9	3,90
T21	18,6	13,2	4,4	12,07
T22	9,1	8,4	6,9	8,13
T23	6,6	4,5	8,5	6,53
T24	3,7	8,2	4,9	5,60
T25	6,8	5,5	2,2	4,83
T26	7,0	8,7	10,1	8,60
T27	15,8	4,8	12,0	10,87
T28	4,0	12,5	3,6	6,70
T29	14,0	9,7	9,1	10,93
T31	3,8	3,5	5,0	4,10
T32	12,6	3,5	10,8	8,97
T33	10,8	0,0	0,0	5,93
T34	15,6	28,5	15,8	19,97
T35	8,0	0,0	0,4	0,40
T36	17,1	7,0	6,2	10,10
T37	5,0	6,0	6,0	5,67
Т9	7,1	4,2	8,3	6,53
T40	6,1	3,4	4,9	4,80
Promedio				7,60

ANEXO 12. Datos registrados del rendimiento categoría 1 (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

	Repeticiones			
Tratamientos	I	II	III	Promedio
T1	5,3	4,5	5,0	4,93
T2	5,2	6,0	6,8	6,00
T3	3,2	2,8	6,4	4,13
T4	2,2	3,2	5,6	3,67
T5	8,6	5,0	7,7	7,10
T6	1,8	0,0	3,0	1,60
T7	7,6	9,0	9,9	8,83
T8	8,6	6,5	5,0	6,70
Т9	4,4	5,8	5,9	5,37
T10	4,2	3,7	4,6	4,17
T11	4,0	0,0	4,5	2,83
T12	4,0	5,2	8,4	5,87
T13	3,0	5,5	5,0	4,50
T14	0,0	5,0	6,5	3,83
T15	4,6	0,0	1,5	2,03
T16	2,5	3,5	2,6	2,87
T17	2,0	0,0	3,1	1,70
T18	2,0	2,0	2,1	2,03
T19	3,0	2,4	4,0	3,13
T20	0,0	0,0	0,0	0,00
T21	5,3	7,0	3,5	5,27
T22	9,0	5,8	2,3	5,70
T23	7,1	1,5	4,0	4,20
T24	4,5	2,5	2,8	3,27
T25	3,1	2,5	0,0	1,87
T26	4,5	0,0	0,0	1,50
T27	4,0	4,7	6,5	5,07
T28	2,0	4,0	0,0	2,00
T29	5,2	2,4	4,4	4,00
T31	2,9	1,8	0,0	1,57
T32	1,1	1,0	0,0	0,70
T33	6,0	1,9	3,5	3,80
T34	6,8	7,8	7,1	7,23
T35	0,0	0,0	1,5	0,50
T36	2,8	5,2	2,2	3,40
T37	10,7	9,7	5,0	8,47
T38	0,0	0,0	0,0	0,00
T39	13,0	9,0	14,5	12,17
T40	0,0	2,3	0,0	0,77
Promedio	·	·	·	3,92

ANEXO 12. Datos registrados del rendimiento categoría 1 (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

		Repeticiones		
Tratamientos	I	II	III	Promedio
T1	1,70	2,50	3,50	2,57
T2	3,60	2,30	2,30	2,73
T3	0,50	0,00	1,80	0,77
T4	2,10	1,50	4,30	2,63
T5	7,90	5,10	12,10	8,37
T6	2,10	1,00	2,50	1,87
T7	10,20	8,50	9,20	9,30
T8	8,50	2,50	3,80	4,93
T9	6,90	3,20	4,50	4,87
T10	2,70	3,00	999	2,87
T11	6,00	3,40	0,00	3,13
T12	2,30	2,30	6,60	3,73
T13	5,00	3,50	8,70	5,73
T14	1,80	6,50	0,90	3,07
T15	1,20	1,50	2,50	1,73
T16	1,50	0,00	999	0,77
T17	1,20	0,90	0,40	0,83
T18	1,30	999	1,50	1,16
T19	4,40	2,00	0,00	2,13
T20	0,00	0,00	0,40	0,13
T21	3,60	3,10	5,00	3,90
T22	4,50	1,20	1,20	2,30
T23	5,40	1,90	1,30	2,87
T24	2,60	2,30	1,10	2,00
T25	2,80	2,50	0,50	1,93
T26	0,00	0,90	2,20	1,03
T27	2,70	7,20	2,80	4,23
T28	4,90	4,80	3,50	4,40
T29	5,80	8,50	4,00	6,10
T32	999	1,50	0,20	1,07
T33	999	1,10	3,00	2,27
T34	1,50	1,10	2,90	1,83
T35	0,00	999	0,90	0,21
T36	1,80	0,00	2,60	1,47
T37	6,50	0,00	6,00	4,17
T39	6,80	3,50	3,90	4,73
T40	1,40	1,40	1,00	1,27
Promedio				2,95

ANEXO 13. Datos registrados del rendimiento categoría 2 (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo.

		Repeticiones		
Tratamientos	I	II	III	Promedio
T1	6,4	5,2	4,1	5,23
T2	3,6	3,0	0,9	2,50
T3	9,2	9,0	6,8	8,33
T4	10,2	8,0	5,4	7,87
T5	4,4	1,5	0,6	2,17
T6	10,2	6,0	4,3	6,83
T7	5,0	4,8	10,9	6,90
T8	9,3	6,8	5,9	7,33
T9	6,5	4,5	3,7	4,90
T10	10,2	5,5	5,4	7,03
T11	12,0	11,0	4,1	9,03
T12	12,0	6,6	5,6	8,07
T13	5,2	4,0	1,5	3,57
T14	5,8	6,2	4,5	5,50
T15	6,6	8,0	4,5	6,37
T16	6,5	3,6	4,2	4,77
T17	3,0	2,4	4,5	3,30
T18	4,1	4,8	1,7	3,53
T9	10,1	9,1	6,5	8,57
T20	3,0	4,9	4,9	4,27
T21	8,5	11,2	8,0	9,23
T22	4,9	6,0	7,9	6,27
T23	4,4	1,5	3,8	3,23
T24	9,2	4,5	3,1	5,60
T25	3,0	1,6	2,5	2,37
T26	6,1	6,6	4,5	5,73
T27	7,9	1,5	6,0	5,13
T28	2,5	6,1	1,9	3,50
T29	7,5	2,2	5,4	5,03
T31	2,3	2,8	5,5	3,53
T32	5,5	2,1	4,5	4,03
T33	13,2	3,6	7,8	8,20
T34	5,8	8,9	5,3	6,67
T35	2,8	3,4	2,7	2,97
T36	12,7	6,8	11,8	10,43
T37	3,0	3,3	3,0	3,10
Т9	6,7	2,8	4,0	4,50
T40	7,1	11,2	5,5	7,93
Promedio				5,62

ANEXO 13. Datos registrados del rendimiento categoría 2 (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

	I	Repeticione	S	
Tratamientos	I	II	III	Promedio
T1	7,1	3,5	4,6	5,07
T2	2,0	3,1	3,0	2,70
Т3	3,3	5,1	5,5	4,63
T4	1,4	2,0	4,6	2,67
T5	4,3	5,6	4,8	4,90
T6	4,8	4,2	5,3	4,77
T7	4,8	5,0	7,4	5,73
Т8	3,8	3,5	4,0	3,77
Т9	3,4	4,0	2,9	3,43
T10	5,2	5,6	7,1	5,97
T11	4,9	5,5	5,6	5,33
T12	3,9	5,0	4,1	4,33
T13	0,0	2,2	1,5	1,23
T14	3,0	2,5	2,6	2,70
T15	3,6	2,5	1,6	2,57
T16	1,8	2,1	3,7	2,53
T17	2,5	1,5	2,5	2,17
T18	1,1	1,6	1,3	1,33
T19	4,0	3,8	3,3	3,70
T20	0,9	1,5	1,9	1,43
T21	10,4	5,5	6,9	7,60
T22	4,2	2,4	4,0	3,53
T23	5,0	3,5	6,1	4,87
T24	3,4	2,8	3,7	3,30
T25	0,6	2,1	3,0	1,90
T26	4,9	3,0	4,5	4,13
T27	3,9	4,7	2,4	3,67
T28	0,9	2,1	2,1	1,70
T29	3,6	3,3	3,2	3,37
T31	1,0	1,0	2,5	1,50
T32	1,0	1,6	0,0	0,87
T33	4,8	3,2	4,4	4,13
T34	3,5	5,5	5,0	4,67
T35	2,9	1,4	2,6	2,30
T36	4,9	5,8	7,3	6,00
T37	3,8	3,1	4,2	3,70
T38	4,0	2,9	10,2	5,70
T39	4,5	8,5	8,0	7,00
T40	4,0	2,7	2,0	2,90
Promedio				3,69

ANEXO 13. Datos registrados del rendimiento categoría 2 (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

_		Repeticiones		
Tratamientos	I	II	III	Promedio
T1	3,90	2,80	8,80	5,17
T2	3,10	4,20	4,20	3,83
T3	4,00	4,50	7,30	5,27
T4	3,20	3,60	3,10	3,30
T5	0,00	2,50	7,80	3,43
T6	5,60	5,70	6,40	5,90
T7	7,20	10,00	6,80	8,00
T8	6,00	3,90	6,80	5,57
T9	8,10	5,10	7,20	6,80
T10	2,20	1,20	999	1,87
T11	6,50	4,40	6,50	5,80
T12	3,50	3,50	5,40	4,13
T13	3,40	3,00	3,60	3,33
T14	1,60	2,10	1,20	1,63
T15	1,50	1,50	3,00	2,00
T16	3,20	1,70	999	2,62
T17	1,70	2,50	2,20	2,13
T18	1,50	999	1,10	1,18
T19	4,90	5,70	1,50	4,03
T20	2,10	2,00	0,50	1,53
T21	7,50	6,10	7,80	7,13
T22	8,40	4,10	8,50	7,00
T23	3,80	4,40	3,10	3,77
T24	2,20	2,00	1,20	1,80
T25	1,70	2,50	0,40	1,53
T26	3,80	1,90	4,80	3,50
T27	2,10	4,10	2,60	2,93
T28	1,60	3,40	1,90	2,30
T29	4,00	5,40	2,30	3,90
T32	999	1,60	0,60	1,05
T33	999	4,10	9,20	6,60
T34	1,80	1,70	1,80	1,77
T35	1,20	999	2,40	1,68
T36	2,20	2,50	2,20	2,30
T37	6,20	3,20	5,50	4,97
T39	4,60	3,80	3,80	4,07
T40	3,00	6,20	4,00	4,40
Promedio				3,74

ANEXO 14. Datos registrados del rendimiento categoría 3 (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo.

		Repeticiones		
Tratamientos	I	II	III	Promedio
T1	16,7	14,3	16,2	15,73
T2	9,4	4,2	12,8	8,80
Т3	8,2	19,3	12,5	13,33
T4	12,5	14,8	2,4	9,90
T5	13,5	16,8	2,9	11,07
T6	13,2	18,9	18,5	16,87
T7	8,4	20,5	10,1	13,00
Т8	10,5	6,8	11,1	9,47
Т9	4,1	18,0	10,0	10,70
T10	7,8	5,9	7,8	7,17
T11	18,4	16,9	18,2	17,83
T12	7,6	5,2	13,1	8,63
T13	5,1	13,5	11,4	10,00
T14	7,6	4,6	11,5	7,90
T15	2,6	8,0	9,6	6,73
T16	12,0	12,3	12,9	12,40
T17	4,0	6,8	7,5	6,10
T18	7,0	9,5	8,5	8,33
Т9	6,3	19,8	8,0	11,37
T20	3,8	4,5	3,9	4,07
T21	3,2	6,0	12,6	7,27
T22	9,5	12,6	12,1	11,40
T23	6,8	12,8	10,4	10,00
T24	7,9	5,3	15,4	9,53
T25	6,0	7,1	3,6	5,57
T26	5,9	18,1	7,8	10,60
T27	13,1	8,0	13,5	11,53
T28	4,3	7,4	10,1	7,27
T29	8,0	16,3	11,8	12,03
T31	3,2	9,5	9,6	7,43
T32	4,8	8,6	9,2	7,53
T33	12,1	53,5	13,0	26,20
T34	17,9	28,0	6,9	17,60
T35	6,4	5,5	7,4	6,43
T36	6,1	20,0	8,8	11,63
T37	1,5	0,5	0,6	0,87
Т9	8,2	20,8	12,9	13,97
T40	7,7	10,0	7,1	8,27
Promedio				10,38

ANEXO 14. Datos registrados del rendimiento categoría 3 (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

Tratamientos	I	II	III	Promedio
T1	4,3	5,9	5,0	5,07
T2	1,4	2,5	1,7	1,87
Т3	9,3	8,0	11,5	9,60
T4	1,8	2,5	3,5	2,60
T5	5,1	5,6	6,0	5,57
T6	5,5	13,0	10,2	9,57
T7	4,6	7,2	7,4	6,40
T8	4,4	5,0	4,4	4,60
Т9	4,1	4,5	4,0	4,20
T10	6,1	10,0	12,0	9,37
T11	10,1	3,6	13,2	8,97
T12	5,7	6,8	3,3	5,27
T13	1,0	4,1	1,5	2,20
T14	1,6	2,1	1,1	1,60
T15	2,5	2,0	0,0	1,50
T16	0,0	2,5	4,0	2,17
T17	0,0	2,6	2,4	1,67
T18	1,1	0,9	1,8	1,27
T19	5,8	5,2	4,3	5,10
T20	1,0	2,5	2,1	1,87
T21	14,6	12,8	10,5	12,63
T22	7,8	10,5	9,6	9,30
T23	5,2	6,0	4,0	5,07
T24	1,5	2,3	3,2	2,33
T25	0,9	1,0	1,6	1,17
T26	7,5	7,8	9,2	8,17
T27	3,2	5,5	3,5	4,07
T28	0,5	2,2	2,0	1,57
T29	2,9	3,5	3,2	3,20
T31	1,2	0,9	2,9	1,67
T32	0,0	2,0	1,2	1,07
T33	5,6	6,4	7,3	6,43
T34	4,8	7,6	2,7	5,03
T35	1,6	5,0	5,0	3,87
T36	9,3	10,9	6,2	8,80
T37	1,1	3,0	3,5	2,53
T38	12,5	12,0	11,0	11,83
T39	4,5	6,2	5,1	5,27
T40	8,6	4,7	4,0	5,77
Promedio	·	·	,	4,88

ANEXO 14. Datos registrados del rendimiento categoría 3 (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

		Repeticiones		
Tratamientos	I	II	III	Promedio
T1	5,50	9,50	8,60	7,87
T2	2,50	1,60	2,30	2,13
Т3	10,40	7,60	7,10	8,37
T4	3,60	2,30	2,50	2,80
T5	6,50	4,10	3,90	4,83
T6	8,40	8,40	5,80	7,53
T7	3,20	4,50	3,50	3,73
T8	2,50	2,70	4,50	3,23
Т9	5,60	4,20	4,40	4,73
T10	1,40	1,70	999	1,54
T11	8,40	2,20	9,30	6,63
T12	3,10	3,10	3,50	3,23
T13	1,80	0,90	1,60	1,43
T14	0,90	0,50	0,40	0,60
T15	0,20	1,50	1,70	1,13
T16	7,10	1,40	999	4,24
T17	1,70	1,60	1,40	1,57
T18	1,10	999	0,90	0,82
T19	4,80	3,40	4,80	4,33
T20	2,00	2,70	0,60	1,77
T21	8,60	5,30	3,00	5,63
T22	7,90	3,10	8,90	6,63
T23	3,60	2,90	2,20	2,90
T24	1,20	1,90	0,50	1,20
T25	1,00	0,70	0,20	0,63
T26	4,10	2,60	2,90	3,20
T27	2,90	3,60	3,60	3,37
T28	1,20	2,00	1,30	1,50
T29	3,80	1,50	2,00	2,43
T32	999	1,10	0,40	0,94
T33	999	7,20	8,30	7,94
T34	2,10	1,50	1,50	1,70
T35	1,20	999	2,40	1,62
T36	1,10	0,70	1,10	0,97
T37	3,30	4,10	7,90	5,10
T39	3,70	2,30	2,50	2,83
T40	3,20	5,80	3,60	4,20
Promedio				3,39

ANEXO 15. Datos registrados del rendimiento total (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo.

		Repeticiones		
Tratamientos	I	II	III	Promedio
T1	30,8	25,7	27,7	28,07
T2	18,1	15,3	14,9	16,10
Т3	25,9	35,8	24,4	28,70
T4	32,3	22,8	14,8	23,30
T5	30,6	25,3	6,7	20,87
T6	29,8	29,3	26,8	28,63
T7	34,4	31,5	34,5	33,47
T8	29,7	26,6	25,3	27,20
Т9	21,6	32,3	28,5	27,47
T10	21,5	17,9	18,4	19,27
T11	38,0	34,9	26,3	33,07
T12	33,4	22,2	27,1	27,57
T13	21,8	24,0	16,1	20,63
T14	26,4	24,4	23,1	24,63
T15	16,9	27,5	19,4	21,27
T16	23,9	20,3	21,3	21,83
T17	12,5	11,2	19,5	14,40
T18	18,8	21,2	11,0	17,00
Т9	31,1	31,4	22,4	28,30
T20	10,7	13,3	12,7	12,23
T21	30,3	30,4	25,0	28,57
T22	23,5	27,0	26,9	25,80
T23	17,8	18,8	22,7	19,77
T24	20,8	18,0	23,4	20,73
T25	15,8	14,2	8,3	12,77
T26	19,0	33,4	22,4	24,93
T27	36,8	14,3	31,5	27,53
T28	10,8	26,0	15,6	17,47
T29	29,5	28,2	26,3	28,00
T31	9,3	15,8	20,1	15,07
T32	22,9	14,2	24,5	20,53
T33	36,1	57,1	27,8	40,33
T34	39,3	65,4	28,0	44,23
T35	10,0	8,9	10,5	9,80
T36	35,9	33,8	26,8	32,17
T37	9,5	9,8	9,6	9,63
Т9	22,0	27,8	25,2	25,00
T40	20,9	24,6	17,5	21,00
Promedio				23,61

ANEXO 15. Datos registrados del rendimiento total (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

		Repeticiones		
Tratamientos	I	II	III	Promedio
T1	16,7	13,9	14,6	15,07
T2	8,6	11,6	11,5	10,57
T3	15,8	15,9	23,4	18,37
T4	5,4	7,7	13,7	8,93
T5	18,0	16,2	18,5	17,57
T6	12,1	17,2	18,5	15,93
T7	17,0	21,2	24,7	20,97
T8	16,8	15,0	13,4	15,07
T9	11,9	14,3	12,8	13,00
T10	15,5	19,3	23,7	19,50
T11	19,0	9,1	23,3	17,13
T12	13,6	17,0	15,8	15,47
T13	4,0	11,8	8,0	7,93
T14	4,6	9,6	10,2	8,13
T15	10,7	4,5	3,1	6,10
T16	4,3	8,1	10,3	7,57
T17	4,5	4,1	8,0	5,53
T18	4,2	4,5	5,2	4,63
T19	12,8	11,4	11,6	11,93
T20	1,9	4,0	4,0	3,30
T21	30,3	25,3	20,9	25,50
T22	21,0	18,7	15,9	18,53
T23	17,3	11,0	14,1	14,13
T24	9,4	7,6	9,7	8,90
T25	4,6	5,6	4,6	4,93
T26	16,9	10,8	13,7	13,80
T27	11,1	14,9	12,4	12,80
T28	3,4	8,3	4,1	5,27
T29	11,7	9,2	10,8	10,57
T31	5,1	3,7	5,4	4,73
T32	2,1	4,6	1,2	2,63
T33	16,4	11,5	15,2	14,37
T34	15,1	20,9	14,8	16,93
T35	4,5	6,4	9,1	6,67
T36	17,0	21,9	15,7	18,20
T37	15,6	15,8	12,7	14,70
T38	16,5	14,9	21,2	17,53
T39	22,0	23,7	27,6	24,43
T40	12,6	9,7	6,0	9,43
Promedio	·	•	,	12,48

ANEXO 15. Datos registrados del rendimiento total (Kg/parcela) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

		Repeticiones		
Tratamientos	I	II	III	Promedio
T1	11,10	14,80	20,90	15,60
T2	9,20	8,10	8,80	8,70
T3	14,90	12,10	16,20	14,40
T4	8,90	7,40	9,90	8,73
T5	14,40	11,70	23,80	16,63
T6	16,10	15,10	14,70	15,30
T7	20,60	23,00	19,50	21,03
T8	17,00	9,10	15,10	13,73
T9	20,60	12,50	16,10	16,40
T10	6,30	5,90	999	6,29
T11	20,90	10,00	15,80	15,57
T12	8,90	8,90	15,50	11,10
T13	10,20	7,40	13,90	10,50
T14	4,30	9,10	2,50	5,30
T15	2,90	4,50	7,20	4,87
T16	11,80	3,10	999	7,64
T17	4,60	5,00	4,00	4,53
T18	3,90	999	3,50	3,15
T19	14,10	11,10	6,30	10,50
T20	4,10	4,70	1,50	3,43
T21	19,70	14,50	15,80	16,67
T22	20,80	8,40	18,60	15,93
T23	12,80	9,20	6,60	9,53
T24	6,00	6,20	2,80	5,00
T25	5,50	5,70	1,10	4,10
T26	7,90	5,40	9,90	7,73
T27	7,70	14,90	9,00	10,53
T28	7,70	10,20	6,70	8,20
T29	13,60	15,40	8,30	12,43
T32	999	4,20	1,20	3,06
T33	999	12,40	20,50	16,81
T34	5,40	4,30	6,20	5,30
T35	2,40	999	5,70	3,50
T36	5,10	3,20	5,90	4,73
T37	16,00	7,30	19,40	14,23
T39	15,10	9,60	10,20	11,63
T40	7,60	13,40	8,60	9,87
Promedio	•	· ·	•	10,07

ANEXO 16. Datos registrados del rendimiento por hectárea (Kg) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo.

		Repeticiones		
Tratamientos	I	II	III	Promedio
T1	39,5	30,6	42,0	37,35
T2	21,5	18,2	18,4	19,39
T3	28,8	41,1	29,0	32,99
T4	38,5	36,2	19,7	31,46
T5	42,5	28,1	8,0	26,20
T6	34,3	37,6	42,5	38,12
T7	44,1	38,9	60,5	47,84
T8	38,1	34,1	32,4	34,87
T9	25,7	38,5	38,0	34,06
T10	27,6	22,1	23,6	24,42
T11	43,7	43,1	29,2	38,66
T12	37,1	35,2	31,1	34,50
T13	30,3	32,0	19,9	27,38
T14	29,3	32,5	27,5	29,79
T15	25,6	39,9	24,9	30,11
T16	29,5	26,0	26,3	27,28
T17	16,0	20,7	23,2	19,99
T18	25,1	32,1	21,6	26,25
T9	35,7	36,1	49,8	40,54
T20	14,9	23,3	16,3	18,16
T21	36,1	33,8	27,8	32,54
T22	30,1	30,0	29,9	30,01
T23	23,7	25,1	39,8	29,54
T24	30,1	30,0	37,1	32,43
T25	22,9	47,3	15,4	28,53
T26	22,6	41,2	25,7	29,87
T27	42,3	19,1	58,3	39,90
T28	16,4	51,0	19,3	28,87
T29	37,8	37,6	29,2	34,88
T31	12,9	26,3	33,5	24,25
T32	30,5	27,8	29,2	29,18
T33	40,1	65,6	35,6	47,13
T34	50,4	83,8	31,1	55,11
T35	13,3	11,9	12,5	12,57
T36	46,0	43,3	34,4	41,24
T37	11,3	10,9	11,4	11,21
Т9	27,2	34,3	30,0	30,49
T40	26,8	34,2	23,3	28,10
Promedio				31,19

ANEXO 16. Datos registrados del rendimiento por hectárea (Kg) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo (continuación).

Tratamientos	I	II	III	Promedio	
T1	19,88	20,14	19,47	19,83	
T2	19,11	16,11	21,30	18,84	
Т3	75,24	19,63	26,90	40,59	
T4	22,50	17,11	30,44	23,35	
T5	25,00	22,50	23,72	23,74	
T6	17,54	23,89	23,72	21,71	
T7	20,99	25,24	32,93	26,39	
T8	23,33	23,81	21,27	22,80	
Т9	26,44	28,04	18,55	24,34	
T10	19,87	26,81	27,24	24,64	
T11	30,16	10,83	29,87	23,62	
T12	17,44	23,61	26,33	22,46	
T13	19,05	32,78	22,22	24,68	
T14	5,90	21,33	22,67	16,63	
T15	16,98	18,75	11,48	15,74	
T16	11,94	10,38	14,31	12,21	
T17	12,50	9,11	33,33	18,31	
T18	23,33	18,75	17,33	19,81	
T19	18,55	15,83	15,47	16,62	
T20	4,87	8,89	7,84	7,20	
T21	33,67	32,44	31,67	32,59	
T22	26,92	21,49	19,63	22,68	
T23	21,36	14,10	18,80	18,09	
T24	19,58	21,11	32,33	24,34	
T25	25,56	31,11	17,04	24,57	
T26	22,53	14,40	18,27	18,40	
T27	15,42	27,59	17,22	20,08	
T28	14,17	30,74	10,51	18,47	
T29	21,67	15,33	18,00	18,33	
T31	14,17	7,71	18,00	13,29	
T32	10,00	21,90	3,08	11,66	
T33	19,52	14,20	20,27	18,00	
T34	20,97	26,79	20,56	22,77	
T35	6,00	7,62	11,23	8,28	
T36	25,76	30,42	19,38	25,19	
T37	26,00	19,51	15,68	20,40	
T38	22,92	18,40	26,17	22,49	
T39	26,19	31,60	35,38	31,06	
T40	16,80	20,21	9,09	15,37	
Promedio	Promedio 20,76				

ANEXO 16. Datos registrados del rendimiento por hectárea (Kg) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo.

Tratamientos	I	II	III	Promedio
T1	14,80	23,49	26,79	21,70
T2	12,27	10,80	9,78	10,95
T3	19,10	16,81	20,00	18,64
T4	16,48	22,42	30,00	22,97
T5	17,14	19,50	29,38	22,01
T6	19,17	17,36	24,50	20,34
T7	26,41	28,40	26,00	26,94
T8	24,64	23,33	31,46	26,48
T9	27,47	23,15	28,25	26,29
T10	12,35	21,85	999	17,80
T11	27,87	14,49	18,16	20,17
T12	13,48	15,61	24,60	17,90
T13	24,29	30,83	42,12	32,41
T14	11,94	18,96	10,42	13,77
T15	16,11	21,43	26,67	21,40
T16	17,88	4,92	999	12,10
T17	17,04	23,81	14,81	18,55
T18	18,57	999	29,17	23,61
T19	21,36	18,50	8,40	16,09
T20	6,83	11,19	7,14	8,39
T21	22,64	17,26	20,26	20,05
T22	23,11	16,47	22,96	20,85
T23	20,32	18,04	18,33	18,90
T24	20,00	17,22	18,67	18,63
T25	15,28	21,11	4,58	13,66
T26	13,17	8,57	15,71	12,48
T27	18,33	21,59	15,79	18,57
T28	15,10	16,19	24,81	18,70
T29	22,67	27,02	18,44	22,71
T32	999	9,33	8,00	8,23
T33	999	18,79	25,31	21,61
T34	10,59	10,24	10,88	10,57
T35	6,15	999	15,83	10,73
T36	21,25	17,78	24,58	21,20
T37	23,19	11,06	22,30	18,85
T39	20,13	15,24	17,89	17,76
T40	14,07	26,27	19,11	19,82
Promedio 18,70				

ANEXO 17. Datos registrados del porcentaje de materia seca del tubérculo (%) de genotipos de papa sometidos a estrés hídrico en tres localidades de la provincia de Chimborazo.

Localidad			
Tratamientos	Tiazo Bajo	Pusniag SP	Santa Lucia
T1	24,40	26,27	27,13
T2	21,45	27,53	23,58
Т3	24,95	26,36	25,59
T4	22,62	24,81	26,25
T5	22,55	24,38	20,85
T6	25,55	27,41	25,40
T7	25,25	24,81	26,09
T8	24,31	24,39	25,16
Т9	23,59	23,39	25,61
T10	24,34	28,98	26,66
T11	26,15	26,46	26,26
T12	22,10	23,75	21,68
T13	26,90	24,18	25,23
T14	26,00	26,03	24,61
T15	23,80	27,41	30,22
T16	22,70	25,32	24,10
T17	22,05	27,78	22,01
T18	24,15	22,00	25,95
T19	18,88	22,95	21,17
T20	22,25	26,40	24,10
T21	26,02	27,52	24,48
T22	23,75	28,61	24,20
T23	19,70	21,82	22,31
T24	22,10	18,97	18,53
T25	22,60	23,16	22,88
T26	24,85	27,08	27,23
T27	25,60	24,90	23,13
T28	23,00	28,21	22,36
T29	22,00	21,28	22,53
T31	20,05	18,99	999
T32	20,15	21,09	20,19
T33	22,15	27,76	25,00
T34	20,06	22,04	22,54
T35	21,70	21,03	20,06
T36	23,45	24,65	24,05
T37	27,05	31,01	28,38
T38	999	27,30	999
T39	23,70	23,46	20,14
T40	25,65	28,35	27,09