

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO

FACULTAD DE CIENCIAS ESCUELA DE INGENIERÍA QUÍMICA

"DISEÑO DE UN SISTEMA DE RECICLAJE DE LOS BAÑOS DE CURTICION EN LA EMPRESASERVICUEROS S.A."

> TESIS DE GRADO Previa la obtención del Título de: INGENIERO QUÍMICO

DIANA VERONICA VINUEZA PAREDES

RIOBAMBA * ECUADOR**

2012

Una vez más agradezco a Dios por la bendicióny el amparo que me dio todos los días para poderconcluir con esta meta importante en mi vida.

A mis queridos padres por traerme a este mundo, educarme con amor, ser mi guía y apoyo durante toda mi vida.

A mis hermanos Eduardo y Erick, por ser mi reto de lucha.

A la empresa Servicueros S.A. por abrir sus puertas y brindarme la oportunidad de crecer profesionalmente.

Al Ing. Reinel Valencia por orientarme con su conocimiento y experiencia.

A la Escuela de ingeniería Química de la ESPOCH, y por intermedio de ella al distinguido cuerpo docente que supieron transmitir con voluntad y vocación sus conocimientos.

La meta que he culminado se la dedico a mis "Amados Padres", Eduardo e Isabel, quienes con su valioso e incondicional apoyo, han luchado día a día a mi lado, guiándome desde mis primeros pasos, a ellos va dirigido mi amor y eterno reconocimiento.

Verónica Vinueza

NOMBRE	FIRMA	FECHA
Dra. Yolanda Díaz DECANA FAC. CIENCIAS		
Ing. Mario Villacrés DIRECTOR ESC. ING. QUÍMICA		
Ing. Mario Villacrés DIRECTOR DE TESIS		
Ing. Cesar Puente MIEMBRO DEL TRIBUNAL		
Ing. MIEMBRO DEL TRIBUNAL		
Tec. Carlos Rodríguez DIRECTOR CENTRO DOCUMENTACIÓN NOTA DE INFORME		
NOTA DE INFORME		

"Yo, **DIANA VERONICA VINUEZA PAREDES** soy responsable de las ideas,
doctrinas y resultados expuestos en esta
Tesis; y el patrimonio intelectual de la
Tesis de Grado pertenece a la ESCUELA
SUPERIOR POLITÉCNICA DE
CHIMBORAZO"

INDICE DE ABREVIATURAS

pH Potencial Hidrogeno

% Porcentaje

 $\frac{Kg}{T}$ Kilogramo/Tonelada

 Cr^{3+} Cromo 3+

 $Cr_2\theta_3$ Oxido de Cromo III

TL Volumen Parcial del Bombo (m)

R Radio(m)

B Arco(m)

S Secante(m)

H Altura (m)

Longitud (m)

 V_{Agua} Volumen de Agua (m³)

V_{Cuero} Volumen del Cuero (m³)

*m*_{Cuero} Masa del Cuero cargado en el Bombo en análisis (Kg.)

ρ_{Cuero} Densidad del Cuero (Kg/m³)

Volumen Desplazado (m³) $V_{Desplazado}$ Área del Acumulador (m²) Α QCaudal (m³/s) TTiempo de descarga (s) \boldsymbol{A} Cantidad de Cr₂O₃(g/L) en el baño de cromo a reciclar(análisis de laboratorio) В Cantidad de sal de cromo (g) que contiene 25 % de óxido de cromo y33 % de basicidad. CCantidad de sal cromo en el baño a reciclar (g/L) VVolumen de baño a reciclar (L) ECantidad de sal de cromo a sustituir en el reciclo (g) Cantidad de sal de cromo que se oferta normalmente (g) Т X Porcentaje de sal de cromo 33 % de basicidad y 25 % de óxido de cromo arestituir. DPorcentaje normal de sal de cromo basicidad 33 % o sea el 6% conel cual se curte normalmente. Velocidad final de la partícula(m/s) Vc Densidad de la partícula (Kg/m³) $\rho_{\rm s}$

ρ	Densidad del fluido (Kg/m³)
D	Diámetro de la partícula (m)
C_D	Coeficiente de Arrastre
Fd	Fuerza de Arrastre o resistencia por fricción
V	Velocidad de la Partícula(m/s)
A	Sección Transversal o área proyectada de la partícula en dirección normal a ${\cal V}$
N_{Re}	Número de Reynolds
Vs	Velocidad de sedimentación(m/s)
$ ho_p$	Densidad de la partícula(Kg/m³)
ρ	Densidad del agua(Kg/m³)
μ	Viscosidad dinámica (cP)
A_D	Área del tanque de Decantación(m²)
T_R	Tiempo de Retención (s)
ADT	Altura Dinámica Total (m)
DBO	Demanda Bioquímica de Oxígeno
DQO	Demanda Química de Oxígeno

°Bé Grados Baumé mlMililitros LLitros ν Velocidad (m/s) Gravedad (m/s²) g P Presión (at) γ Peso especifico hf Pérdidas de energía (m) HCarga total del dispositivo mecánico (m) Ø Diámetro de la tubería (m) h_{FL} Pérdidas Longitudinales (m) Pérdidas por Accesorios (m) h_{Fm} Factor de Fricción Fanning

INDICE DE CONTENIDOS

1.1.1.	Curtición	4
1.1.1.1.	Piquelado o piquel	4
1.1.1.2.	Curtición al Cromo	5
1.2. RECU	JPERACIÓN DE LA SAL DE CROMO	7
1.3. RECI	CLAJE DIRECTO DE LOS BAÑOS RESIDUALES DE CURTICIÓN	9
1.3.1. ACU	JMULACIÓN DE BAÑOS RESIDUALES	12
1.3.1.1.	Cálculo de la Capacidad de un Bombo de Curtición	13
1.3.1.2.	Determinación del Volumen del Cuero	14
1.3.1.3.	Densidad del Cuero	15
1.3.2. ANÁ	ALISIS DE CROMO	17
1.3.2.1.	Sales de Cromo y Cuero	17
1.3.2.1.1	Determinación la Cantidad de Sal de Cromo III en el Agua Residual a Reciclar.	18
1.3.2.1.2 Residual	Determinación del Contenido de Sal de Cromo en un determinado volumen de a Reciclar	_
1.3.2.1.3	Determinación de Sal de Cromo a restituir en el Reciclo	19
1.3.2.1.4	Determinación del porcentaje de Sal de Cromo a restituir en el Reciclo	20
1.3.3.REM	IOCIÓN DE LAS PROTEÍNAS	20
1.3.3.1.	Decantación Primaria	22
1.3.3.2.	Sistema de Bombeo de tanque a tanque	27
1.3.3.2.1	. Dimensionamiento de una Bomba	28
1.4. PREC	CIPITACIÓN DEL CROMO Y SU REDISOLUCIÓN O SISTEMA	DE
RECICLA	JE INDIRECTO	29
1.5. SELE	CCIÓN DE PROCESOS PARA EL RECICLAJE	30
1.5.1.	Aspectos Técnicos	30
1.5.2.	Aspectos Ambientales	31

1.5.3.	Aspectos Económicos	31
	CAPITULO II	
2. PARTI	E EXPERIMENTAL	34
2.1. MUES	TREO	34
2.2 MÉTO	DOC V TÉCNICA C	27
2.2. METO	DOS Y TÉCNICAS	3/
2.2.1 MET	ODOS	37
2.2.1,11121		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2.2.1.1.	Método Inductivo	37
2.2.1.2.	Método Deductivo	37
2.2.1.3.	Método Experimental	38
2.2.2.TÉCN	NICAS	38
2.2.2.1.	Determinación del Volumen de Agua a Reciclar	39
2.2.2.2.	Determinación del Volumen del Cuero	40
2.2.2.3.	Determinación de la Capacidad Parcial de un Bombo	41
2.2.2.4.	Determinación de contenido de Oxido de Cromo en el agua residual	42
2.2.2.5.	Determinación de contenido de Oxido de Cromo en el Cuero	43
Tabla 2.2.	2.51	43
2.2.2.6.	Estandarización del Tiosulfato de Sodio	44
2.2.2.7.	Determinación del Potencial Hidrógeno pH	45
2.2.2.8.	Determinación de la Densidad en Escala Baumé	46
2.3. DATO	S EXPERIMENTALES	47
2.3.1.DIAC	SNÓSTICO DEL PROCESO DE CURTICION DE LA	EMPRESA
SERVICUE	EROS S.A	47

2.3.2.DATOS	49
2.3.2.1. Datos de volumen y caudales diarios de Agua Residual a Reciclar	
2.3.2.2. Datos de Volumen de Agua Residual de Curtición necesaria para Recic Diariamente53	lar
2.3.2.3. Datos Iniciales del Agua Residual de Curtición a Reciclar	53
2.3.2.4. Datos de Tratamiento dado al Agua Residual de Curtición	54
2.3.2.5. Datos de la Velocidad de Decantación del Colágeno	55
2.4. DATOS ADICIONALES	55
CAPITULO III	
3. DISEÑO DE UN SISTEMA DE RECICLAJE DIRECTO DE AGUA RESIDUAL I	DE
CURTICIÓN	57
JOKTICION	31
3.1. CÁLCULOS	57
3.1.1. CÁLCULO DEL ACUMULADOR DE AGUA RESIDUAL DE CURTICIÓN	57
3.1.2. CÁLCULO DEL DECANTADOR PARA REMOCIÓN DE COLÁGENO	59
	D. A.
3.1.3.CÁLCULO DEL RECIPIENTE DOSIFICADOR DE ACIDO SULFÚRICO PAF	ΧA
DESNATURALIZACIÓN DE PROTEÍNA (COLÁGENO)	60
3.1.4.CÁLCULO DE LA POTENCIA DE LA BOMBA DEL TANQUE I	DE
ACUMULACIÓN AL DECANTADOR (Bomba 1)	.61
3.1.4.1. Cálculo de la Carga Total de la Bomba	61
3.1.4.1.1. Cálculo de la Velocidad	62
3.1.4.1.2. Cálculo de Pérdidas Totales (②h _f)	63

3.1.4.1.2.1	Cálculo de Pérdidas Longitudinales (h _{Fl})	63
3.1.4.1.2.2	Cálculo de Pérdidas por Accesorios (hfm)	64
3.1.4.2.	Cálculo del Trabajo de la Bomba	65
3.1.4.3.	Cálculo de la Potencia de la Bomba	65
3.1.4.4.	Cálculo del Factor de Seguridad	66
3.1.5.CÁLC	CULO DE LA POTENCIA DE LA BOMBA DEL DECANTADO	R A LOS
BOMBOS I	DE CURTICION (Bomba 2)	66
3.1.5.1.	Cálculo de la Carga Total de la Bomba 2	66
3.1.5.1.1.	Cálculo de la Velocidad	67
3.1.5.1.2.	Cálculo de 🛮 h _f	67
3.1.5.1.2.1	Cálculo de hf _L	68
3.1.5.1.2.2	Cálculo de hfm	69
3.1.5.2.	Cálculo del Trabajo de la Bomba 2	69
3.1.5.3.	Cálculo de la Potencia de la Bomba2	70
3.1.5.4.	Cálculo del Factor de Seguridad	70
3.1.6.CALC	ULO DE VOLUMEN DE AGUA DE DESCARGA	70
3.1.6.1.	Cálculo del Volumen Parcial del Bombo	70
3.1.6.2.	Cálculo del Volumen del Cuero	71
3.1.6.2.1.	Cálculo de la Densidad del Cuero	71
3.1.7.CALC	CULO DE LA CANTIDAD DE SAL DE CROMO III EN E	L AGUA
RESIDUAL	A RECICLAR	72
3.1.7.1.	Cálculo de g/L Cr ₂ O ₃ en el Agua a Reciclar	72
3.1.7.2.	Cálculo de %Cr2O3 en el Agua a Reciclar	72
3.1.8.CALC	CULO DE g/L SAL DE CROMO III EN EL AGUA A RECICLAR	73
3.1.8.1.	Cálculo de gramos de Sal de Cromo III en el Volumen Agua a Reciclar	73
3 1 9 CALC	ULO DE SAL DE CROMO A RESTITUIR EN EL RECICLO	74

3.1.10. CA	LCULO DEL % SAL DE CROMO A RESTITUIR EN EL RECICLO	74
3.1.11. RE	QUERIMIENTO PRESUPUESTARIO	75
3.1.11.1.	Recursos Humanos	75
	Recursos Materiales	
	Recursos Totales	
	TADOS	
	CAPITULO IV	
4. ANÁLI	SIS Y DISCUSIÓN DE RESULTADOS	82
	CAPITULO V	
5. CONCI	JUSIONES Y RECOMENDACIONES	87
5.1. CONCI	LUSIONES	87
5.2. RECON	MENDACIONES	88
BIBLIOGRA	AFÍA ¡Error!	
3.6		
Marcador r	io definido.	
ANEXOS		93

INDICE DE TABLAS

Tabla 1.2 1 Emisión de Cromo según Proceso	8
Tabla 2.1- 1 Plan de Muestreo del Cuero para obtener su Densidad	34
Tabla 2.1- 2 Plan de Muestreo de Agua Residual	36
Tabla 2.2.2.1 1 Determinación del Volumen de Agua a Reciclar	39
Tabla 2.2.2.2- 1 Determinación del Volumen del Cuero	40
Tabla 2.2.2.3 1 Determinación de la Capacidad Parcial de un Bombo	41
Tabla 2.2.2.4 1 Determinación de contenido de Oxido de Cromo en el agua residual	42
Tabla 2.2.2.5 1 Determinación de contenido de Oxido de Cromo en el Cuero	43
Tabla 2.2.2.6 1 Estandarización del Tiosulfato de Sodio	44
Tabla 2.2.2.7 1 Determinación del Potencial Hidrógeno pH	45

Tabla 2.2.2.8 1 Determinación de la Densidad en Escala Baume	46
Tabla 2.3.1 1 Desventajas del Proceso de Curtición en la Empresa Servicueros S.A	48
Tabla 2.3.2.1 1 Datos del volumen diario de los Baños Residuales de Curtición a Reciclar	49
Tabla 2.3.2.1 2 Datos del Caudal Diario de los Baños Residuales de Curtición a Reciclar	52
Tabla 2.3.2.2 1 Datos de Volumen de Agua Residual de Curtición necesaria para Reciclar Diariamente	. 53
Tabla 2.3.2.3 1 Datos Iniciales del Agua Residual a Reciclar	53
Tabla 2.3.2.4 1 Datos de Tratamiento dado al Agua Residual de Curtición	54
Tabla 2.3.2.5 1 Datos de la Velocidad de Decantación del Colágeno	55
Tabla 2.4 1 Propiedades del Agua de Curtición a Reciclar	. 55
Tabla 3.1.11.1 1 Recursos Humanos	75
Tabla 3.1.11.1 2 Recursos Materiales	75
Tabla 3.1.11.1 3 Recursos Totales	.76

Tabla 3.2- 1 Resultados del Agua Residual de Curtición Reciclada	1
Tabla 3.2- 2 Dimensionamiento del Sistema de Reciclaje de los Baños de Curtición	,

INDICE DE FIGURAS Y GRAFICOS

Figura 1.1 1 Diagrama de Flujo Servicueros S.A.
Gráfico 1.2 1 Kilogramos de Oxido de Cromo III Residual por Tonelada de Piel en Tripa 7
Figura 1.3 1 Diagrama de Reciclaje Directo de Baños de Curtición10
Gráfico 1.3.1.1 1 Capacidad de un Bombo de Curtición
Gráfico 1.3.3.1 1 Decantador Cilíndrico - Cónico
Figura 3.2- 1 Balance de Masa del Sistema de Reciclaje de los Baños de Curtición80
Figura 4 1 Diagrama de Flujo del Sistema de Reciclaje de Baños Residuales de Curtición

INDICE DE ANEXOS

ANEXO I	CAPACIDAD TOTAL DE LOS BOMBOS DE CURTICIÓN	93
	CALCULOS PARA LA DETERMINACION DE LA DENSIDAD DEL	95
	FORMULAS DEL PROCESO DE CURTIDO CON RECICLAJE DE	106
ANEXO IV	MEDICION DE VOLUMEN DE DESCARGA	113
ANEXO V	DETERMINACION DE LA DENSIDAD DEL CUERO	114
ANEXO VI	ANALISIS DEL CONTENIDO DE Cr ₂ O ₃	115
ANEXO VII	ENSAYOS DE RECICLAJE	117
ANEXO VII	I DISEÑO DEL SISTEMA DE RECICLAJE DE LOS BAÑOS DE	118

RESUMEN

Se diseñó un Sistema de Reciclaje de los Baños de Curtición en la Empresa Servicueros S.A., como un mecanismo de disminución de consumo de agua y carga contaminante en las descargas liquidas. Para obtener el volumen de agua a reciclar se realizó la determinación de la capacidad parcial de los bombos y densidad del cuero, registrando un volumen máximo de 5,93m³.

El dimensionamiento del sistema se efectuó mediante los cálculos de ingeniería a partir de los datos experimentales y las variables de proceso. El sistema consiste en un Tanque acumulador subterráneo de hormigón armado de 5,93m³, desde el cual se bombeará con la ayuda de una Bomba 1 de 0.5HP, el agua residual requerida para el reciclaje a un tanque decantador de polietileno de alta densidad, con un volumen de 6m³, donde serán separados los sólidos sedimentables y el colágeno desnaturalizado mediante la adición de Acido sulfúrico que estará contenido en un tanque dosificador de polietileno de alta densidad de 30L; una vez el agua residual a pH=1 se llevará a los bombos con una Bomba 2 de 1 HP después de la operación de Purgado para dar inicio al Piquel y Curtición al Cromo.

Para garantizar la calidad de curtición mediante el Reciclaje de Baños, se efectuaron 7 reciclos a escala piloto con 6 bandas cada uno, obteniendo wetblue con un contenido de 3,7-3,8% de Oxido de Cromo III.

Para analizar la cantidad de sal de cromo III en el agua residual de cada uno de los reciclos, se empleó una titulación indirecta con Tiosulfato de Sodio.

Este sistema de reciclaje tendrá una capacidad instalada de 5,93m³/día, con un ahorro del 43-45% de Sal de Cromo y entre 66-83% de Cloruro de Sodio.

SUMMARY

It has been design a recycling system in the Tanning Baths of Servicueros S.A Company, as a mechanism to decrease water consumption and pollution load in liquid discharges. To obtain the recycling water volume it was performed the determination of partial capacity of the containers and the leather density, the result was maximum volume of 5,93m³.

The system sizing was performed by engineering calculations from experimental data and the process variables. This system consist of an underground storage tank made with reinforced concrete of 5,93m³, from which will pump with the help of a pump 1 of 0.5 HP, in order to recycling the waste water required a settling tank of high density polyethylene with a volume of 6 m³, where sedimentary solids are separated and the denatured collagen by addition of Sulfuric Acid that will be contained in a dosing tank high density polyethylene of 30 L; once the waste water to pH=1 will be carry drums with a pump 2 of 1 HP after the Purging operation to start the Pickle and Chrome Tanning.

Through the use of baths Recycling to ensure the quality of tanning, there were carried 7 recycles to pilot scale with 6 bands each, getting wet blue with a content of 3,7-3,8% of Chromium Oxide III.

It was employed an indirect titling with Sodium Thiosulfate to analyze the quantity of Chromium Salt in the waste water of each of the recycles.

This recycling system will have an installed capacity of 5.93m³/day, with a saving of 43-45% of Chromium Salt and between 66-83% of Sodium Chloride.

INTRODUCCIÓN

El incremento la producción industrial, ha implicado un problema de contaminación, estos son temas que van de la mano, por lo que las empresas deben establecer un compromiso para su cuidado, mediante la aplicación de sistemas de reciclaje.

La Empresa Servicueros S.A. consiente del grado de contaminación que genera, mediante la descarga de sus efluentes de curtición, considera se realice el estudio de factibilidad de construcción de un Sistema de Reciclaje del los baños de curtición para disminuir su carga contaminante al ambiente.

El presente trabajo es analizar y proponer el diseño de un sistema de Reciclaje de mencionados baños, basado en pruebas experimentales de simulación de la curtición, mediante la cuantificación analítica del contenido de Sal de Cromo III en las aguas residuales recirculadas, para determinar su eficiencia.

A continuación se presentan cuatro capítulos, en el primer capítulo se detallan algunos conceptos importantes en la industria Curtiembre, contenido de Sal de Cromo III en los baños residuales, se detalla el acondicionamiento de estas aguas antes de su reuso; además se indican los criterios de diseño.

En el segundo capítulo se indican los métodos y técnicas utilizadas para el diseño del Sistema de Recirculación.

El tercer capítulo contiene los Cálculos de Ingeniería, cuyos resultados validan el dimensionamiento del diseño y por último en el cuarto capítulo se indican las Conclusiones y Recomendaciones.

ANTECEDENTES

En las últimas décadas, la evolución de la industria ha llevado emparejada una preocupación creciente por la protección del medio ambiente, propiciada también por una legislación, cada vez más restrictiva, en materia de control de vertidos y residuos.

Por otro lado, el desarrollo tecnológico actual exige la incorporación al mercado de nuevos sistemas de producción cada vez más respetuosos con el medio ambiente sin perder competitividad, lo que implica la implantación en las industrias de las Mejores Tecnologías Disponibles en los procesos industriales.

Hoy en día, Alemania tiene una industria de curtiembres muy pequeña. Italia y los otros países europeos conducen operaciones limpias y eficientes. En la mayoría de los casos los curtidores han construido plantas grandes y eficientes cercanas a los mataderos. Estas plantas re-utilizan y reciclan sus efluentes de cromo.

En Octubre del 2001 en Mare Nostrum e INESCOP (Instituto Tecnológico del Calzado y Conexas), se verificó la viabilidad del reciclaje de los baños de piquel-curtición, comprobándose que después de siete ciclos el baño se estabiliza, manteniéndose constantes las concentraciones de los parámetros analizados (cloruros, sulfatos, cromo, y densidad), siendo necesario añadir solo una fracción de reactivos para lograr la concentración deseada.

En estas condiciones, se observó que el aspecto de las pieles tras la curtición era normal, no observándose ni diferencias de color ni de aspecto, y que las propiedades físicas y químicas

de las pieles curtidas según este procedimiento eran similares a las obtenidas mediante una curtición convencional.

SERVICUEROS S.A., una compañía productora y comercializadora de wetblue (cuero en azul), consciente de la problemática ambiental de su actividad industrial, se ha comprometido reducir el contenido de cromo de sus efluentes, mediante el reciclado de los baños de curtido, lo que conlleva una minimización de los costos de producción.

IUSTIFICACIÓN

El desarrollo industrial ha conllevado a grandes avances tecnológicos, aunque asimismo ha implicado daños medioambientales graves e irreversibles. Claro ejemplo de esto es la industria de curtiembres, que descarga a las fuentes naturales de agua, grandes cantidades de residuos líquidos altamente contaminados, siendo su principal componente el cromo, (en la forma de Cr III), por lo que se hace necesario implementar tecnologías que permitan su remoción.

Motivo por el cual la Empresa SERVICUEROS S.A, en su afán de cuidado del Medio Ambiente, ha considerado crear un sistema de reciclaje del baño de curtido, minimizando así el uso de aguay su descarga. Por medio de este Sistema de Reciclaje se logrará una menor concentración de Cromo en los vertidos, cumpliendo de este modo con las ordenanzas de la legislación ambiental nacional vigente.

Mediante el reciclaje se consume menos cantidad de insumos químicos (cloruro sódico, ácidos, basificantes y sales de cromo) empleados en el proceso de Curtición, lo que se convierte en un ahorro económico para la empresa.

OBJETIVOS

OBJETIVO GENERAL:

• Diseñar un sistema de Reciclaje de los Baños de curtido.

OBJETIVOS ESPECIFICOS:

- Cuantificar el Cromo (III) en los baños procedentes de la operación de Curtido.
- Realizar los cálculos de Ingeniería para el Sistema de Reciclaje del cromo.
- Determinar la capacidad instalada del Sistema de R

eciclaje.

- Especificar las características de los materiales del Sistema y los puntos de control.
- Establecer el requerimiento presupuestario para el Sistema de Reciclaje.

CAPITULO

1. MARCO TEORICO

1.1. INDUSTRIA CURTIEMBRE

La curtición es por definición una transformación de cualquier piel en cuero. Esta transformación está dada por una estabilización de la proteína. Las pieles procesadas en la ribera son susceptibles de ser atacadas por las enzimas segregadas por los microorganismos.

Por lo anterior queda claro que salvo excepciones, no encuentra aplicación si no se modifican algunas de sus propiedades.

La modificación a lograr implica que el producto a obtener:

- no se encoja al secar.
- sea resistente a la acción enzimática microbiana en húmedo.
- sea estable a la acción del agua caliente.

Esa modificación de la piel para dar un producto que reúna esas propiedades se llama "CURTICION", al producto logrado se le llama "CUERO".

Este proceso de curtición involucra el tratamiento de la piel en tripa con un agente curtiente, que, por lo menos en parte, se combine irreversiblemente con el colágeno.La estabilidad de la proteína, que mencionamos anteriormente, está dada por la formación de

enlaces transversales, en los que participa el agente curtiente dando lugar a una reticulación de la estructura.

nez escretaren Piel Fresca Piel Fresca PIELES Fort Borrowan Agua Residual Phot Personal masses Agua PELAMBRE Arra Mesarra nomination and income Phot Province dusc e Agua Arra Mesarra I Piel Pelambrada Piel DESCARNADO Descarnada Descarne Piel Descarnada Hilachas Piel Buena Furlli 1:41 Piel Deshilachada Piel Mala Piel Dividida DIVIDIDA Piel Buena Carnaza Finding of the con-Piel Dividida DESERVAÇÃO VI FURGAÇO PIELLA BUENAS Purgada Desencalantes y Purga Fir:11> ... i...1 ·1 v purgada Furll > - - - al -Purgada LAVADO DESENCALADO Agua Phil Prograd al y Purgada Arthur and a sulfúrico, sal Fiel Proposition PIQUELADO Agua Fort Performance Basificante CURTIDO Piel Curtida Agua Forts on love , Piel Curtida Arras November

Fig. 1.1.-1 Diagrama de Flujo Servicueros S.A.

FUENTE: Diana Verónica Vinueza Paredes

1.1.1. Curtición

La etapa de curtido comprende las operaciones y procesos que preparan la piel paraser curtida y transformada en cuero; genera un efluente con pH bajo al final de la etapa.

Los procesos de desencalado, desengrase y rendido eliminan la cal, el sulfuro y las grasascontenidas en la piel y limpian los poros de la misma. El consumo de agua no es tan alto comoen la etapa de ribera y su efluente tiene pH neutro. Los dos últimos procesos de esta etapaconsumen el menor volumen de agua; el piquelado en un medio salino y ácido prepara la pielpara el curtido con agentes vegetales o minerales. Al final de esta etapa se tiene el conocido"wetblue" cuando es curtido con cromo, que es clasificado según su grosor y calidad paralos procesos subsiguientes.La etapa de Curtición abarca dos actividades principales que son:

- PIQUELADO O PIQUEL
- CURTICION AL CROMO

1.1.1.1. Piquelado o piquel

Puede considerarse como un complemento del desencalado e interrupción definitiva del efecto enzimático del rendido; además se prepara la piel para la posterior operación de curtición.

En la operación del piquelado se trata la piel desencalada y rendida con productos ácidos que incorporan a la piel una importante cantidad de acido, al mismo tiempo al bajar el pH a 3-3,5, se logra eliminar totalmente el álcali de la piel, incluso el combinado.

El piquelado es muy importante en lo que respecta a la operación posterior de curtición, ya que si la piel no estuviera piquelada, el pH seria elevado y las sales del agente curtiente adquirirían una elevada basicidad, reaccionando rápidamente con las fibras de colágeno, lo que produciría una sobrecurtición en las capas más exteriores, que dificultaría la difusión del curtiente en las capas internas, produciendo una contracción en la capa de flor del agente mineral hidrolizado o a su vez flocular la sal de cromo.

1.1.1.2. Curtición al Cromo

Es una actividad por la cual se estabiliza el colágeno de la piel mediante agentes curtientes minerales o vegetales, transformándola en cueros.

La curtición permite la estabilización irreversible de la perecedera sustancia piel. La curtición de la piel en tripa en curtido origina:

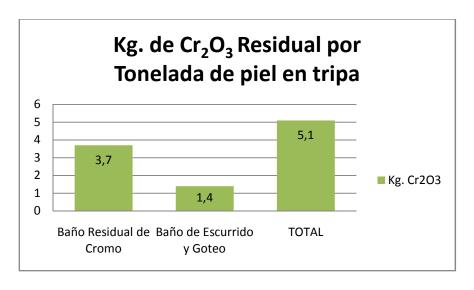
- Estabilidad frente a degradación enzimática y aumento de la resistencia frente a productos químicos.
- Aumento de la temperatura de encogimiento y de la estabilidad al agua caliente

- Disminución o anulación de la capacidad de hinchamiento
- Disminución de la densidad por aislamiento de las fibras.
- Disminución de la deformabilidad.
- Disminución el encogimiento en volumen, superficie y grosor.
- Aumento de la porosidad de las fibras del colágeno.

Estas cualidades se consiguen gracias a la reticulación de las cadenas de colágeno con los distintos curtientes.

Al final de esta etapa se tiene el conocido "wetblue", que es clasificado según su grosor y calidad para el proceso de acabado.

La curtición se efectúa con sales de cromo, el cromo se adiciona como sulfato básico de cromo III, Cr (OH) S0₄, sal que no es pura sino que va acompañada de Na₂SO₄ la sal de cromo comercial tiene una riqueza del 25% en Cr₂O₃. Esto es importante ya que influirá en la cantidad de sulfatos vertidos. Normalmente se utiliza entre 15 y 20 Kg de Cr₂O₃/T de piel.


Se ha de considerar el grado de fijación de este cromo, dado que al cuero aún le quedan por sufrir varias operaciones en baño y si éste no está bien fijado se lixiviará en las operaciones posteriores. En un proceso normal la fijación está alrededor de 66% del cromo ofertado, así se pierden entre 6 y 7 Kg de Cr₂0₃ por cada tonelada de piel curtida. El cromo de los baños de curtición y escurrido se puede aprovechar fácilmente reciclando baños o precipitándolo y redisolviéndolo para volver a aprovecharlo, pero éste cromo recuperable es el 80 % del

cromo no fijado por lo que evacuamos con las aguas residuales el 20 % del cromo no fijado, aproximadamente 1.4 Kg /T de piel, que expresado como ión Cr3+ es 0.96 Kg de piel.

1.2. RECUPERACIÓN DE LA SAL DE CROMO

"Debido por una parte al coste cada día más elevado de las sales de cromo y por otra parte a los problemas que puede representar la presencia en las aguas residuales ha hecho que últimamente se haya pensado mucho sobre la recuperación de las sales de cromo.

Graf. 1.2.-1 Kilogramos de Oxido de Cromo III Residual por Tonelada de Piel en Tripa

FUENTE: ADZET M, Química Técnica de Tenería, España, 1985

Según un trabajo de Luck y Wehling la cantidad más importante de cromo residual procede del baño de curtición, no obstante en el baño que se escurre durante el reposo de las pieles y en el propio escurrido mecánico. En la figura se indica la cantidad total de óxido de cromo residual por tonelada de piel en tripa."1

Cuando la oferta total de óxido de cromo es 2,0-3,0% referido al peso tripa de las pieles y se utiliza un sistema de curtición cromo convencional se obtiene un baño residual que contiene 6-8 gramos de óxido de cromo por litro. En estos casos el cuero queda con un contenido de 4,4% de óxido de cromo, lo que representa que solo se aprovechan los dos tercios de las sales de cromo utilizadas y el tercio restante se queda en los baños residuales. "La idea fundamental es conservar constante la calidad de los cueros curtidos al cromo y al mismo tiempo recuperar el cromo para lo cual puede pensarse en dos métodos:

- Reciclaje directo de los baños residuales de curtición.
- Precipitación de cromo de los baños residuales y su posterior redisolución."2

Tabla 1.2.-1 Emisión de Cromo según Proceso

PROCESO	Kg. Cr ³⁺ /T piel
Tradicional sin recuperación de baños	4.45
Tradicional con recuperación de baños	0.96

FUENTE: Química Técnica de Tenería, España, 1985

1 ADZET M., Química Técnica de Tenería, España, 1985 Pp:220,221

2ADZET M., Química Técnica de Tenería, España, 1985 Pp.225,226,228

1.3. RECICLAJE DIRECTO DE LOS BAÑOS RESIDUALES DE CURTICIÓN

Los baños residuales de la curtición al cromo contienen sales neutras del tipo cloruro sódico y sulfato sódico, así como sulfato de cromo básico. Estos baños se pueden recircular para emplearlos como baños de piquel o como baños de curtición.

Este reciclaje directo consiste básicamente en un proceso convencional de curtido enel que todo el baño residual se recupera, éste se refuerza con cloruro de sodio y la cantidadnecesaria de ácido sulfúrico para usarlo como licor de pickle para la siguiente partida.

La recirculación implica modificar en mayor o menor grado las fórmulas de curtición, aunque en general los cambios son mínimos. El hecho de recircular el licor residual de la curtición disminuye notablemente la cantidad de sal de cromo utilizada así como el contenido en cromo y las sales neutras de los baños residuales.

Para la realización práctica hay que separar fibras de cuero, ya sea por decantación o filtración y en algunos casos restos de grasa, para obviar las dificultades del bombeo o su excesiva acumulación en el baño. Además se necesita un depósito resistente y suficiente capacidad, que puede estar enterrado o sobre el suelo, así como una bomba para impulsar el líquido hacia el bombo.

Antes de volver a utilizar la solución debe controlarse la concentración salina mediante un densímetro, y ajustarse al valor deseado. Al ir recirculando los baños aumenta la concentración de sulfato sódico pero por dilución puede mantenerse en el valor que se

desee, también la acumulación del colágeno en el agua residual es un problema que causa manchas por lo que con la desnaturalización de la proteína se lo soluciona. Los complejos de cromo de los baños residuales son de composición parecida a los que contienen los baños iniciales.

Fig. 1.3.-1 Diagrama de Reciclaje Directo de Baños de Curtición Smili bulban DESENCALADO MORE ARE SIX Agua En ibt ble CURTICION Agua Percidas de (Piguelado y Agua Curtido al Cromo) SISTEMA DE RECIRCULACION DIRECTA

Fuente: Diana Verónica Vinueza Paredes

Las ventajas respecto al medioambiente son que el cromo puede ser nuevamente reutilizado en las partidas posteriores minimizando su contenido en las aguas residuales de curtido. Por otro lado se tiene la ventaja de ahorro considerable en los ácidos que seusan en el pickle, y sobre todo en el cromo usado durante el proceso de curtido. Asimismo,un ahorro substancial de sal en el proceso, lo cual también disminuye la presencia de clorurosy iones sodio en los efluentes residuales.

Para lograr los objetivos de minimización de efluentes y reducción del consumo decompuestos químicos en el proceso de curtido sin afectar la calidad final del artículoelaborado, se propone una recirculación directa del baño recuperado y tamizado.

Industrialmente se utilizan diversas técnicas de curtido según el tipo y calidad del cuero aproducir y esto debe ser tenido en cuenta cuando se realiza la recuperación y el reuso de loslíquidos residuales del curtido. Se considera el reuso directo un proceso sencillo, económicoy de fácil aplicación a la realidad de la industria, que no requiere modificar la técnica delcurtido.

La recirculación directa es posible, y de hecho es utilizada en algunas tenerías en dondees posible realizar hasta 15 ciclos de recirculación con resultados satisfactorios

Comocontrapartida debe señalarse que un sistema de recirculación efectivo requiere de un controlde laboratorio estricto.

Los equipos que se sugieren para la implementación de este sistema de recirculación Directa son los siguientes:

- Tanques de almacenamiento para baño de curtido.
- Tubería a los recipientes del proceso.
- Laboratorio de análisis, para determinar cromo en el licor que se va arecircular.
- Equipo y reactivos de laboratorio para realizar los análisis químicos.
- Recipientes para el almacenamiento de los baños residuales.

• Equipo de bombeo

Por todo lo indicado, para la instalación de este sistema de recirculación se requiere un tratamiento previo del agua residual de curtición, tal como el que se muestra a continuación:

- Acumulación de baños residuales
- Análisis de Cromo
- Remoción de Colágeno
- Determinación de la densidad y pH

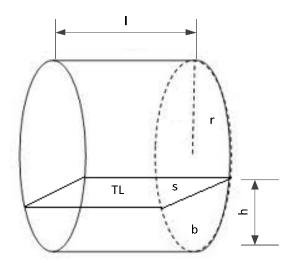
1.3.1. ACUMULACIÓN DE BAÑOS RESIDUALES

Consiste en la recepción de todas las corrientes residuales con lo cual se consigue regularizar el caudal e igualar su concentración.

El volumen del acumulador depende del volumen vertido y del régimen de trabajo. En general, se ha de calcular un volumen al menos igual al diario vertido. Asimismo, también se ha de tener también el proceso de fabricación. En la industria curtiembre se puede obtener el volumen a través de la medición de los bombos.

1.3.1.1. Cálculo de la Capacidad de un Bombo de Curtición

La capacidad de un bombo se calcula fácilmente porque disponemos de un cilindro, hueco.


Como un bombo generalmente no se llena hasta el eje hueco, se calcula la capacidad parcial

(TL) con la fórmula que se muestra a continuación:

$$TL = \frac{r(b-s) + s \times h}{2} \times l$$

Ec. 1.3.1.1.-1

Graf. 1.3.1.1..-1 Capacidad de un Bombo de Curtición

Donde:

TL= Volumen Parcial del Bombo

r= Radio

b = Arco

s = Secante

h= Altura

l= Longitud

Este es el volumen ocupado por el agua y el cuero. Para cálculos de dimensionamiento del sistema de Recirculación es necesario establecer el volumen del agua, por lo que se requiere aplicar el siguiente cálculo:

$$V_{Agua} = TL - V_{Cuero}$$

Ec. 1.3.1.1.-2

Donde:

 V_{Agua} = Volumen de Agua

TL= Volumen Parcial del Bombo

V_{Cuero}= Volumen del Cuero

1.3.1.2. Determinación del Volumen del Cuero

Para la determinación del volumen del cuero se despejará de la ecuación de la densidad.

$$V_{Cuero} = \frac{m_{Cuero}}{\rho_{Cuero}}$$

Ec. 1.3.1.2.-1

Donde:

V_{Cuero}=Volumen del Cuero (m³)

*m*_{Cuero} = Masa del Cuero cargado en el Bombo en análisis (Kg.)

 ρ_{Cuero} Densidad del Cuero (Kg/m³)

1.3.1.3. Densidad del Cuero

La densidad del cuero puede obtenerse de forma indirecta y de forma directa. Para la obtención indirecta de la densidad, se miden la masa y el volumen por separado y posteriormente se calcula la densidad.

La masa se mide habitualmente con una balanza, mientras que el volumen puede medirse determinando la forma del objeto, midiendo las dimensiones apropiadas o mediante el desplazamiento de un líquido.

Para el caso particular se usa el desplazamiento del líquido y la masa de la muestra pesada en una balanza. Con la ayuda de la siguiente ecuación:

$$\rho_{Cuero} = \frac{m_{Cuero}}{V_{Desplazado}}$$

Ec. 1.3.1.3.-1

Donde:

 $V_{Desplazado}$ = Volumen Desplazado (m³)

 m_{Cuero} = Masa del Cuero con ayuda de balanza (Kg)

 ρ_{Cuero} Densidad del Cuero (Kg/m³)

$$A = \frac{Q * t}{h}$$

Ec. 1.3.1.3.-2

Donde:

A= Área del Acumulador

Q = Caudal

t= Tiempo de descarga

h = Altura

1.3.2. ANÁLISIS DE CROMO

En la industria de curtidos es interesante analizar el contenido en dicromato de los licores de cromo obtenidos por reducción, la cantidad de óxido de cromo y su basicidad en las sales de cromo sólidas, en los licores de cromo yen los baños residuales. Así como el índice de floculación de los baños de curtición.

En el cuero húmedo nos puede interesar determinar la temperatura de contracción o simplemente hacer la prueba de ebullición. Sobre el cuero wetblue el análisis del contenido de óxido de cromo es importante para verificar el grado de curtición del cuero.

Existen varios métodos para determinar la cantidad de óxido de cromo en los baños residuales, entre ellos están:

- Dicromato en los licores de cromo
- Licores residuales de curtición
- Sal de cromo y cuero
- Índice de Floculación

1.3.2.1. Sales de Cromo y Cuero

Para determinaciones más precisas de óxido de cromo ya sea en sales de cromo, licores o bien sobre el cuero puede utilizarse el método IUC 8 de la Unión Internacional de

Químicos de la Industria del Cuero, que en esencia consiste en oxidar el cromo trivalente por la acción del ácido perclórico o en medio alcalino por la acción del clorato de potasio y después valorar el cromato obtenido por yodometría. Las Marchas Analíticas para la determinación de Oxido de Cromo III ver en las Tablas 2.2.1.2.4-1., 2.2.1.2.4-1,

$$\%Cr_2O_3 = \frac{mL\ Solucion\ de\ Tiosulf\ ato\ de\ Sodio*0.02533xN}{mL\ de\ Agua\ Residual\ Analizada}x100$$

Ec. 1.3.2.1.-1

$$\%Cr_2O_3 = \frac{mL\ Solution\ de\ Tiosulf\ ato\ de\ Sodio*0.02533*N}{Peso\ del\ cuero}x100$$

Ec. 1.3.2.1.-2

El cromo que debe añadirse al proceso de recirculación es el porcentaje usado normalmentemenos la cantidad que existe en el baño residual. A continuación se presentan los cálculos para determinar la cantidad de sal de cromobasicidad 33% a ofertar cuando los baños de curtidos se reciclan para ajustar:

1.3.2.1.1. Determinación la Cantidad de Sal de Cromo III en el Agua Residual a Reciclar

$$B = A * (\frac{100}{25})$$

Ec. 1.3.2.1.1.-1

Donde:
$A = \text{Cantidad de Cr}_2\text{O}_3(g/L)$ en el baño de cromo a reciclar(análisis de laboratorio)
B = Cantidad de sal de cromo (g) que contiene 25 % de óxido de cromo y33 % de
basicidad.
1.3.2.1.2. Determinación del Contenido de Sal de Cromo en un determinado
volumen de Agua Residual a Reciclar
C = B * V
Ec. 1.3.2.1.21
Donde:
C = Cantidad de sal cromo en el baño a reciclar (g/L)
V = Volumen de baño a reciclar (L)
1.3.2.1.3. Determinación de Sal de Cromo a restituir en el Reciclo
E = T - C
Ec. 1.3.2.1.3-1
Donde:
E= Cantidad de sal de cromo a sustituir en el reciclo (g)

T = Cantidad de sal de cromo que se oferta normalmente (g)

1.3.2.1.4. Determinación del porcentaje de Sal de Cromo a restituir en el Reciclo

$$X = (D * E)/T$$

Ec. 1.3.2.1.4.-1

Donde:

X =Porcentaje de sal de cromo 33 % de basicidad y 25 % de óxido de cromo arestituir.

D= Porcentaje normal de sal de cromo basicidad 33 % o sea el 6% conel cual se curte normalmente.

1.3.3. REMOCIÓN DE LAS PROTEÍNAS

Para recircular los baños de curtición es necesario efectuar una remoción de las proteínas disueltas en el agua, para evitar su acumulación y saturación, de modo que en los recicles no represente problemas en la calidad del cuero, esto se lo hace mediante el proceso bioquímico de desnaturalización.

Si en una disolución de proteínas se producen cambios de pH, alteraciones en la concentración, agitación molecular o variaciones bruscas de temperatura, la solubilidad de

las proteínas puede verse reducida hasta el punto de producirse su precipitación. Esto se debe a que los enlaces que mantienen la conformación globular se rompen y la proteína adopta la conformación filamentosa.

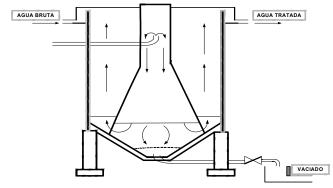
De este modo, la capa de moléculas de agua no recubre completamente a las moléculas proteicas, las cuales tienden a unirse entre sí dando lugar a grandes partículas que precipitan. Esta variación de la conformación se denomina desnaturalización.

Para precipitar a las proteínas contenidas en los baños de curtido se procede a alterar el pH, por medio de la adición de sustancias químicas.

Para este tipo de reciclaje directo se empleará la desnaturalización por cambio de pH, por medio de la adición de ácido, debido a que en la operación de piquelado se requiere un pH ácido, lo que significa un ahorro de insumos en el proceso y se evita la floculación del cromo debido a que la piel desencalada se encuentra en un pH 7, al ser puesta en contacto con el agua residual de curtición con pH inicial 3.8, provocaría la precipitación del cromo, causando manchas.

Para la desnaturalización se lleva al agua a un pH final de 1, mediante la adición de ácido sulfúrico, se efectúa una agitación para homogeneizarla y se procede a decantar.

1.3.3.1. Decantación Primaria


La decantación, tiene por objetivo la separación de las partículas en suspensión, por diferencia de densidad, de forma que las partículas más pesadas que el agua son separadas por la acción de la gravedad. Bien sean fácilmente sedimentables por sí mismas o bien las que pueden sedimentar como resultado de una coagulación.

Los sólidos en suspensión, se recogen como resultado de ésta operación, como fangos, más o menos concentrados, denominados fangos primarios, que se separan de las aguas residuales depuradas.

Existen muchos tipos de decantadores pero el más utilizado para esta operación es el Decantador cilíndrico – cónico, quees un decantador estático que no dispone de partes móviles, se utilizan para pequeños caudales (hasta a 20 m³/h), la pendiente de la parte cónica se encuentra entre 45° - 65°.

Graf. 1.3.3.1.-1 Decantador Cilíndrico - Cónico

DECANTADOR CILINDRO - CÓNICO SECCIÓN

"Para el diseño de un decantador, hay varios factores a considerar, si bien los más importantes son:

- Velocidad Ascensional o Carga Superficial: también llamado Velocidad
 Descensional, es el caudal de fluido dividido por la superficie del depósito de
 sedimentación. Éste será el único parámetro de la sedimentación de partículas
 discretas.
- Tiempo de Retención: Volumen del depósito dividido por el caudal. A veces, en vez de este parámetro se toma la altura del depósito al ser ambos interdependientes.

Para el cálculo de la velocidad final de la partícula a partir de la Ley de Newton, tenemos:

$$V_C = \frac{4g(\rho_{s-}\rho)d}{3C_D\rho}$$

Ec. 1.3.3.1.-1

Donde:

Vc= Velocidad final de la partícula

 ρ_s = Densidad de la partícula

 ρ = Densidad del fluido

g= Aceleración de la gravedad

d= diámetro de la partícula

 C_D =Coeficiente de Arrastre

$$C_D = \frac{Fd}{\left(\rho \frac{V^2}{2}\right)A}$$

Ec. 1.3.3.1.-2

Donde:

Fd= Fuerza de Arrastre o resistencia por fricción

V= Velocidad de la Partícula

A= Sección Transversal o área proyectada de la partícula en dirección normal a V

El valor de C_D varía dependiendo de si el régimen de flujo es laminar o turbulento. También varía de acuerdo a la forma de la partícula.

Para partículas esféricas puede aplicarse la siguiente ecuación:

$$C_D = \frac{24}{N_R} + \frac{3}{\sqrt{N_R}} + 0.34$$

Ec. 1.3.3.1.-3

Donde:

N_{Re}= Numero de Reynolds

Para Reynolds inferior a 0,3 predomina el primer término de la ecuación por medio de la Ley de Stokes, así:

$$Vc = \frac{g(\rho_p - \rho)d^2}{18u}$$

Ec. 1.3.3.1.-4

Donde:

Vs = Velocidad de sedimentación

 ρ_p = Densidad de la partícula

 ρ = Densidad del agua

μ =viscosidad dinámica

d= diámetro de la partícula

Para flujo laminar Stokes determino que la fuerza de arrastre, responde a la siguiente ecuación:

$$Fd = 3\pi uVd$$

Ec. 1.3.3.1.-5

Para el diseño de instalaciones se selecciona una determinada partícula de velocidad final conocida, se diseña el tanque de acuerdo a la siguiente ecuación:

$$A_D = \frac{Q}{V_C}$$

Ec. 1.3.3.1.-6

Donde:

 A_D = Área del tanque de Decantación

Q = Caudal

Las partículas de velocidad mayor o igual a la seleccionada serán eliminadas.

La profundidad y tiempo de retención se calcula de la siguiente expresión:

$$V_C = \frac{h}{T_R}$$

Ec. 1.3.3.1.-7

Donde:

h= Altura (m)

 T_R = Tiempo de Retención (s)

En la práctica es necesario tener en cuenta la diversidad en los tamaños de las partículas y determinar la eficiencia de la eliminación mediante ensayos de laboratorio. Igualmente, tener en cuenta en el montaje de instalaciones, algunos factores como turbulencia en la entrada y salida, eliminación de fangos, etc."³

3PUENTE J. Tratamiento de Aguas Residuales. Bucaramanga-Colombia. Representantes Jesenao. 1982. pp:214

1.3.3.2. Sistema de Bombeo de tanque a tanque

El cálculo del sistema de bombeo de tanque a tanque requiere de dos pasos previos, del cálculode la dotación diaria (y caudal de bombeo) y de la carga dinámica total de bombeo. Sin embargo se hace necesario la coordinación de algunos parámetros, los cuales se explican enlos párrafos siguientes:

- La tubería de bombeo entre un estanque bajo y el elevado deberá ser independiente de la tubería de distribución, calculándose el diámetro para que pueda llenar el estanque elevado en un máximo de dos (2) horas, previendo en esta que la velocidad esté comprendida entre 0.60 y 3.00 m/s.
- Puede estimarse el diámetro de la tubería de succión, igual al diámetro inmediatamentesuperior al de la tubería de impulsión, indicada en la tabla anterior.
- En la tubería de impulsión e inmediatamente después de la bomba, deberán instalarseuna válvula de retención y una llave de compuerta.
- En el caso de que la tubería de succión no trabaje bajo carga (succión negativa),
 deberá instalarse una válvula de pie en su extremo, para prevenir el descebado de las bombas.
- La capacidad del sistema de bombeo deberá ser diseñado de manera tal, que permita el llenar el estanque elevado en un tiempo no mayor de dos (2) horas.
- Siendo la Altura Dinámica Total de bombeo ADT la resultante de la sumatoria de:

- 1. Diferencia de cotas entre el sitio de colocación de la válvula de pie y la cota superiordel agua en el tanque elevado.
- 2. Las fricciones ocurridas en la succión de la bomba, descarga de la misma ymontante hasta el tanque elevado.
- 3. Presión residual a la descarga del tanque elevado (±2.00 a 4.00 m.).

1.3.3.2.1. Dimensionamiento de una Bomba

La potencia de la bomba podrá calcularse por la fórmula siguiente:

$$HP = rac{Q imes ADT}{75 imes \left(rac{n\%}{100}
ight)}$$

Ec. 1.3.3.2.1.-1

Donde:

HP= Potencia de la bomba (HP)

ADT= Altura Dinámica Total (m)

Q= Caudal requerido para el bombeo (L/s)

n= Rendimiento de la bomba, que para efectos de cálculo teórico de estima un 60%

1.4. PRECIPITACIÓN DEL CROMO Y SU REDISOLUCIÓN O SISTEMA DE RECICLAJE INDIRECTO

En este sistema previa filtración o decantación para eliminar las fibras de cuero, se precipita el cromo residual añadiendo un álcali y después de separar este precipitado se redisuelve con ácido para volverlo a emplear en la curtición.

Al tratar el licor residual con hidróxido sódico, oxido de magnesio, sosa o cal ya sea en frio o en caliente se obtiene un precipitado muy voluminoso que según sean las condiciones de precipitación puede sedimentar con más o menos facilidad.

El precipitado bien escurrido se disuelve con ácido sulfúrico en un depósito de acero inoxidable de buena calidad y mediante un adecuado control analítico, se puede ajustar la basicidad del licor de cromo, para su ulterior utilización en una nueva curtición.

Como el sedimento es muy floculento e hidratado a menudo se emplea un filtro prensa para escurrirlo mejor. La disolución del hidróxido de cromo es más rápida si se trata con una disolución de ácido sulfúrico en caliente.

Este método de aprovechamiento del cromo residual, que implica las fases de precipitación, separación y redisolución, es un sistema limpio, ya que se separan las impurezas de los compuestos de cromo y se obtiene un licor de la basicidad que se desee: no obstante es un sistema caro.

En este caso, como la dilución no importa ya que el cromo se precipita en forma de hidróxido insoluble, es posible reunir los baños residuales de curtición, escurrido e incluso de los baños de lavado y de recurtición y recuperar el cromo por este sistema. No obstante en la práctica presenta el problema de tener que tratar mayor volumen de líquido, y que pueden contener otros componentes que no sean adecuados.

1.5. SELECCIÓN DE PROCESOS PARA EL RECICLAJE

Para elegir el proceso de Reciclaje adecuado es necesario analizar los Aspectos Técnicos, Ambientales y Económicos.

1.5.1. Aspectos Técnicos

Los principales aspectos técnicos a considerarse para la selección de un proceso de Reciclaje se señalan a continuación:

- Conservar la misma formulación.
- El proceso de recicle no debe afectar la calidad, características físicas y químicas del producto final
- No requerir personal especializado para su realización

- Optimización de tiempo en su ejecución
- Utilización mínima de mano de obra

1.5.2. Aspectos Ambientales

El Sistema de Reciclaje de agua de curtición es un mecanismo que presenta varias ventajas respecto al medioambiente debido a que el cromo puede ser nuevamente reutilizadoen las partidas posteriores minimizando el contenido en las aguas residuales de curtido.

Los aspectos ambientales a ser analizados se enlistan a continuación:

- Minimización del volumen de efluentes
- Reducción del consumo decompuestos químicos
- Disminución de la concentración de productos químicos en las aguas residuales
- Cumplimiento de los parámetros del Texto Unificado de Legislación Ambiental Secundaria (TULAS).

1.5.3. Aspectos Económicos

El aspecto económico juega el papel más importante dentro de las empresas en la selección del proceso adecuado para Reciclaje, pues se debe tomar en cuenta los siguientes puntos:

Ahorro en los insumos químicos utilizados en los procesos normales

- Ahorro en los suministros de agua y energía
- Disminución en los costos de Tratamiento de aguas Residuales
- Baja Inversión de implementación

CAPITULO

II

2. PARTE EXPERIMENTAL

2.1. MUESTREO

El tipo de muestreo que se utilizó en el presente Trabajo de Investigación fue por el Método al Azar Simple, tanto para la obtención de muestras de cuero para determinar su densidad, así como para la toma de muestra de agua residual para la determinación del contenido de oxido de cromo en exceso.

Las muestras de cuero se recogieron del bombo del que se tomaron las medidas para el cálculo deCapacidad, una vez finalizada la operación de Curtición se tomaron 4 bandas o pieles de wetblue, de la cual se recogió 1 muestra, de sus diversas partes (cuello, falda, patas, grupón), como se muestra en la tabla a continuación:

Tabla 2.1.-1
Plan de Muestreo del Cuero para obtener su Densidad

Fecha			Bombo Nro.		
Muestreo	3	4	5	6	7
	BANDAS	INTEGRAL	INTEGRAL		BANDAS
18-Feb-11	4	4	4		4
	muestras	muestras	muestras		muestras
	BANDAS	BANDAS	INTEGRAL		INTEGRAL
24-Feb-11	4	4	4		4
	muestras	muestras	muestras		muestras
	BANDAS			BANDAS	BANDAS
2-Mar-11	4			4	4
	muestras			muestras	muestras

		INTEGRAL	INTEGRAL		
3-Mar-11		4	4		
		muestras	muestras		
	BANDAS	INTEGRAL	INTEGRAL	BANDAS	INTEGRAL
16-Mar-11	4	4	4	4	4
	muestras	muestras	muestras	muestras	muestras
	BANDAS			BANDAS	BANDAS
18-Mar-11	4			4	4
	muestras			muestras	muestras
		INTEGRAL			
19-Mar-11		4			
		muestras			
	BANDAS		BANDAS	INTEGRAL	BANDAS
24-Mar-11	4		4	4	4
	muestras		muestras	muestras	muestras
	BANDAS	INTEGRAL	INTEGRAL		
30-Mar-11	4	4	4		
	muestras	muestras	muestras		
	BANDAS	INTEGRAL	INTEGRAL	BANDAS	INTEGRAL
1/4/2011	4	4	4	4	4
	muestras	muestras	muestras	muestras	muestras
	BANDAS			BANDAS	
6/4/2011	4			4	
	muestras			muestras	
	BANDAS	INTEGRAL	INTEGRAL	BANDAS	INTEGRAL
8/4/2011	4	4	4	4	4
	muestras	muestras	muestras	muestras	muestras

Fuente: Diana Verónica Vinueza Paredes

Para analizar la cantidad de óxido de cromo en el agua procedente de la etapa de Curtición se tomó y homogenizó 30L de agua por bombo de curtición, después de terminada mencionada etapa, una vez analizado el contenido de sal de cromo se procedió a realizar la simulación de curtición con el agua residual analizada. Una vez finalizada la curtición, se recogió el agua residual de esta segunda curtición para ser analizarla y recircularla en una nueva curtición, este procedimiento se realizó como se muestra a continuación:

Tabla 2.1.-2 Plan de Muestreo de Agua Residual para análisis y Reciclaje

Fecha Muestreo	Volumen Muestra Analizada
8-Oct-11	20mL
I Reciclaje	
12-Oct-11	20mL
II Reciclaje	
19-Oct-11	20mL
III Reciclaje	
26-Oct-11	20mL
IV Reciclaje	
4-Nov-11	20mL
V Reciclaje	
9-Nov-11	20mL
VI Reciclaje	
16-Nov-11	20mL
VII Reciclaje	
23-Nov-11	20mL

Fuente: Diana Verónica Vinueza Paredes

Las muestras de cuero y agua fueron tomadas de los bombos de curtición de la Planta de Producción de la Empresa Servicueros S.A.

2.2. MÉTODOS Y TÉCNICAS

2.2.1.METODOS

2.2.1.1. Método Inductivo

Se realizó la toma de muestras según el plan de muestreo de la Tabla 2.1.-1 y Tabla 2.1.-2, se efectuó la tabulación de datos, para con estos, realizar los respectivos cálculos de ingeniería y dimensionar el sistema de Recirculación Directa de las Aguas Residuales de los baños de curtición.

2.2.1.2. Método Deductivo

Una vez determinado el contenido de Sal de Cromo III residual por litro de agua en los baños, se efectuaron los cálculos para ajustar la formulación de la operación de Curtición, al determinar la cantidad adicional a colocarse de cloruro de sodio y sal de cromo III. Este ajuste se efectuó en el bombo de pruebas, con lo que se obtuvieron los datos óptimos de control del proceso, tales como: Atravesado de Cromo, Temperatura de Contracción, pH final en el cuero y en el baño, comprobando así, que es posible reciclar el agua residual de Curtido y obtener un wetblue de buena calidad.

2.2.1.3. Método Experimental

Mediante el método experimental realizado en el laboratorio con las muestras recolectadas y la simulación de recirculación del agua en el bombo de ensayos, se logró establecer el Diseño del Sistema de Reciclaje de los Baños de Curtición. Gracias a este método se comprobó que mientras se recircula el agua residual se genera acumulación de colágeno, el mismo que afecta la operación de Curtición, por lo que es necesario desnaturalizarlo a través de la acidificación y su posterior separación por decantación, de este modo, se obtiene un wetblue de calidad, siendo positiva la hipótesis planteada. Además se comprobó que al no añadir acido al agua residual antes del piquelado, el cromo llega a su punto de floculación (a partir de un pH=4), precipitado que provoca manchas en el cuero.

2.2.2. TÉCNICAS

2.2.2.1. Determinación del Volumen de Agua a Reciclar

Tabla 2.2.2.1.-1 Determinación del Volumen de Agua a Reciclar

FUNDAMENTO	MATERIALES	TÉCNICA	CÁLCULO
La Industria Curtiembre, para dimensionar un sistema de recirculación es necesario establecer el volumen de agua de residual, pues la descarga es discontinua. Para obtener el Volumen de agua procedente de la etapa de curtición es necesario determinar capacidad del bombo, tomando las medidas del mismo, posteriormente se sustraerá el volumen del cuero, al determinar su densidad y de este modo obtener el volumen del agua.	• Flexómetro	 Determinar la Capacidad parcial del Bombo de Curtición (Ver tabla 2.2.2.31) Toma de Medidas de los bombos (Diámetro y Longitud) Determinación del Volumen del Cuero mediante el principio de densidad del cuero.(Ver tabla 2.2.2.21) Sumar las capacidades parciales de los bombos que descargan sus aguas residuales por día, obteniendo así el volumen para 	$V_{Agua} = TL - V_{Cuero}$ Donde: $V_{Agua} = \text{Volumen de Agua (m}^3)$ $TL = \text{Capacidad Parcial del Bombo (m}^3)$ $V_{Cuero} = \text{Volumen del Cuero (m}^3)$

Fuente: Vademécum para el técnico en curtición, Tercera edición revisada y ampliada BASF

2.2.2.2. Determinación delVolumen del Cuero

Tabla 2.2.2.-1 Determinación del Volumen del Cuero

MATERIALES
Flexómetro Probeta
1000mL. Balanza

2.2.2.3. Determinación dela Capacidad Parcial de un Bombo

Tabla 2.2.3.-1 Determinación de la Capacidad Parcial de un Bombo

FUNDAMENTO	MATERIALES	TÉCNICA	CÁLCULO
Para efectuar la operación de curtición en los bombos, se requiere utilizar solamente una	• Flexómetro	Destapar el bombo una vez finalizada la operación de curtición.	$TL = \frac{r(b-s) + s \times h}{2} \times l$
parte del total del bombo (cilindro), por lo que es necesario calcular su Capacidad Parcial, es decir, el		 Observar los niveles de agua residual y cuero en el bombo 	Donde: $TL = V$ olumen Parcial del Bombo
volumen ocupado por el agua residual y el cuero.		• Proceder a medir el bombo:	r= Radio (m)
		a) Diámetro	$b = \operatorname{Arco}(m)$
		b) Longitud	S = Secante (m)
		c) Altura	n-Anula (III)
		d) Arco	/= Longitua (m)
		e) Secante	
		Realizar los cálculos de Capacidad Parcial de un Bombo	
	: :	1 1 1 1 1 1 1 1	

Determinación de contenido de Oxido de Cromo en el agua residual 2.2.2.4.

Tabla 2.2.2.4.-1
Determinación de contenido de Oxido de Cromo en el Agua Residual

FUNDAMENTO	MATERIALES	REACTIVOS	TÉCNICA	CÁLCULO
	• Balanza	Acido Sulfúrico	• Colocar en un erlenmeyer,	
Consiste en oxidar el cromo	Ę	 Acido Nítrico 	residual (W)	$\%Cr_2O_3 = \frac{V*0.02533xN}{2}100$
acido perclórico y después	 1 Erlenmeyer 250mL 	• Acido	la mezcla	X
valorar el cromato obtenido	Dorrockoon	Perclórico	(7mL. Ac. Sulfúrico, 10ml Ac Perclórico y	Donde:
Titulación Indirecto).		• Solución	5mL de Ac. Nítrico) y	V= Volumen de Tiosulfato de
	• 1 Bureta 50mL.	0	llevar a ebullición hasta	Sodio (mL)
La yodometria es un metodo de oxidación-reducción, que	• 2 Pipetas de de		viraje de verde intenso a	W= Volumen del baño residual
valora sustancias reductoras	10mL.	• Solución de	 Diluir con agua destilada a 	analizado (mL)
.0	• 1 pipeta de	Yoduro de	100mL y llevar a	N=Concentración de Tiosulfato de
disolución patrón de	5mL.	Potasio al 10%	ebullición por 5minutos	20d10 (N)
tiosulfato sódico.	• 1 pipeta	• Solución de	• Colocar 10mL. de KI 10%	$Gramos/_{Litro} = \%Cr_2O_3*10$
	volumétrica de	1%	Iniciar la utulación con Tiosulfato de Sodio para	
	I Om L.	Agua Destilada	disminuir yodo (tonalidad	
		lendise Residual	mas clara) • Colocar 1mL de solución.	
		de Curtición.	De almidón 1%	
			• Terminar la titulación y	
			anotar el volumen	
			consumido (V)	
T	T adjoint as soint 1 to an	The second secon		

2.2.2.5. Determinación de contenido de Oxido de Cromo en el Cuero

Tabla 2.2.2.5.-1
Determinación de contenido de Oxido de Cromo en el Cuero

MAIEMALES	REACTIVOS	TÉCNICA	CÁLCULO
	Acido Sulfurico	• Colocar en un erlenmeyer, 1g. de Wetblue seco (Wm)	V * 0.02533xN
1 Erlenmeyer	Acido intrico	 Anadir la mezcla oxidante (7mL. Ac. Sulfúrico. 	$\% Cr_2 O_3 = \frac{100}{Wm} 100$
250mL. Doggebor	Acido Perclórico	Ac. Per	Donde:
1 Bureta 50mL.	• Solución de Tiosulfato de	llevar a ebullición hasta viraje de verde intenso a	V= Volumen de Tiosulfato de Sodio (mL)
2 Pipetas de de		naranja. • Diluir con ama destilada a	Wm= Peso de wetblue (1g)
	J	100mL y llevar a	N=Concentración de Tiosulfato de
1 pipeta de 5mL.	Yoduro de Potasio al 10%	ebullición por 5minutosColocar 10mL. de KI 10%	(N) OIDOS
1 pipeta	• Solución de	• Iniciar la titulación con Tiosulfato de Sodio para	
a uc	Almidon 1%	disminuir yodo (tonalidad más clara)	
	Agua Destilada	• Colocar 1mL de solución.	
	 Wet Blue 	De almidón 1%	
		Terminar la titulación y	
		consumido (V)	

2.2.2.6. Estandarización del Tiosulfato de Sodio

Tabla 2.2.2.6-1 Estandarización del Tiosulfato de Sodio

CÁLCULO	$N Na_2 S_2 O_3 = \frac{W}{0.03567 * V}$ Donde: $W = \text{Peso de Yodato de Potasio}$ $V = \text{Volumen de Solución de Tiosulfato de Sodio consumidos en la estandarización (mL)}$ $N = \text{Normalidad obtenida (N)}$
TÉCNICA	 Preparar una solución de Tiosulfato de Sodio 0.1N Disolver en 50mL de agua destilada de 0.12 a 0.17g de Yodato de Potasio Anadir 2g. de Yoduro de Potasio y 1mL de Acido Clorhídrico. Diluir a 100mL aproximadamente Llevar a la oscuridad por 10 minutos Titular con el Tiosulfato de Sodio Preparado usando como indicador la solución de almidón al 1% Anotar el volumen utilizado hasta obtener el color claro
REACTIVOS	 Solución de Tiosulfato de Sodio 0.1N Yoduro de Potasio Yodato de Potasio Acido Clorhídrico Almidón 1% Agua Destilada
MATERIALES	 Balanza 1 Erlenmeyer 250mL. 1 Bureta 50mL. 1 pipeta de 5mL. 1 pipeta de 10mL.
FUNDAMENTO	La estandarización se emplea para ajustar una solución de tiosulfato de Sodio preparada, con el objeto de conocer su concentración y de este modo volverla un patrón primario que, por su especial estabilidad, se emplea para valorar la concentración de otras soluciones.

Fuente: LAITINEN H. Soluciones estándar y patrones primarios. Análisis químico.

2.2.2.7. Determinación del Potencial Hidrógeno pH

Tabla 2.2.2.7-1 Determinación del Potencial Hidrógeno pH

FUNDAMENTO	MATERIALES	TÉCNICA	CÁLCULO
El pH es el parámetro que nos indica la acidez o alcalinidad del agua en una escala numérica de 1 a 14. Si el agua es acida el valor será menor a 7 si es básica será	 Vaso de Precipitación de 250mL Cinta indicadora de 	• Recoger una muestra de 50mL. de agua residual con contenido de Sal de Cromo III	Lectura Directa
mayor a 7 y se encuentra en estado neutro cuando su valor es 7	Hd	Sumergir una cinta de pH en el agua	
		Retirar la cinta y observar el valor de pH en tabla de referencia.	

Fuente: EBBINGD., Química General

2.2.2.8. Determinación de la Densidad en Escala Baumé

Tabla 2.2.2.8-1 Determinación de la Densidad en Escala Baumé

FUNDAMENTO	MATERIALES	TÉCNICA	CÁLCULO
Se emplea para medir las concentraciones de ciertas soluciones. Se establece en referencia a una disolución acuosa de cloruro de sodio (NaCl) al 10% en masa y agua destilada. Se marca el valor 0 para el agua destilada y el valor 10 para la disolución al 10%,	Probeta de 1000mL Aerómetro	 Recoger 1000mL de agua residual con contenido de Sal de Cromo III en la probeta Dejar caer el aerómetro en el agua. Observar la escala del aerómetro y determinar el valor de densidad en °Bé (grados Baumé). 	Lectura Directa

Fuente: EBBING D., Química General

2.3. DATOS EXPERIMENTALES

2.3.1.DIAGNÓSTICO DEL PROCESO DE CURTICION DE LA EMPRESA SERVICUEROS S.A.

El proceso de curtición en la empresa Servicueros S.A. se efectúa en 6 bombos, lo que significa 10500 Kg. de cuero en proceso por día.

El suministro de agua para este proceso es inminentemente agua proveniente de la Acequia Lalama y de Tanqueros, la misma que después del proceso de Curtición es descargada directamente al alcantarillado público, sin previo tratamiento.

La operación de piquelado requiere una cantidad de 6% de Cloruro de sodio y 1,2% de ácido Sulfúrico, mientras que en la operación de curtición se utiliza un 6% de sal de cromo III(porcentajes con relación al peso de cuero).

Mediante la aplicación de esta formulación se obtiene una prueba de Temperatura de Contracción (TG) positiva y pruebas de resistencia de cuero terminado dentro de los parámetros.

El contenido de Oxido de Cromo III en el wetblue de la Empresa está entre de 3-4%, siendo 2,5% el mínimo para un cuero de buena calidad.

El contenido de Oxido de Cromo III en el agua residual a descargarse es de aproximadamente 0.55%, lo que equivale a 5.5gde Cr_2O_3/L .

Tabla 2.3.1-1 Desventajas del Proceso de Curtición en la Empresa Servicueros S.A.

ASPECTO	DESVENTAJAS
Agua	 Gran caudal de vertimiento residual Elevados costos por consumo del suministro
Descarga al Alcantarillado	 Alto costo por mantenimiento del sistema de tubería de alcantarillados. Incumplimiento de los Parámetros del TULAS (Texto Unificado de Legislación Ambiental Secundario), con altas concentraciones de Cloruros, Cromo Total, DBO, DQO.
Insumos Químicos	 La cantidad de sal de Cromo III y cloruro de sodio suministradas, deben estar en exceso por lo que generan un residual importante. Gastos representativos en insumos químicos

2.3.2. DATOS

2.3.2.1. Datos de volumen y caudales diarios de Agua Residual a Reciclar

Tabla 2.3.2.1-1

Datos del volumen diario de los Baños Residuales de Curtición a Reciclar.

Datos obtenidos a partir de 4 muestras de cuero por bombo. (Ver anexo I)

	Viernes, 18/02/2011								
Bombo	Producto	Densidad	Masa	Volumen Cuero	Volumen Total	Volumen Agua	Volumen		
Nro.		Prom.(kg/m3)	cuero(Kg.)	(m3)	(m3)	(m3)	Agua (L)		
3	Bandas	1176.83	1330	1.13	1.48	0.35	348.60		
4	Integrales	1128.28	1550	1.37	2.34	0.97	965.42		
5	Integrales	1165.10	1550	1.33	2.06	0.73	726.90		
7	Bandas	1134.65	1330	1.17	1.66	0.49	489.49		
			2.53	2530.42					
Jueves,24/02/2011									
Bombo						Volumen	Volumen		
	Producto			Cuero	Total	Agua			
Nro.		Prom.(kg/m3)	cuero(Kg.)	(m3)	(m3)	(m3)	Agua (L)		
3	Bandas	1243.70	1520	1.22	1.77	0.55	550.53		
4	Bandas	1133.34	1520	1.34	2.27	0.92	924.07		
5	Integrales	1130.20	1400	1.24	1.92	0.68	682.94		
7	Integrales	1200.69	1400	1.17	2.03	0.86	859.44		
		VOLUMEN TO	TAL DESCARG	iΑ		3.02	3016.97		
			Miércoles, 0	2/03/2011					
Bombo		Densidad	Masa	Volumen	Volumen	Volumen	Volumen		
	Producto			Cuero	Total	Agua			
Nro.		Prom.(kg/m3)	cuero(Kg.)	(m3)	(m3)	(m3)	Agua (L)		
3	Bandas	1034.81	1550	1.50	1.88	0.38	378.92		
6	Bandas	1095.06	1550	1.42	2.16	0.75	745.51		
7	Bandas	1149.55	1550	1.35	2.13	0.78	783.18		
		VOLUMEN TO	TAL DESCARG	iA		1.91	1907.62		

	Jueves, 03/03/2011									
Bombo		Densidad	Masa	Volumen	Volumen	Volumen	Volumen			
	Producto			Cuero	Total	Agua				
Nro.		Prom.(kg/m3)	cuero(Kg.)	(m3)	(m3)	(m3)	Agua (L)			
4	Integrales	1104.82	1450	1.31	2.03	0.71	714.34			
5	Integrales	1106.74	1450	1.31	2.28	0.97	973.79			
		VOLUMEN TO	TAL DESCARG	i A		1.69	1688.13			
			Miércoles, 1	6/03/2011						
Bombo		Densidad	Masa	Volumen	Volumen	Volumen	Volumen			
	Producto			Cuero	Total	Agua	- 4-3			
Nro.	-	Prom.(kg/m3)	cuero(Kg.)	(m3)	(m3)	(m3)	Agua (L)			
3	Bandas	1115.23	1475	1.32	1.97	0.65	645.28			
4	Integrales	1156.26	1450	1.25	2.46	1.21	1210.89			
5	Integrales	1141.59	1450	1.27	2.13	0.86	859.79			
6	Bandas	1177.44	1475	1.25	2.09	0.84	840.85			
7	7 Integrales 1135.24 1450 1.28 1.90 VOLUMEN TOTAL DESCARGA		1.90	0.63	625.32					
		4.18	4182.13							
Bombo						Volumen	Volumen			
	Producto			Cuero	Total	Agua				
A		D /I . / 2\		1 21	1 2)	1 21	A /1.\			
Nro.	Danalaa	Prom.(kg/m3)	cuero(Kg.)	(m3)	(m3)	(m3)	Agua (L)			
3	Bandas	1186.31	1235	1.04	1.77	0.73	728.91			
3 6	Bandas	1186.31 1118.20	1235 1235	1.04 1.10	1.77 2.08	0.73 0.97	728.91 973.95			
3		1186.31	1235	1.04	1.77	0.73	728.91			
3 6	Bandas	1186.31 1118.20	1235 1235 1235	1.04 1.10 1.10	1.77 2.08	0.73 0.97	728.91 973.95			
3 6	Bandas	1186.31 1118.20 1120.55	1235 1235 1235	1.04 1.10 1.10	1.77 2.08	0.73 0.97 0.71	728.91 973.95 714.68			
3 6	Bandas	1186.31 1118.20 1120.55	1235 1235 1235 TAL DESCARG	1.04 1.10 1.10	1.77 2.08	0.73 0.97 0.71	728.91 973.95 714.68			
3 6 7	Bandas	1186.31 1118.20 1120.55 VOLUMEN TO	1235 1235 1235 1235 TAL DESCARG Sábado, 19	1.04 1.10 1.10	1.77 2.08 1.82	0.73 0.97 0.71 2.42	728.91 973.95 714.68 2417.53			
3 6 7	Bandas Bandas	1186.31 1118.20 1120.55 VOLUMEN TO	1235 1235 1235 TAL DESCARG Sábado, 19 Masa	1.04 1.10 1.10 6A /03/2011 Volumen Cuero	1.77 2.08 1.82 Volumen	0.73 0.97 0.71 2.42 Volumen	728.91 973.95 714.68 2417.53			
3 6 7 Bombo	Bandas Bandas	1186.31 1118.20 1120.55 VOLUMEN TO	1235 1235 1235 TAL DESCARG Sábado, 19 Masa	1.04 1.10 1.10 6A /03/2011 Volumen Cuero	1.77 2.08 1.82 Volumen Total	0.73 0.97 0.71 2.42 Volumen Agua	728.91 973.95 714.68 2417.53 Volumen			
3 6 7 Bombo	Bandas Bandas Producto	1186.31 1118.20 1120.55 VOLUMEN TOT Densidad Prom.(kg/m3)	1235 1235 1235 TAL DESCARG Sábado, 19 Masa cuero(Kg.)	1.04 1.10 1.10 6A /03/2011 Volumen Cuero (m3) 1.26	1.77 2.08 1.82 Volumen Total (m3)	0.73 0.97 0.71 2.42 Volumen Agua (m3)	728.91 973.95 714.68 2417.53 Volumen Agua (L)			
3 6 7 Bombo	Bandas Bandas Producto	1186.31 1118.20 1120.55 VOLUMEN TOT Densidad Prom.(kg/m3) 1144.08	1235 1235 1235 TAL DESCARG Sábado, 19 Masa cuero(Kg.)	1.04 1.10 1.10 6A /03/2011 Volumen Cuero (m3) 1.26	1.77 2.08 1.82 Volumen Total (m3)	0.73 0.97 0.71 2.42 Volumen Agua (m3) 1.06	728.91 973.95 714.68 2417.53 Volumen Agua (L) 1056.47			
3 6 7 Bombo	Bandas Bandas Producto	1186.31 1118.20 1120.55 VOLUMEN TOT Densidad Prom.(kg/m3) 1144.08	1235 1235 1235 TAL DESCARG Sábado, 19 Masa cuero(Kg.) 1440 TAL DESCARG	1.04 1.10 1.10 6A /03/2011 Volumen Cuero (m3) 1.26	1.77 2.08 1.82 Volumen Total (m3)	0.73 0.97 0.71 2.42 Volumen Agua (m3) 1.06	728.91 973.95 714.68 2417.53 Volumen Agua (L) 1056.47			
3 6 7 Bombo Nro. 4	Bandas Bandas Producto	1186.31 1118.20 1120.55 VOLUMEN TOT Densidad Prom.(kg/m3) 1144.08 VOLUMEN TOT Densidad	1235 1235 1235 1235 TAL DESCARG Sábado, 19 Masa cuero(Kg.) 1440 TAL DESCARG Jueves, 24, Masa	1.04 1.10 1.10 1.10 6A /03/2011 Volumen Cuero (m3) 1.26 6A /03/2011 Volumen Cuero	1.77 2.08 1.82 Volumen Total (m3) 2.32 Volumen Total	0.73 0.97 0.71 2.42 Volumen Agua (m3) 1.06 1.06 Volumen Agua	728.91 973.95 714.68 2417.53 Volumen Agua (L) 1056.47 1056.47 Volumen			
3 6 7 Bombo Nro. 4 Bombo Nro.	Bandas Bandas Producto Integrales Producto	1186.31 1118.20 1120.55 VOLUMEN TOTO Densidad Prom.(kg/m3) 1144.08 VOLUMEN TOTO Densidad Prom.(kg/m3)	1235 1235 1235 1235 FAL DESCARG Sábado, 19 Masa cuero(Kg.) 1440 FAL DESCARG Jueves, 24/ Masa cuero(Kg.)	1.04 1.10 1.10 1.10 6A /03/2011 Volumen Cuero (m3) 1.26 6A /03/2011 Volumen Cuero (m3)	1.77 2.08 1.82 Volumen Total (m3) 2.32 Volumen Total (m3)	0.73 0.97 0.71 2.42 Volumen Agua (m3) 1.06 1.06	728.91 973.95 714.68 2417.53 Volumen Agua (L) 1056.47 1056.47 Volumen Agua (L)			
3 6 7 Bombo Nro. 4	Bandas Bandas Producto Integrales	1186.31 1118.20 1120.55 VOLUMEN TOT Densidad Prom.(kg/m3) 1144.08 VOLUMEN TOT Densidad	1235 1235 1235 1235 TAL DESCARG Sábado, 19 Masa cuero(Kg.) 1440 TAL DESCARG Jueves, 24, Masa	1.04 1.10 1.10 1.10 6A /03/2011 Volumen Cuero (m3) 1.26 6A /03/2011 Volumen Cuero	1.77 2.08 1.82 Volumen Total (m3) 2.32 Volumen Total	0.73 0.97 0.71 2.42 Volumen Agua (m3) 1.06 1.06 Volumen Agua	728.91 973.95 714.68 2417.53 Volumen Agua (L) 1056.47 1056.47 Volumen			
3 6 7 Bombo Nro. 4 Bombo Nro.	Bandas Bandas Producto Integrales Producto	1186.31 1118.20 1120.55 VOLUMEN TOTO Densidad Prom.(kg/m3) 1144.08 VOLUMEN TOTO Densidad Prom.(kg/m3)	1235 1235 1235 1235 FAL DESCARG Sábado, 19 Masa cuero(Kg.) 1440 FAL DESCARG Jueves, 24/ Masa cuero(Kg.)	1.04 1.10 1.10 1.10 6A /03/2011 Volumen Cuero (m3) 1.26 6A /03/2011 Volumen Cuero (m3)	1.77 2.08 1.82 Volumen Total (m3) 2.32 Volumen Total (m3)	0.73 0.97 0.71 2.42 Volumen Agua (m3) 1.06 1.06 Volumen Agua (m3)	728.91 973.95 714.68 2417.53 Volumen Agua (L) 1056.47 Volumen Agua (L)			
3 6 7 Bombo Nro. 4 Bombo Nro.	Producto Integrales Producto Bandas	1186.31 1118.20 1120.55 VOLUMEN TOT Densidad Prom.(kg/m3) 1144.08 VOLUMEN TOT Densidad Prom.(kg/m3) 1085.16	1235 1235 1235 1235 TAL DESCARG Sábado, 19 Masa cuero(Kg.) 1440 TAL DESCARG Jueves, 24, Masa cuero(Kg.) 1260	1.04 1.10 1.10 1.10 A /03/2011 Volumen Cuero (m3) 1.26 A /03/2011 Volumen Cuero (m3) 1.16	1.77 2.08 1.82 Volumen Total (m3) 2.32 Volumen Total (m3) 1.69	0.73 0.97 0.71 2.42 Volumen Agua (m3) 1.06 1.06 Volumen Agua (m3) 0.52	728.91 973.95 714.68 2417.53 Volumen Agua (L) 1056.47 1056.47 Volumen Agua (L) 524.66			

		VOLUMEN TO	TAI DESCARG	Δ		2.88	2882.37
			Miércoles, 3				
Bombo		Densidad	Masa	Volumen	Volumen	Volumen	Volumen
	Producto	- " - "	(m.)	Cuero	Total	Agua	
Nro.	-	Prom.(kg/m3)	cuero(Kg.)	(m3)	(m3)	(m3)	Agua (L)
3	Bandas	1119.54	1500	1.34	1.80	0.46	458.60
4	Integrales	1140.50	1550	1.36	2.30	0.95	945.06
5	Integrales	1145.84	1550	1.35	2.45	1.10	1099.14
		VOLUMEN TO				2.50	2502.80
			Viernes, 01	/04/2011			
Bombo		Densidad	Masa	Volumen	Volumen	Volumen	Volumen
	Producto			Cuero	Total	Agua	
Nro.		Prom.(kg/m3)	cuero(Kg.)	(m3)	(m3)	(m3)	Agua (L)
3	Bandas	1152.47	1630	1.41	2.13	0.72	718.23
4	Integrales	1139.39	1200	1.05	1.88	0.83	825.82
5	Integrales	1159.65	1200	1.03	1.54	0.51	509.25
6	Bandas	1194.97	1630	1.36	2.18	0.82	815.63
7	Integrales 1172.59 1200 1.02 1.71 0.0		0.69	687.29			
	VOLUMEN TOTAL DESCARGA					3.56	3556.22
			Miércoles, 0	6/04/2011			
Bombo		Densidad	Masa	Volumen	Volumen	Volumen	Volumen
	Producto			Cuero	Total	Agua	
Nro.		Prom.(kg/m3)	cuero(Kg.)	(m3)	(m3)	(m3)	Agua (L)
3	Bandas	1153.80	1330	1.15	1.77	0.62	616.87
6	Bandas	1149.15	1330	1.16	2.10	0.94	944.06
		VOLUMEN TO	TAL DESCARG	iΑ		1.56	1560.93
			Viernes, 08	/04/2011			
Bombo		Densidad	Masa	Volumen	Volumen	Volumen	Volumen
	Producto			Cuero	Total	Agua	
Nro.		Prom.(kg/m3)	cuero(Kg.)	(m3)	(m3)	(m3)	Agua (L)
3	Bandas	1126.41	1425	1.27	2.49	1.23	1226.77
4	Integrales	1148.41	1532	1.33	2.43	1.09	1091.87
5	Integrales	1191.64	1532	1.29	2.07	0.79	785.73
6	Bandas	1118.14	1425	1.27	2.94	1.67	1666.05
7	Integrales	1195.96	1532	1.28	2.44	1.16	1157.36
		VOLUMEN TO	TAL DESCARG	iΑ		5.93	5927.77

Tabla 2.3.2.1-2 Datos del Caudal Diario de los Baños Residuales de Curtición a Reciclar

Fecha de Muestreo	Volumen Agua Curtido (m3)	Tiempo Descarga (min)	Caudal (m3/min)
18-Feb	2.53	30	0.084
24-Feb	3.02	35	0.086
2-Mar	1.91	25	0.076
3-Mar	1.69	20	0.084
16-Mar	4.18	45	0.093
18-Mar	2.42	33	0.073
19-Mar	1.06	20	0.053
24-Mar	2.88	30	0.096
30-Mar	2.50	30	0.083
1-abr	3.56	38	0.094
6-abr	1.56	23	0.068
8-abr	5.93	45	0.132

Graf. 2.3.2.3-1 Volumen de Agua de Curtido

2.3.2.2. Datos de Volumen de Agua Residual de Curtición necesaria para Reciclar Diariamente

Tabla 2.3.2.2-1 Datos de Volumen de Agua Residual de Curtición necesaria para Reciclar Diariamente

Bombo Nro.	Capacidad Máxima (Kg.)	50% de agua residual inicial (m3)	m ³ Disolución. H2SO4	m ³ Disolución. HCOOH	Volumen Total para Reciclaje (m3)
3	1550	0.775	0.186	0.124	1.085
4	1550	0.775	0.186	0.124	1.085
5	1550	0.775	0.186	0.124	1.085
6	1550	0.775	0.186	0.124	1.085
7	1550	0.775	0.186	0.124	1.085
	то	TAL A RECICLA	AR (m3)		5.425

FUENTE: Diana Verónica Vinueza Paredes

2.3.2.3. Datos Iniciales del Agua Residual de Curticióna Reciclar Tabla 2.3.2.3-1 Datos Iniciales del Agua Residual a Reciclar

Volumen de la Muestra (mL)	%Cr3O2 en el Agua Residual	g/L de Cr2O3	%Cr3O2 en el Cuero	рН	Densidad (ºBé)
20	0.5594	5.6	3.86	3.5	9.9

2.3.2.4. Datos de Tratamiento dado al Agua Residual de Curtición

Tabla 2.3.2.4-1 Datos de Tratamiento dado al Agua Residual de Curtición

Nro. de Recirculación	I	Ш	Ш	IV	V	VI	VII
Densidad (ºBé)	9.9	10	10.5	11.4	11.6	11.2	11.8
pH inicial Agua Residual	3.5	3.8	3.5	3.5	3.8	3.5	3.8
Volumen Agua a Recircular (L)	72	78	76	82	75	72	78
mL. Acido para Desnaturalizar Colágeno	290	323	364	400	400	397	405
pH final Agua Residual	1	1	1	1	1	1	1

2.3.2.5. Datos de la Velocidad de Decantación del Colágeno

Tabla 2.3.2.5-1 Datos de la Velocidad de Decantación del Colágeno

Nro. de Recirculación	ı	П	Ш	IV	v	VI	VII
Volumen Agua a Recircular (L)	72	78	76	82	75	72	78
Kg. de Colágeno Desnaturalizado	2.1	2.5	2.8	3.3	3.9	4.5	5.1
Tiempo de Decantación Colágeno (min)	20	25	27	30	36	40	43
Profundidad de Decantación (m)	1.12	1.3	1.25	1.5	1.2	1.28	1.35
Velocidad final de la partícula (m/min)	0.056	0.052	0.046	0.050	0.033	0.032	0.031

FUENTE: Diana Verónica Vinueza Paredes

2.4. DATOS ADICIONALES

Tabla 2.4-1 Propiedades del Agua de Curtición a Reciclar

PRESION	TEMPERATURA	DENSIDAD	VISCOSIDAD
(Atm)	(C)	(Kg/m³)	(Kg/m s)
1	17	998,65	1,089x10 ⁻³

FUENTE: Separata de Operaciones Básicas de Ingeniería Química, Universidad Central del Ecuador

CAPITULO III

3. DISEÑO DE UN SISTEMA DE RECICLAJE DIRECTO DE AGUA RESIDUAL DE CURTICIÓN

3.1. CÁLCULOS

3.1.1.CÁLCULO DEL ACUMULADOR DE AGUA RESIDUAL DE CURTICIÓN

El volumen del depósito de acumulación, depende del caudal y régimen de trabajo. En general, se debe calcular un volumen al menos igual al caudal máximo diario total vertido. En tabla 2.3.2.1-2(0.132m³/min).

$$A = \frac{Q * t}{h}$$

Dónde:

Q = Caudal

t= Tiempo de descarga

h = Altura

Para el caso particular, este acumulador se ubicará debajo del nivel cero con una profundidad de h=1.7m., debido a la consistencia del suelo y será cuadrado.

$$A = \frac{0.132 \frac{m^3}{mim} * \left(\frac{45 \min}{desc \arg a}\right)}{1,70m}$$

$$A = 3.49m^2$$

Como el acumulador será cuadrado cada lado tendrá una dimensión de:

$$L=\frac{A}{2}$$

Dónde:

L= Lado

$$L = \frac{3.49m^2}{2}$$

$$L = 1,74m$$

El volumen final del Acumulador será de:

$$V = A * h$$

$$V = 3.49m^2 * 1.7m$$

$$V=5.93m^3$$

3.1.2. CÁLCULO DEL DECANTADOR PARA REMOCIÓN DE COLÁGENO

En la tabla 2.3.2.5-1 se puede observar que la velocidad conocida de decantación es de 0.013m/min. (Las partículas de velocidad mayor o igual a la seleccionada serán eliminadas).

$$A = \frac{Q}{V_C}$$

$$A = \frac{0.132m3/min}{0.031m/min}$$

$$A = 4.26m^2$$

$$h = V_C * t$$

$$h = \frac{0.031m}{min} * 43min$$

$$h = 1,33m$$

$$V = A * h$$

$$V = 4.26m^2 * 1.33m$$

$$V = 5.68m^3$$

Para el caso particular se pondrá un decantador cilíndrico por lo que es necesario establecer el diámetro del mismo.

$$V = \pi r^2 h$$

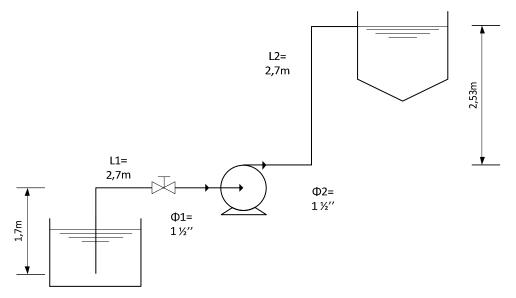
$$r = \sqrt{V/\pi h}$$

$$r = \sqrt{\frac{5.68m^3}{\pi * 1.33m}}$$

$$r = 1.17$$
m

3.1.3. CÁLCULO DEL RECIPIENTE DOSIFICADOR DE ACIDO SULFÚRICO PARA DESNATURALIZACIÓN DE PROTEÍNA (COLÁGENO)

El volumen necesario de este recipiente para acido es de 30L. Se requerirá que sea un cilindro de 30cm de altura.


$$V = \pi r^2 h$$

$$r = \sqrt{V/\pi h}$$

$$r = \sqrt{\frac{0.03m^3}{\pi * 0.3m}}$$

$$r = 0.18$$
m

3.1.4. CÁLCULO DE LA POTENCIA DE LA BOMBA DEL TANQUE DE ACUMULACIÓN AL DECANTADOR (Bomba 1)

$$HP = \frac{W * H}{75 * E}$$

Dónde:

HP=Potencia de la Bomba (HP)

W= Trabajo de la Bomba (Kg/s)

H= Carga total del dispositivo mecánico (m)

E= Eficiencia de la bomba (75%)

3.1.4.1. Cálculo de la Carga Total de la Bomba

Se aplica la ecuación de Bernoulli:

$$\frac{v_2^2 - v_{\pm}^2}{2g} + \frac{P_2 - P_{\pm}}{\gamma} + (h_2 - h_1) + \sum h_F = \pm H$$

Dónde:

$$v = \text{velocidad (m/s)}$$

$$g=$$
 gravedad (m/s²)

$$\gamma$$
 =peso especifico

Se considera que:

$$P_1=P_2$$

$$v_I = 0$$
m/s

$$\frac{(1,22m/s)^2}{2*9.8m/s^2} + (2,53m-1,7m) + 0,456m = H$$

$$H = 1,36m$$

3.1.4.1.1. Cálculo de la Velocidad

$$v = \frac{4Q}{\pi \emptyset^2}$$

Dónde:

Q= Caudal Deseado (1,39 x 10^{-3} m 3 /s)

Ø= Diámetro de la tubería (0,0381m)

$$v = \frac{4*1,39*10^{-3} m^3 / s}{\pi*(0,0381 \text{m})^2}$$

$$v = 1,22 \frac{m}{s}$$

3.1.4.1.2. Cálculo de Pérdidas Totales (□h_f)

$$hf = hf_L + hf_m$$

Dónde:

 h_{FL} = Pérdidas Longitudinales (m)

 h_{Fm} = Pérdidas por Accesorios (m)

$$hf = 0.237m + 0.219$$

$$hf = 0,456m$$

3.1.4.1.2.1. Cálculo de Pérdidas Longitudinales (h_{Fl})

$$hf_L = f \frac{L * v^2}{\emptyset 2g}$$

Dónde:

f= Factor de Fricción Fanning

L= Longitud de la Tubería (5,40m)

$$hf_L = 0.022 \frac{5.4m * (1.22m/s)^2}{0.0381m * 2 * 9.8m/s^2}$$

$$hf_L = 0,237m$$

a) Numero de Reynolds para un flujo turbulento(N_{RE} >2400)

$$N_{RE} = \frac{\rho * v * \emptyset}{\mu}$$

$$N_{RE} = \frac{998,65*1,22*0,0381}{1,089 \times 10^{-3}}$$

$$N_{RE} = 4,26 \text{x} 10^4$$

b) Rugosidad Relativa

$$\frac{E}{\varnothing} = \frac{1,5 \times 10^{-6}}{0,0381} = 3.9 \times 10^{-5}$$

c) Cálculo de f (Diagrama de Moody)

$$f = \frac{N_{Re}}{\frac{\varepsilon}{\alpha}} = 0.022$$

3.1.4.1.2.2. Cálculo de Pérdidas por Accesorios (hf_m)

$$hf_m = K \frac{v^2}{2g}$$

CANTIDAD	ACCESORIO	K		
3	Codos 90□	2,7		
1	Válvula de Compuerta Completamente Abierta	0,19		
K (Total)				

$$hf_m = 2.89 \frac{\left(\frac{1.22m}{s}\right)^2}{2 * 9.8m/s^2}$$

$$hf_m = 0,219m$$

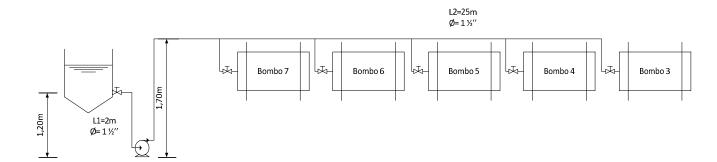
3.1.4.2. Cálculo del Trabajo de la Bomba

$$W = Q * \rho$$

$$W = \frac{1,39x10^{-3}m^3}{s} * 998,65Kg/m^3$$

$$W = 1,39Kg/s$$

3.1.4.3. Cálculo de la Potencia de la Bomba


$$HP = \frac{1,39 * 1,36}{75 * 0,75}$$

$$HP = 0.034$$

3.1.4.4. Cálculo del Factor de Seguridad

$$HP = HP + (HP * 0, 15)$$
 $HP = 0.034 + (0.034 * 0.15)$
 $HP = 0.039$

3.1.5. CÁLCULO DE LA POTENCIA DE LA BOMBA DEL DECANTADOR A LOS BOMBOS DE CURTICION (Bomba 2)

$$HP = \frac{W * H}{75 * E}$$

3.1.5.1. Cálculo de la Carga Total de la Bomba 2

Se aplica la ecuación de Bernoulli:

$$\frac{v_2^2 - v_{\pm}^2}{2g} + \frac{P_2 - P_{\pm}}{\gamma} + (h_2 - h_1) + \sum h_F = \pm H$$

Se considera que:

$$P_1=P_2$$

$$v_I = 0$$
m/s

$$\frac{(2,65m/s)^2}{2*9,8m/s^2} + (1,7m-1,2m) + 9,49m = H$$

$$H = 10,35m$$

3.1.5.1.1. Cálculo de la Velocidad

$$v = \frac{4Q}{\pi \emptyset^2}$$

Dónde:

 $Q = \text{Caudal Deseado } (3.02 \times 10^{-3} \text{m}^3/\text{s})$

Ø= Diámetro de la tubería (0,0381m)

$$v = \frac{4*3,02*10^{-3} m^3 / s}{\pi * (0,0381 \text{m})^2}$$

$$v = 2,65 \frac{m}{s}$$

3.1.5.1.2. Cálculo de $\Box h_f$

$$hf = hf_L + hf_m$$

$$hf = 4,42m + 5,07$$

$$hf = 9,49m$$

3.1.5.1.2.1. Cálculo de hf_L

$$hf_L = f \frac{L * v^2}{\emptyset 2g}$$

L= Longitud de la Tubería (5,40m)

$$hf_L = 0.0175 \frac{27m * (2.65m/s)^2}{0.0381m * 2 * 9.8m/s^2}$$

$$hf_L = 4,42m$$

a) Numero de Reynolds para un flujo turbulento(N_{RE} >2400)

$$N_{RE} = \frac{\rho * v * \emptyset}{\mu}$$

$$N_{RE} = \frac{998,65 * 2,65 * 0,0381}{1,089 \times 10^{-3}}$$

$$N_{RE} = 9,26 \times 10^4$$

b) Rugosidad Relativa

$$E = 0.0015 \text{mm} = 1.5 \times 10^{-6} \text{m}$$

$$\frac{E}{\varnothing} = \frac{1.5 \times 10^{-6}}{0.0381} = 3.9 \times 10^{-5}$$

c) Cálculo de f (Diagrama de Moody)

$$f = \frac{N_{Re}}{\frac{\varepsilon}{\phi}} = 0.0175$$

3.1.5.1.2.2. Cálculo de hf_m

$$hf_m = K \frac{v^2}{2g}$$

CANTIDAD	ACCESORIO	K		
10	Codos 90□	9		
6	Válvula de Compuerta Completamente Abierta	1,14		
4	Те	4		
K (Total)				

$$hf_m = 14.14 \frac{(\frac{2.65m}{s})^2}{2 * 9.8m/s^2}$$

 $hf_m = 5.07m$

3.1.5.2. Cálculo del Trabajo de la Bomba 2

$$W = Q * \rho$$

$$W = \frac{3,02x10^{-3}m^{3}}{s} * 998,65Kg/m^{3}$$

$$W = 3,02Kg/s$$

3.1.5.3. Cálculo de la Potencia de la Bomba2

$$HP = \frac{3,02 * 10,35}{75 * 0,75}$$

$$HP = 0.56$$

3.1.5.4. Cálculo del Factor de Seguridad

$$HP = HP + (HP * 0, 15)$$

$$HP = 0.56 + (0.56 * 0.15)$$

$$HP = 0,64$$

3.1.6. CALCULO DE VOLUMEN DE AGUA DE DESCARGA

$$V_{Aqua} = TL - V_{Cuero}$$

$$V_{Agua} = 1,48m^3 - 1,13m^3$$

$$V_{Agua}=0,35m^3$$

3.1.6.1. Cálculodel Volumen Parcial del Bombo

$$TL = \frac{r(b-s) + s \times h}{2} \times l$$

A partir de los datos de la tabla que se muestra en el **ANEXO I,** del Bombo 3, del 18 de Febrero del 2011.

$$TL = \frac{1,25 (2,56 - 2,10) + 2,10 \times 0,50}{2} \times 1,82$$

$$TL = 1,48m^{3}$$

3.1.6.2. Cálculo del Volumen del Cuero

$$V_{Cuero} = \frac{m_{Cuero}}{\rho_{Cuero}}$$

La masa del cuero se puede apreciar en el ANEXO I, que es de 1330 Kg.

$$V_{Cuero} = \frac{1330 Kg}{1176,83 Kg/m^3}$$

$$V_{Cuero} = 1,13m^3$$

3.1.6.2.1. Cálculo de la Densidad del Cuero

$$\rho_{Cuero} = \frac{m_{Cuero}}{V_{Desplazado}}$$

Este valor se obtiene a partir de 4 muestras de cuero, cuya masa y volumen desplazado se observa en el **ANEXO II**.

$$\rho_{Cuero} = \frac{0,4718 Kg}{0,00004 m^3}$$

$$\rho_{Cuero}=1176,83Kg/m^3$$

3.1.7. CALCULO DE LA CANTIDAD DE SAL DE CROMO III EN EL AGUA RESIDUAL A RECICLAR

3.1.7.1. Cálculo de g/L Cr₂O₃ en el Agua a Reciclar

$$Gramos/_{Litro} = \%Cr_2O_3 * 10$$

$$Gramos/Litro = 0.5594\% * 10$$

$$Gramos/Litro = 5,594$$

3.1.7.2. Cálculo de %Cr2O3 en el Agua a Reciclar

$$\%Cr_2O_3 = \frac{V*0.02533xN}{W}100$$

$$\%Cr_2O_3 = \frac{44,17*0.02533x0,1}{20}100$$

$$%Cr_2O_3 = 0,5594$$

3.1.8. CALCULO DE g/L SAL DE CROMO III EN EL AGUA A RECICLAR

$$B = A * (\frac{100}{25})$$

$$B = 5.6 * (\frac{100}{25})$$

B = 22, 4 g/L Sal de Cromo III

3.1.8.1. Cálculo de gramos de Sal de Cromo III en el Volumen Agua a Reciclar

Para el Reciclo I se requieren 72L por lo tanto:

$$C = B * V$$

$$\mathbf{C} = 22,4\frac{g}{L} * 72L$$

C = 1612, 8 g Sal de Cromo III

3.1.9. CALCULO DE SAL DE CROMO A RESTITUIR EN EL RECICLO

En el Reciclo I, se tiene un peso de 60 Kg., por lo que la cantidad total de Sal a añadir es de 3,6Kg de Sal de Cromo III (**T**), que corresponde al 6% en peso.

$$E = T - C$$

$$E = 3600g - 1612,8g$$

E = 1987, 2g Sal de Cromo III

3.1.10. CALCULO DEL % SAL DE CROMO A RESTITUIR EN EL RECICLO

$$X = (D * E)/T$$

$$X = (6\% * 1987,2g)/3600g$$

X = 3.3% de Sal de Cromo III

3.1.11. REQUERIMIENTO PRESUPUESTARIO

3.1.11.1. Recursos Humanos

Tabla. 3.1.11.1-1 Recursos Humanos

DENOMINACION	SUBTOTAL
Mano de obra para la Implementación	700.00
Asesoría Tutoría	80.00
Asesoría Colaborador	80.00
TOTAL	860.00

FUENTE: Diana Verónica Vinueza Paredes

3.1.11.2. Recursos Materiales

Se hace referencia a todos los materiales, equipos y reactivos necesarios para un ano,que deben adquirirse para la construcción del Sistema de Reciclaje de los Baños de Curtición de la empresa Servicueros S.A. En la tabla 3.5.1-1 se detallan cada uno.

Tabla. 3.1.11.2-1
Recursos Materiales

			VALOR	
DENOMINACION	CANTIDAD	UNIDAD	UNITARIO	SUBTOTAL
Tanque Decantador de Polietileno de 6m³	1	Unidad	2200.00	2200.00
Recipiente Dosificador	1	Unidad	50.00	50.00
Bombas Centrifugas de 0,5HP	1	Unidad	300.00	300.00
Bombas Centrifugas de 1HP	1	Unidad	450.00	450.00

Válvulas de Compuerta 1 1/2"	8	Unidad	41.75	334.00	
Cemento	25	Quintal	7.00	175.00	
Malla Electro soldada de 3*5m	1	Unidad	62.88	62.88	
Arena	3	m3	12.00	36.00	
Ripio	3.5	m3	12.00	42.00	
Alambre de Amarre	2	Kg.	1.30	2.60	
Tubería PVC de 1 1/2 "	15	Unidad	7.00	105.00	
Unión PVC de 1 1/2''	12	Unidad	1.20	14.40	
Codo 90 PVC de 1 1/2	13	Unidad	1.97	25.61	
Tee PVC de 1 1/2"	4	Unidad	1.56	6.24	
Acido Perclórico GR- 2.5L	1	Unidad	450.00	450.00	
Acido Sulfúrico GR-2.5L	2	Unidad	28.00	56.00	
Acido Nítrico GR-2.5L	1	Unidad	75.00	75.00	
Tiosulfato de Sodio GR-100g	5	Unidad	10.50	52.50	
Acido Clorhídrico GR-2.5L	1	Unidad	28.00	28.00	
Ftalato de Sodio GR-50g	1	Unidad	30.80	30.80	
Yodato de Sodio GR-50g	1	Unidad	55.90	55.90	
Yoduro de Sodio GR-100g	2	Unidad	15.00	30.00	
TOTAL 3803.73					

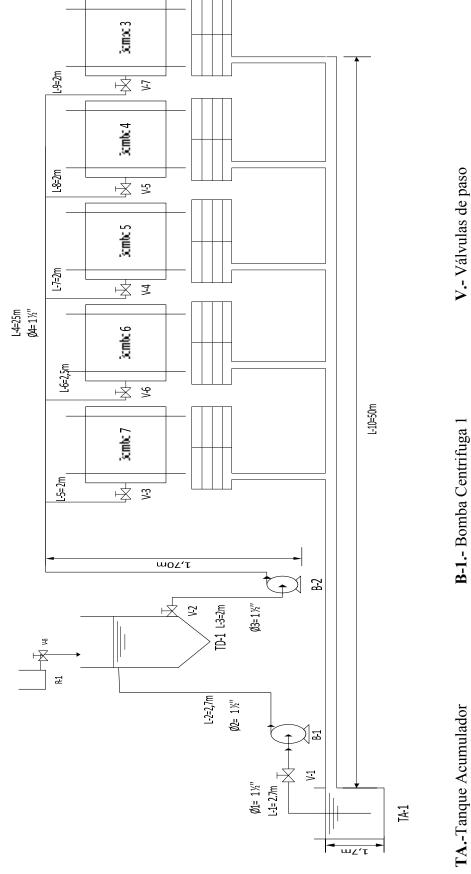
FUENTE: Diana Verónica Vinueza Paredes

3.1.11.3. Recursos Totales

Tabla. 3.1.11.3.-1 Recursos Totales

DENOMINACION	SUBTOTAL
RECURSOS HUMANOS	860.00
RECURSOS MATERIALES	3803.73
IMPREVISTOS (10%)	466.37
TOTAL	5130.10

3.2. RESULTADOS


Tabla 3.2.-1 Resultados del Agua Residual de Curtición Reciclada

Nro. de Recirculación	ı	Ш	III	IV	v	VI	VII
Nro. De Bandas	6	6	6	6	6	6	6
Kg. de Cuero en Proceso	60	65	64	68	62	60	65
Volumen Agua a Recircular (L)	72	78	76	82	75	72	78
%Cr3O2 en el Agua Residual	0.5594	0.5585	0.5547	0.5509	0.5521	0.5497	0.5445
g/L de Cr2O3 Residual	5.6	5.6	5.5	5.5	5.5	5.5	5.4
g. de Sal de Cromo III Residual	1612.8	1747.2	1672.0	1804.0	1650.0	1584.0	1684.8
% Sal de Cromo III Residual	2.7	2.7	2.6	2.7	2.7	2.6	2.6
g. Sal de Cromo III Adicionado	1987,2	2152.8	2168.0	2276.0	2070.0	2016.0	2215.2
% Sal de Cromo III Adicionado	3.3	3.3	3.4	3.3	3.3	3.4	3.4
kg. Sal de Cromo III Adicionado	1.98	2.15	2.18	2.24	2.05	2.04	2.21
%Cr3O2 en el Cuero	3.78	3.81	3.75	3.8	3.74	3.7	3.65
mL. Acido para Desnaturalizar Colágeno	290	323	364	400	400	397	405
Kg. de Colágeno Desnaturalizado	1.2	2.5	2.8	3.3	3.9	4.5	5.1
% Cloruro de Sodio Adicionado	2	2	2	1.5	1	1,5	1
Temperatura de Contracción	ОК	OK	ОК	ОК	ОК	ОК	ОК

Tabla 3.2.-2 Dimensionamiento del Sistema de Reciclaje de los Baños de Curtición

DESCRIPCION	VARIABLE	INDICADOR				
	TANQUE ACUMULADOR					
Volumen	5.93	m ³				
Altura	1.70	m				
Área	3.49	m²				
Material	Hormig ó n Arm	ado				
	TANQUE DECANTADOR					
Volumen	6.00	m^3				
Altura	1.33	m				
Diámetro	2.34	m				
Material	Polietileno de Alta D	Densidad				
R	ECIPIENTE DOSIFICADOR					
Volumen	0,03	m^3				
Altura	0.3	m				
Diámetro	0.36	m				
Material	Polietileno de Alta Densidad					
	BOMBA 1					
Potencia	0.039	HP				
Caudal	1,39 x 10-3	m³/s				
Trabajo	1.39	Kg/s				
Eficiencia	75	%				
Especificación	Centrifuga (impulsor con					
	revestimiento ep	ÓXICO)				
Datamaia	BOMBA 2	LID				
Potencia	0.64	HP 3,				
Caudal	3,02 x 10-3	m³/s				
Trabajo	3.02	Kg/s				
Eficiencia	75 %					
Especificación	Centrifuga (impulsor con revestimiento epóxico)					
TUBERIA						
Longitud	32.4	m				
Diámetro	1 ½	Pulg.				
Material	PVC					

PROPUESTA DE DISEÑO DEL SISTEMA DE RECICLAJE DE LOS BAÑOS DE CURTICIÓN

TA.-Tanque Acumulador TD.- Tanque Decantador

B-1.- Bomba Centrifuga 1

B-2.- Bomba Centrifuga 1

L.- Longitud de Tubería

R.- Recipiente Dosificador de Acido

2.2%
21t igus Feidul
(462g 53 Jones tal)

21tq Juero Ju. d.

Reciclaje Directo

3.8%
798g 53 Jones tal
454g 53 Jones tal

Fig. 3.2-1 Balance de Masa del Sistema de Reciclaje de los Baños de Curtición

FUENTE: Diana Verónica Vinueza Paredes

CAPITULO IV

4. ANÁLISIS Y DISCUSIÓN DE RESULTADOS

En la Empresa Servicueros S.A. actualmente se está ejecutando el proceso de Curtición con un 6% de Sal de Cromo III, para obtener un wetblue con un promedio de 3,8% de Oxido de Cromo III (Cr₂O₃) en el cuero, el mismo que se encuentra dentro de los valores normales (>2,5 en Norma IUC 8 Exigencias de calidad para las clases de cuero más importantes¹). Cada cuero requiere 315g deoxido de cromo para curtir, en los ensayos se empleó 21L de agua de curtición por piel de cuero (100% en peso), con un contenido de promedio de 5,5g/L de Oxido de Cromo III, lo que significa 116g de Oxido de cromo residual.

A través de las pruebas a escala piloto del reciclaje de baños, se puede comprobar que es posible recuperar un 2,2% de sal de cromo, representando un ahorro significativo de este importante insumo, así como también el consumo de agua. Actualmente se ahorra un promedio de 2% en peso de la sal de cromo, es decir en 1Ton de Cuero se debe añadir 6kg pero actualmente se añaden 4kg.

En la tabla 3.2.-1 se pude observar que mediante se efectúan las recirculaciones el contenido de Oxido de Cromo III (Cr^{3+}) de cada uno de los baños, se da una disminución de su concentración, teniendo en el I Reciclo 5,6g Cr_2O_3/L y en el VII Reciclo de 5,4g Cr_2O_3/L .

⁴Vademécum para el técnico en curtición, 3ra.ed.Alemania. BASF. pp. 252-255

De la misma manera mediante la aplicación de este sistema se comprueba que en la operación de piquelado se requiere disminuir el porcentaje de cloruro de sodio, del 6% que se aplica, a 1% y 1,5% en peso, como se indica en la Tabla 3.2.-1.

Se efectuaron siete recirculaciones con seis bandas cada una, estas 42 bandas de wetblue dieron pruebas positivas de contracción, uniformidad en el color azul, carencia de manchas, firmeza de flor, entre otras características de un curtido al cromo de la manera tradicional.

Las 42 bandas fueron sometidas a los procesos de recurtición, neutralización, engrase y acabados, dando un cuero de calidad, que cumple con las pruebas físicas de resistencia al desgarro con un promedio de 60,6daN/cm (>40 según Norma IUP8), a la tracción con un promedio de 304daN/cm2 (>200 según Norma IUP8), resistencia a la flexión con un promedio de 70000 flexiones (según Norma IUP20 50000 flexiones) y distención de la florcon un promedio de 9mm (7mm según Norma IUP9).

Este proyecto presenta beneficios ambientales, contribuyendo a la disminución del consumo de agua que y su respectiva descarga, quepor 1,5Ton. de piel corresponde a un consumo promedio de 1,5m³de agua (100% e\n peso) y1,25m³ de descarga, lo que representa directamente un ahorro económico en el tratamiento de aguas residuales, debido a que el volumen de agua a tratar, en la curtiembre es menor.

Estos 0,25m3 se acumulan en los bombos, pues no se los puede escurrir completamente generando sobreacumulación de agua residual, la misma que será utilizada para la curtición de carnaza.

Para la implementación de este Sistema de Reciclaje de Baños de Curtición, inicialmente se requirió de la compra de materiales de laboratorio y reactivos químicos para el análisis del contenido de Oxido de Cromo III en el agua residual.

Para la puesta en marcha en producción se sugiere la construcción de un sencillo sistema de baja inversión económica de USD 5130,10 (Tabla 3.1.11.3.-1), cuya área de adecuación en pequeña.

Mediante la medición diaria del volumen de descarga de agua de curtido de todos los bombos, la misma que es de 5,8L (volumen máximo de descarga), determinó el dimensionamiento de los equipos, tales como, el tanque Acumulador con una capacidad de 5,93m³, Tanque Decantador de 5,68m³ (disponible en el mercado de 6m³), para separar las impurezas del agua y el colágeno desnaturalizado mediante la dosificación de ácido sulfúrico a través de un recipiente cilíndrico de 30L,cuyos materiales se pueden observar en la Tabla 3.2.-2.

Para el bombeo se requieren dos Bombas, la Bomba 1 con una potencia de 0,039HP (Disponible en el mercado de 0,5HP), para impulsar el agua del Tanque de Acumulación al Tanque Decantador: la Bomba 2 es la que distribuye el agua del Tanque Decantador a los bombos de curtición, cuya potencia necesaria es de 0,64HP (disponible en el mercado de 1HP).

Mediante datos obtenidos en los ensayos se pudo comprobar que por cada litro de agua a reusar se requiere de 5mL de ácido sulfúrico aproximadamente para llevarla a pH=1 (Tabla 2.3.2.4-1).

Posteriormente en el proceso de piquelado se requiere dosificar 1,2% en peso de Ácido sulfúrico, sin embargo la adición de ácido para desnaturalización no es descartada de este %, observándose el tamponamiento del baño de piquelado, pues no afecta los controles de pH en cuero=3 y corte con verde de cromo Cresol= amarillo en el cuero.

Aneligis de l'algoritorio
(Cantonica de Sa de Drona
III Residual)

Adinán de Adda Sulturco

REMOCION DE
PROTEINAS

Calagona

Ajaca cessable Councilli

BOMSEO A
PRODUCCON

Fig. 4.-1
Diagrama de Flujo del Sistema de Reciclaje de Baños Residuales de Curtición

FUENTE: Vinueza Paredes Diana Verónica

CAPITULO V

5. CONCLUSIONES Y RECOMENDACIONES

5.1. CONCLUSIONES

- Se efectuaron siete reciclajes de los baños de Curtición con seis bandas (3 pieles) cada uno, en donde se empleó 21L/piel de cuero (100% en peso), con un contenido de 5,5g/L de Oxido de Cromo III, lo que equivale a 462g de sal de cromo comercial, lo que significa un ahorro del 2,2% de sal.
- Se cuantificó el contenido de Oxido de Cromo III (C^{r3+}) de cada uno de los baños,
 notándose una disminución de su concentración a medida se efectúan los reciclos.
- Mediante la determinación del volumen máximo de descarga se realizaron los cálculos de Ingeniería para la implementación del Sistema de Reciclaje del cromo, con un tanque acumulador de 5,93m³, tanque decantador 6m³, un dosificador de 30L y dos bombas centrífugas de 0,039 HP y 0,64 HP, para bombeo del Tanque Acumulador al Tanque Decantador y de distribución a Bombos respectivamente.
- Se determinó la capacidad instalada del Sistema de Reciclaje a partir del volumen máximo de descarga, siendo el volumen del tanque acumulador el que define la capacidad de este sistema, de 5,93m³/día.
- Se especificó las características de los materiales siendo el tanque acumulador bajo el nivel cero en hormigón armado, el tanque decantador y dosificador en polietileno

de alta densidad, bombas centrífugas con revestimiento epóxico, tuberías y accesorios en PVC y válvulas en acero galvanizado. Se indicó también que los puntos de control son el análisis de Oxido de Cromo III en el agua residual y en el cuero curtido, el pH del agua de entrada a los bombos que es de 1, densidad del agua residual y prueba de ebullición para garantizar la calidad del curtido.

- Se comprobó que concluida la operación de piquelado se presenta el tamponamiento del baño con un pH=3 (pH óptimo del piquel), a pesar de dosificar acido para desnaturalizar el colágeno
- Se estableció el requerimiento presupuestario para el Sistema de Reciclaje que constituye USD 5130,10.

5.2. RECOMENDACIONES

- Se recomienda utilizar los equipos de seguridad personal para la determinación del % de Oxido de Cromo III en el agua residual y en el cuero, debido a que los gases que se desprenden en la reacción de oxidación son muy tóxicos para la salud humana.
- La estandarización de la solución de Tiosulfato de sodio es recomendable aplicarla cada vez que se la prepare, para garantizar su concentración y obtener datos reales de contenido de óxido de cromo III en el agua residual y en el cuero.

- El control de pH en el tanque decantador debe ser muy cuidadoso de modo que se garantice que este sea igual a uno.
- La medición de la densidad del baño a reciclar debe ser considerado para la adición de la cantidad de sal en la operación de Piquelado, de modo que se mantengan los valores tradicionales de densidad antes de la colocación de los ácidos.

BIBLIOGRAFÍA

- ADZET., M., Química Técnica de Tenería., Madrid-España., s.edt., 1985.,
 Pp.176-180.
- BRITO., H., Texto Básico de Mecánica de Fluidos., Riobamba-Ecuador., Xerox.,
 2000., Pp. 86-88.
- EBBING., D., Química General., 5a ed., México DF-México., Mc. Graw Hill.,
 1998., Pp.122, 125,209.
- 4. **LAITINEN., H.,**Análisis Químico., 2a ed., New York-Estados Unidos., Mc. Graw Hill., 1982., Pp.120, 121,123.
- MARTINEZ., S., Tratamiento de Aguas Residuales con MATLAB., México DF México., REVERTE S.A., 2005., 2p.
- PUENTE., J., Tratamiento de Aguas Residuales., Bucaramanga-Colombia.,
 Representantes Jesenao., 1982., Pp. 72-75 73.
- 7. ZAMBRANO., A., Situación Legal de las Curtiembres en el Ecuador., Ambato-

Ecuador., s.edt., 2005., Pp.56.

8. **ESCUELA DE INGENIERÍA QUÍMICA ESPOCH.,** Separata de Operaciones

Básicas., Riobamba-Ecuador., Xerox., 2000., Pp.204, 205.

BASF., Vademécum para el técnico en curtición 3a. ed., Berlín-Alemania.,. s.edt.,
 Pp. 356-357.

BIBLIOGRAFÍA INTERNET

10. **PIQUELADO**

www.cuero.net 2011-08-06

11. PRODUCCIÓN MÁS LIMPIA EN CURTIEMBRE

www.cpts.org/prodlimp/casosest/34ARDICAL.pdf 2011-08-06

12. CONTAMINACIÓN CON CROMO III

www.ambiente.gov.ar 2011-09-23

13. RECICLAJE DIRECTO DE BAÑOS DE CURTICIÓN

www.Iife-tareli.inescop.es/Iife-resultados-tecnicos.pdt 2011-09-23

14. RECICLAJE DE AGUA

www.lenntech.es/reciclaje-del-agua.htm 2011-12-20

15. **CURTIDO**

es.wikipedia.org/wiki/Curtido 2011-08-06

ANEXOS

ANEXO I CAPACIDAD TOTAL DE LOS BOMBOS DE CURTICIÓN

	Producto	000	Nro. De	Longitud	Diametro	Kadio	Arco	Secante	Altura	r(b-s)	s*h	Volumen
Bombo		(kg)	Bandas	(I)	(d)	(r)	(p)	(s)	(h)	(m2)	(m2)	Total (m3)
3	Bandas	1330	139	1.82	2.50	1.25	2.56	2.10	0.50	0.58	1.05	1.48
4	4 Integral	1550	47	1.72	2.40	1.20	3.04	2.32	08.0	0.86	1.86	2.34
5	5 Integral	1550	47	1.76	2.36	1.18	2.75	2.16	0.76	0.70	1.64	2.06
7	7 Bandas	1330	139	1.82	2.53	1.27	2.60	2.20	09:0	0.51	1.32	1.66
3	3 Bandas	1520	165	1.82	2.50	1.25	2.60	2.10	0.63	0.63	1.32	1.77
4	4 Bandas	1520	162	1.72	2.40	1.20	3.00	2.30	0.78	0.84	1.79	2.27
5	5 Integral	1400	47	1.76	2.36	1.18	2.64	2.07	0.73	0.67	1.51	1.92
7	7 Integral	1400	45	1.82	2.53	1.27	2.80	2.25	0.68	0.70	1.53	2.03
3	Bandas	1550	161	1.82	2.50	1.25	2.66	2.14	0.66	0.65	1.41	1.88
6	6 Bandas	1550	164	1.92	2.90	1.45	2.86	2.37	0.65	0.71	1.54	2.16
7	7 Bandas	1550	165	1.82	2.53	1.27	2.87	2.28	0.70	0.75	1.60	2.13
4	4 Integral	1450	47	1.72	2.40	1.20	2.85	2.17	0.71	0.82	1.54	2.03
2	5 Integral	1450	47	1.76	2.36	1.18	2.95	2.16	0.77	0.93	1.66	2.28
3	Bandas	1475	160	1.82	2.50	1.25	2.90	2.25	09:0	0.81	1.35	1.97
4	4 Integral	1450	51	1.72	2.40	1.20	3.12	2.31	0.82	0.97	1.89	2.46
5	5 Integral	1450	48	1.76	2.36	1.18	2.78	2.15	0.78	0.74	1.68	2.13
6	6 Bandas	1475	160	1.92	2.90	1.45	2.80	2.32	0.64	0.70	1.48	2.09
7	7 Integral	1450	47	1 82	7 53	1 27	7 80	שר נ	65.0	02.0	1 10	1 00

Capacidad Total de los Bombos de	Curtición	Lámina Escala Fecha	1-1
ESPOCH EACTILTAD DE CIENCIAS	ESCUELA DE ONGENIEDÍA OLIÚAICA		Realizado por: Vinueza Diana
CATEGORÍA DEL DIAGRAMA	Por calificar □Para información Por aprobar □Para archivar	Por eliminar Certificado	
NOTAS	CAPACIDAD TOTAL DE LOS Por a	BOMBOS DE CURTICIÓN Por (

	1.32	1.44	1.36	
	0.63	0.73	0.63	
IÓN	9.0	9.0	0.62	
CURTIC	2.2	2.4	2.2	
SOS DE	2.7	2.9	2.7	
XO I S BOME	1.25	1.45	1.27	
ANEXO I CAPACIDAD TOTAL DE LOS BOMBOS DE CURTICIÓN	2.50	2.90	2.53	
D TOTA	129 1.82	1.92	1.82	
PACIDA	129	129	129	
CAF	1235	1235	1235	
	3 Bandas	6 Bandas	7 Bandas	
	r-11	r-11	r-11	

1.77	2.08	1.82	2.32	1.69	1.96	2.11	1.75	1.80	2.30	2.45	2.13	1.88	1.54	2.18	1.71	1.77	2.10	2.49	2.43	2.07	2.94	2.44
1.32	1.44	1.36	1.82	1.29	1.56	1.62	1.31	1.39	2.00	2.10	1.63	1.52	1.20	1.56	1.26	1.37	1.46	1.88	1.84	1.63	2.05	1.79
0.63	0.73	0.63	0.88	0.56	0.66	0.58	0.62	0.59	0.68	0.68	0.71	0.66	0.55	0.71	0.62	0.58	0.73	0.86	0.98	0.72	1.02	0.89
0.6	9.0	0.62	0.8	9.0	0.73	0.67	09.0	0.62	98.0	0.93	0.70	0.69	09.0	0.65	09.0	0.64	09.0	0.83	0.82	0.76	0.80	0.78
2.2	2.4	2.2	2.27	2.15	2.14	2.42	2.18	2.24	2.32	2.26	2.33	2.21	2.00	2.40	2.10	2.14	2.44	2.26	2.24	2.15	2.56	2.30
2.7	2.9	2.7	3	2.60	2.70	2.82	2.67	2.71	2.89	2.84	2.90	2.76	2.47	2.89	2.59	2.60	2.94	2.95	3.06	2.76	3.26	3.00
1.25	1.45	1.27	1.20	1.25	1.18	1.45	1.27	1.25	1.20	1.18	1.25	1.20	1.18	1.45	1.27	1.25	1.45	1.25	1.20	1.18	1.45	1.27
2.50	2.90	2.53	2.40	2.50	2.36	2.90	2.53	2.50	2.40	2.36	2.50	2.40	2.36	2.90	2.53	2.50	2.90	2.50	2.40	2.36	2.90	2.53
1.82	1.92	1.82	1.72	1.82	1.76	1.92	1.82	1.82	1.72	1.76	1.82	1.72	1.76	1.92	1.82	1.82	1.92	1.82	1.72	1.76	1.92	1.82
129	129	129	48	121	121	49	121	154	52	49	157	37	37	154	37	130	130	136	46	46	140	43
1235	1235	1235	1440	1260	1260	1535	1260	1500	1550	1550	1630	1200	1200	1630	1200	1330	1330	1425	1532	1532	1425	1532
3 Bandas	6 Bandas	7 Bandas	4 Integral	3 Bandas	5 Bandas	6 Integral	7 Bandas	Bandas	4 Integral	5 Integral	Bandas	Integral	5 Integral	6 Bandas	7 Integral	3 Bandas	6 Bandas	3 Bandas	4 Integral	5 Integral	6 Bandas	7 Integral
3	9	7	4	3	5	9	7	3	4	5	3	4	5	9	7	3	9	3	4	5	9	7
18-Mar-11	18-Mar-11	18-Mar-11	19-Mar-11	24-Mar-11	24-Mar-11	24-Mar-11	24-Mar-11	30-Mar-11	30-Mar-11	30-Mar-11	1-Abr-11	1-Abr-11	1-Abr-11	1-Abr-11	1-Abr-11	6-Abr-11	6-Abr-11	8-Abr-11	8-Abr-11	8-Abr-11	8-Abr-11	8-Abr-11

8-Abr-11 7 r	7 Integral	1532	43	1.82	43 1.82 2.53 1.27 3.00 2.30 0.78 0.89 1.79 2.44	1.27	3.00	2.30	0.78	0.89	1.79	2.44	
NOTAS		CATEG	ORÍA]	CATEGORÍA DEL DIAGRAMA			ESPOCH	СН	ر ا	naoidad ⁻	Potal de lo	Rombos A	٦
CAPACIDAD TOTAL DE LOS Por calificar Para informaci Por calificar Para informaci	E LOS	Por calif. Por aprol	icar 🗆 bar 🗀	Para infc Para arcl	ÓÎ 🗆	FACUI I	LTAD DE CIEN ESCUELA DE	ACULTAD DE CIENCIA ESCUELA DE INCENITEDÍA QUÍMICA	AS	pacidad	Curtición	FACULTAD DE CIENCIAS ESCUELA DE NICENIEDÍA OLIÍAICA	2
BOMBOS DE CURTICION	CION	Por elim	inar 🗆	Por eliminar Certificado	opı	INCE	NICNIA			ámina	Escala	Lámina Escala Fecha	
						Realizac	lo por: V	Realizado por: Vinueza Diana	ana	1-2			

Bombo	Bombo Producto	Masa	Masa	Volumen	Volumen	Volumen Volumen Volumen	Volumen	Volumen	Volumen	Densidad
		cuero(g.)	cuero(Kg.)	Inicial (mL)	cuero(Kg.) Inicial (mL) Inicial (m3) Final (mL)	Final (mL)	Final (m3)	desplaz(mL)	desplaz(m3)	Final (m3) desplaz(mL) desplaz(m3) cuero(kg/m3)
3	Bandas	25.60	0.0256	200	0.0007	722	0.00072	22	0.000022	1163.64
3	Bandas	58.50	0.0585	700	0.0007	750	0.00075	50	0.000050	1170.00
3	Bandas	65.72	0.0657	200	0.0007	755	0.00076	55	0.000055	1194.91
3	Bandas	38.90	0.0389	200	0.0007	733	0.00073	33	0.000033	1178.79
VDAS B	PROMEDIO BANDAS BOMBO 3:	47.18	0.0472	200	0.0007	740	0.00074	40	0.000040	1176.83
7	Bandas	45.00	0.0450	200	0.0007	740	0.00074	40	0.000040	1125.00
7	Bandas	35.95	0.0360	200	0.0007	731	0.00073	31	0.000031	1159.68
7	Bandas	34.30	0.0343	700	0.0007	730	0.00073	30	0.000030	1143.33
7	Bandas	22.10	0.0221	200	0.0007	720	0.00072	20	0.000020	1105.00
7	Bandas	46.75	0.0468	200	0.0007	741	0.00074	41	0.000041	1140.24
NDAS B	PROMEDIO BANDAS BOMBO 7:	36.82	0.0368	200	0.0007	732	0.00073	32	0.000032	1134.65
PROMEDIO BANDAS)AS	42.00	0.0420	700	0.0007	736	0.00074	36	0.000036	1155.74
4	Integrales	43.40	0.0434	200	0.0007	740	0.00074	40	0.000040	1085.00
4	Integrales	58.80	0.0588	200	0.0007	749	0.00075	49	0.000049	1200.00
4	Integrales	93.45	0.0935	700	0.0007	790	0.00079	90	0.000000	1038.33
4	Integrales	53.30	0.0533	200	0.0007	747	0.00075	47	0.000047	1134.04
4	Integrales	29.60	0.0296	200	0.0007	725	0.00073	25	0.000025	1184.00
GRALES	PROMEDIO INTEGRALES BOMBO 4:	55.71	0.0557	200	0.0007	750	0.00075	20	0.000050	1128.28
5	Integrales	100.10	0.1001	200	0.0007	785	0.00079	85	0.000085	1177.65
2	Integrales	06.09	6090.0	200	0.0007	752	0.00075	52	0.000052	1171.15
5	Integrales	61.70	0.0617	200	0.0007	753	0.00075	53	0.000053	1164.15
5	Integrales	89.50	0.0895	700	0.0007	778	0.00078	78	0.000078	1147.44
RALES	PROMEDIO INTEGRALES BOMBO 5:	78.05	0.0781	700	0.0007	767	0.00077	67	0.000067	1165.10
PROMEDIO INTEGRALES	ALES	88.99	6990.0	200	0.0007	759	0.00076	65	0.000059	1146.69

	ninacion de Cuero	Fecha		
مسومول ما مسو	Carculos para la ueterminación de la Densidad del Cuero	Lámina Escala Fecha		
_	_	Lámina	2-1	
ESPOCH	FACULTAD DE CIENCIAS ESCUELA DE	INGENIENIA COUNICA	Realizado por: Vinueza Diana	
CATEGORÍA DEL DIAGRAMA	Por calificar	Por eliminar Certificado		
NOTAS	CALCULOS PARA LA DETERMINACION DE LA	DENSIDAD DEL CUERO		

Fecha	Bombo	Droducto	Masa	Masa	Volumen	Volumen	Volumen Volumen	Volumen	Volumen	Volumen	Densidad
Muestreo	0011100	LI Oddetto	cuero(g.)	cuero(Kg.)	cuero(Kg.) Inicial (mL) Inicial (m3) Final (mL)	Inicial (m3)	Final (mL)	Final (m3)		desplaz(mL) desplaz(m3)	cuero(kg/m3)
24-Feb-11	3	Bandas	43.15	0.0432	700	0.0007	737	0.00074	37	0.000037	1166.22
24-Feb-11	3	Bandas	40.90	0.0409	200	0.0007	730	0.00073	30	0.000030	1363.33
24-Feb-11	3	Bandas	28.40	0.0284	200	0.0007	726	6.00073	26	0.000026	1092.31
24-Feb-11	3	Bandas	35.70	0.0357	200	0.0007	730	6.00073	30	0.000030	1190.00
24-Feb-11	3	Bandas	21.10	0.0211	200	0.0007	715	0.00072	15	0.000015	1406.67
PROMEDIO BANDAS BOMBO 3:	ANDAS B	SOMBO 3:	33.85	0.0339	200	0.0007	728	6.00073	28	0.000028	1243.70
24-Feb-11	4	Bandas	27.10	0.0271	200	0.0007	721	0.00072	21	0.000021	1290.48
24-Feb-11	4	Bandas	35.40	0.0354	200	0.0007	743	0.00074	43	0.000043	823.26
24-Feb-11	4	Bandas	32.30	0.0323	200	0.0007	727	6.00073	27	0.000027	1196.30
24-Feb-11	4	Bandas	28.50	0.0285	200	0.0007	725	6.00073	25	0.000025	1140.00
24-Feb-11	4	Bandas	29.20	0.0292	200	0.0007	724	0.00072	24	0.000024	1216.67
PROMEDIO BANDAS BOMBO 4:	ANDAS B	SOMBO 4:	30.50	0.0305	200	0.0007	728	0.00073	28	0.000028	1133.34
PROMEE	PROMEDIO BANDAS	DAS	32.18	0.0322	200	0.0007	728	0.00073	28	0.000028	1188.52
24-Feb-11	2	Integrales	80.50	0.0805	200	0.0007	770	22000'0	70	0.000000	1150.00
24-Feb-11	2	Integrales	52.70	0.0527	700	0.0007	747	0.00075	47	0.000047	1121.28
24-Feb-11	2	Integrales	49.60	0.0496	200	0.0007	749	0.00075	49	0.000049	1012.24
24-Feb-11	2	Integrales	40.70	0.0407	700	0.0007	740	0.00074	40	0.000040	1017.50
24-Feb-11	5	Integrales	70.20	0.0702	700	0.0007	752	0.00075	52	0.000052	1350.00
PROMEDIO INTEGRALES BOMBO 5:	EGRALES	BOMBO 5:	58.74	0.0587	700	0.0007	752	0.00075	52	0.000052	1130.20
24-Feb-11	7	Integrales	48.65	0.0487	200	0.0007	752	0.00075	52	0.000052	935.58
24-Feb-11	7	Integrales	61.50	0.0615	200	0.0007	751	0.00075	51	0.000051	1205.88
24-Feb-11	7	Integrales	38.50	0.0385	700	0.0007	738	0.00074	38	0.000038	1013.16
24-Feb-11	7	Integrales	34.10	0.0341	700	0.0007	731	0.00073	31	0.000031	1100.00
24-Feb-11	7	Integrales	75.20	0.0752	700	0.0007	743	0.00074	43	0.000043	1748.84
PROMEDIO INTEGRALES BOMBO 7:	EGRALES	BOMBO 7:	51.59	0.0516	700	0.0007	743	0.00074	43	0.000043	1200.69
PROMEDIO INTEGRALES	O INTEG!	RALES	55.17	0.0552	200	0.0007	747	0.00075	47	0.000047	1165.45
											ı

Cálculos para la determinación de la Densidad del Cuero		Lámina Escala Fecha
IAS	<	A.

Lámina Escala Fecha	2-2
Ι	a

Fecha	Bombo	Bombo Broducto	Masa	Masa	Volumen	Volumen Volumen Volumen	Volumen	Volumen	Volumen	Volumen	Densidad
Muestreo		רוטממכנט	cuero(g.)	cuero(Kg.)	Inicial (mL)	Inicial (m3)	Final (mL)	Final (m3)	desplaz(mL)	desplaz(m3)	cuero(g.) cuero(Kg.) nicial (mL) nicial (m3) Final (mL) Final (m3) desplaz(mL) desplaz(m3) cuero(kg/m3)
2-Mar-11	3	Bandas	30.45	0.0305	700	0.0007	730	0.00073	30	0.000030	1015.00
2-Mar-11	3	Bandas	24.70	0.0247	200	0.0007	723	0.00072	23	0.000023	1073.91
2-Mar-11	3	Bandas	28.20	0.0282	200	0.0007	727	6.00073	27	0.000027	1044.44
2-Mar-11	3	Bandas	34.20	0.0342	200	0.0007	734	0.00073	34	0.000034	1005.88
PROMEDIO BANDAS BOMBO 3:	INDAS B	OMBO 3:	29.39	0.0294	200	0.0007	729	0.00073	53	0.000029	1034.81
2-Mar-11	9	Bandas	28.00	0.0280	700	0.0007	726	0.00073	56	0.000026	1076.92
2-Mar-11	9	Bandas	30.45	0.0305	200	0.0007	730	0.00073	30	0.000030	1015.00
2-Mar-11	9	Bandas	36.70	0.0367	700	0.0007	733	0.00073	33	0.000033	1112.12
2-Mar-11	9	Bandas	24.70	0.0247	200	0.0007	721	0.00072	21	0.000021	1176.19
PROMEDIO BANDAS BOMBO 6:	NDAS B	OMBO 6:	29.96	0.0300	700	0.0007	728	0.00073	28	0.000028	1095.06
2-Mar-11	7	Bandas	33.40	0.0334	700	0.0007	731	0.00073	31	0.000031	1077.42
2-Mar-11	7	Bandas	34.15	0.0342	200	0.0007	729	0.00073	29	0.000029	1177.59
2-Mar-11	7	Bandas	42.40	0.0424	700	0.0007	732	0.00073	32	0.000032	1325.00
2-Mar-11	7	Bandas	33.60	0.0336	700	0.0007	733	0.00073	33	0.000033	1018.18
PROMEDIO BANDAS BOMBO 7:	NDAS B	OMBO 7:	35.89	0.0359	700	0.0007	731	0.00073	31	0.000031	1149.55
PROMEDIO BANDAS	NO BANI	DAS	31.75	0.0317	200	0.0007	729	0.00073	29	0.000029	1093.14

Fecha	Bombo	Bombo	Masa	Masa	Volumen	Volumen Volumen Volumen	Volumen	Volumen	Volumen	Volumen	Densidad
Muestreo	5011150	רוטממכנט	cuero(g.)	cuero(Kg.)	Inicial (mL)	Inicial (m3)	Final (mL)	Final (m3)	desplaz(mL)	desplaz(m3)	uero(g.) cuero(Kg.) nicial (mL) Inicial (m3) Final (mL) Final (m3) desplaz(mL) desplaz(m3) cuero(kg/m3)
3-Mar-11	4	Integral	53.60	0.0536	200	0.0007	751	0.00075	51	0.000051	1050.98
3-Mar-11	4	Integral	67.10	0.0671	200	0.0007	292	0.00077	65	0.000065	1032.31
3-Mar-11	4	Integral	149.00	0.1490	200	0.0007	820	0.00082	120	0.000120	1241.67
3-Mar-11	4	Integral	58.00	0.0580	002	0.0007	753	0.00075	53	0.000053	1094.34
PROMEDIO INTEGRALES BOMBO 4:	GRALES	BOMBO 4:	81.93	0.0819	200	0.0007	772	0.00077	72	0.000072	1104.82
3-Mar-11	5	Integral	45.70	0.0457	200	0.0007	740	0.00074	40	0.000040	1142.50
3-Mar-11	5	Integral	53.90	0.0539	200	0.0007	749	0.00075	49	0.000049	1100.00
3-Mar-11	5	Integral	70.00	0.0700	750	0.0008	817	0.00082	67	0.000067	1044.78
3-Mar-11	5	Integral	68.38	0.0684	700	0.0007	760	0.00076	60	0.000060	1139.67
PROMEDIO INTEGRALES BOMBO 5:	GRALES	BOMBO 5:	59.50	0.0595	713	0.0007	767	0.00077	54	0.000054	1106.74
PROMEDIO INTEGRALES	INTEGR	ALES	70.71	0.0707	200	0.0007	769	0.00077	63	0.000063	1105.78

NOTAS	CATEGORÍA DEL DIAGRAMA	ESPOCH		may to do do	000000000000000000000000000000000000000
CALCULOS PARA LA DETERMINACION DE LA	Por calificar □Para informaciór□ ESCUELA DE CIENCIAS Por aprobar □Para archivar □ BORDE CIENCIAS	FACULTAD DE CIENCIAS ESCUELA DE	Calculos pa la De	Calculos para la determinación de la Densidad del Cuero	uero
DENSIDAD DEL CUERO	Por eliminar	INGEINIEMIA COIMICA	Lámina	Lámina Escala Fecha	Fecha
		Realizado por: Vinueza Diana	7-7		

		こうしてい	VIEL CO					TOTO I	OLOS I AINA LA DEL ENIMINACIÓN DE LA DENSIDAD DEL COENO		
Fecha	Pombo	ombo ordenda	Masa	Masa	Volumen	Volumen	Volumen Volumen Volumen	Volumen	Volumen	Volumen	Densidad
Muestreo	DOLLIDO	riodacto	cuero(g.)	cuero(Kg.)	Inicial (mL) Inicial (m3) Final (mL)	Inicial (m3)	Final (mL)	Final (m3)	Final (m3) desplaz(mL) desplaz(m3)	desplaz(m3)	cuero(kg/m3)
16-Mar-11	3	Bandas	38.80	0.0388	002	0.0007	733	0.00073	33	0.000033	1175.76
16-Mar-11	3	Bandas	23.40	0.0234	200	0.0007	722	0.00072	22	0.000022	1063.64
16-Mar-11	3	Bandas	49.20	0.0492	002	0.0007	745	0.00075	45	0.000045	1093.33
16-Mar-11	3	Bandas	44.00	0.0440	002	0.0007	739	0.00074	39	0.000039	1128.21
PROMEDIO BANDAS BOMBO 3:	ANDAS	BOMBO 3:	38.85	0.0389	002	0.0007	735	0.00073	35	0.000035	1115.23
16-Mar-11	9	Bandas	31.10	0.0311	002	0.0007	728	0.00073	28	0.000028	1110.71
16-Mar-11	9	Bandas	36.20	0.0362	002	2000.0	729	0.00073	29	0.000029	1235.49
16-Mar-11	9	Bandas	35.40	0.0354	002	0.0007	729	0.00073	29	0.000029	1220.69
16-Mar-11	9	Bandas	32.00	0.0320	002	0.0007	728	0.00073	28	0.000028	1142.86
PROMEDIO BANDAS BOMBO 6:	ANDAS	BOMBO 6:	33.68	0.0337	002	2000'0	729	0.00073	29	0.000029	1177.44
PROMEDIO BANDAS	DIO BAN	IDAS	36.26	0.0363	002	2000'0	732	0.00073	32	0.000032	1146.34
16-Mar-11	4	Integrales	23.50	0.0535	008	8000'0	845	0.00085	45	0.000045	1188.89
16-Mar-11	4	Integrales	47.80	0.0478	800	0.0008	842	0.00084	42	0.000042	1138.10
16-Mar-11	4	Integrales	71.80	0.0718	800	0.0008	862	0.00086	62	0.000062	1158.06
16-Mar-11	4	Integrales	51.30	0.0513	900	0.0009	945	0.00095	45	0.000045	1140.00
PROMEDIO INTEGRALES BOMBO	EGRALE	S BOMBO 4:	56.10	0.0561	825	0.0008	874	0.00087	49	0.000049	1156.26
16-Mar-11	2	Integrales	71.60	0.0716	800	0.0008	863	0.00086	63	0.000063	1136.51
16-Mar-11	2	Integrales	56.00	0.0560	800	0.0008	848	0.00085	48	0.000048	1166.67
16-Mar-11	2	Integrales	46.10	0.0461	800	0.0008	840	0.00084	40	0.000040	1152.50
16-Mar-11	2	Integrales	83.30	0.0833	800	0.0008	875	0.00088	75	0.000075	1110.67
PROMEDIO INTEGRALES BOMBO	EGRALE	S BOMBO 5:	64.25	0.0643	800	0.0008	857	0.00086	57	0.000057	1141.59
16-Mar-11	7	Integrales	55.40	0.0554	006	6000.0	948	0.00095	48	0.000048	1154.17
16-Mar-11	7	Integrales	55.60	0.0556	800	0.0008	848	0.00085	48	0.000048	1158.33
16-Mar-11	7	Integrales	48.80	0.0488	006	0.0009	944	0.00094	44	0.000044	1109.09
16-Mar-11	7	Integrales	69.40	0.0694	800	0.0008	862	0.00086	62	0.000062	1119.35
PROMEDIO INTEGRALES BOMBC	EGRALE	S BOMBO 7:	57.30	0.0573	850	0.0009	901	0.00090	51	0.000051	1135.24
PROMEDIO INTEGRALES	O INTEG	RALES	60.18	0.0602	813	0.0008	865	0.00087	53	0.000053	1148.92

3.92	ninación de Cuero Fecha
1148	los para la determinacionale Densidad del Cuero Den
0.000053	Cálcu Lámi 2-6
23	YIAS CA
0.00087	ESPOCH FACULTAD DE CIENCIAS ESCUELA DE INGENIERÍA QUÍMICA Realizado por: Vinueza Diana
865	ESP ULTAD I ESCUE GENIERÍ zado por:
0.0008	FAC INC
50.18 0.0602 813 0.0008 865 0.00087 53 0.000053 1148.92	CATEGORÍA DEL DIAGRAMA Por calificar □Para información□ Por aprobar □Para archivar □ Por eliminar □Certificado □ Realizado por: Vinueza Diana
60.18 0.06	CATEGORÍA DEL DIAGR Por calificar □Para inform Por aprobar □Para archive Por eliminar □Certificado
PROMEDIO INTEGRALES	CALCULOS PARA LA DETERMINACION DE LA DENSIDAD DEL CUERO

	•		ALL CO	יחם טו ט			יים בים ב	TOTAL OF	LOS LANA LA BELENMINACIÓN DE LA DENSIBAB DEL COENO		
Fecha	Bombo	Bombo Producto	Masa	Masa	Volumen	Volumen Volumen Volumen	Volumen	Volumen	Volumen	Volumen	Densidad
Muestreo			cuero(g.)	cuero(Kg.)	Inicial (mL)	Inicial (m3)	Final (mL)	Final (m3)	desplaz(mL)	Inicial (mL) Inicial (m3) Final (mL) Final (m3) desplaz(mL) desplaz(m3)	cuero(kg/m3)
18-Mar-11	3	Bandas	20.00	0.0200	800	0.0008	818	0.00082	18	0.000018	1111.11
18-Mar-11	3	Bandas	16.30	0.0163	800	0.0008	812	0.00081	12	0.000012	1358.33
18-Mar-11	3	Bandas	34.90	0.0349	800	0.0008	831	0.00083	31	0.000031	1125.81
18-Mar-11	3	Bandas	23.00	0.0230	800	8000'0	820	0.00082	20	0.000020	1150.00
PROMEDIO BANDAS BOMBO 3:	ANDAS B	OMBO 3:	23.55	0.0236	800	0.0008	820	0.00082	20	0.000020	1186.31
18-Mar-11	9	Bandas	22.30	0.0223	800	0.0008	819	0.00082	19	0.000019	1173.68
18-Mar-11	9	Bandas	33.00	0.0330	800	0.0008	829	0.00083	29	0.000029	1137.93
18-Mar-11	9	Bandas	31.40	0.0314	800	0.0008	829	0.00083	29	0.000029	1082.76
18-Mar-11	9	Bandas	27.50	0.0275	006	0.000	926	0.00093	26	0.000026	1078.43
PROMEDIO BANDAS BOMBO 6:	ANDAS B	OMBO 6:	28.55	0.0286	825	0.0008	851	0.00085	26	0.000026	1118.20
18-Mar-11	7	Bandas	18.30	0.0183	008	0.0008	816	0.00082	16	0.000016	1143.75
18-Mar-11	7	Bandas	15.00	0.0150	006	0.0009	913	0.00091	13	0.000013	1153.85
18-Mar-11	7	Bandas	16.10	0.0161	900	0.0009	915	0.00091	15	0.000015	1110.34
18-Mar-11	7	Bandas	21.70	0.0217	006	6000'0	920	0.00092	20	0.000020	1074.26
PROMEDIO BANDAS BOMBO 7	ANDAS B	SOMBO 7:	17.78	0.0178	875	0.0009	891	0.00089	16	0.000016	1120.55
PROMED	PROMEDIO BANDAS	DAS	23.29	0.0233	833	0.0008	854	0.00085	21	0.000021	1141.69
Fecha	Bombo	Bombo Producto	Masa	Masa	Volumen	Volumen	Volumen	Volumen Volumen	Volumen	Volumen	Densidad
Muestreo			cuero(g.)	cuero(Kg.)	Inicial (mL)	Inicial (m3)	Final (mL)	Final (m3)	desplaz(mL)	Inicial (mL) Inicial (m3) Final (mL) Final (m3) desplaz(mL) desplaz(m3)	cuero(kg/m3)
19-Mar-11	4	Integrales	55.40	0.0554	800	0.0008	849	0.00085	49	0.000049	1130.61
19-Mar-11	4	Integrales	63.80	0.0638	900	0.0009	955	0.00096	55	0.000055	1160.00
19-Mar-11	4	Integrales	47.40	0.0474	800	0.0008	842	0.00084	42	0.000042	1128.57
19-Mar-11	4	Integrales	81.00	0.0810	800	0.0008	870	0.00087	70	0.000070	1157.14
PROMEDIO INTEGRALES 4:	INTEGR	ALES 4:	61.90	0.0619	825	0.0008	879	0.00088	54	0.000054	1144.08

2,7		Lám	2-,
ESPOCH	II.	INGENIEKIA QUIMICA	Realizado por: Vinueza Diana
CATEGORÍA DEL DIAGRAMA	Por calificar □Para informació☐ Por aprobar □Para archivar □	Por eliminar Certificado	
NOTAS	CALCULOS PARA LA DETERMINACION DE LA	DENSIDAD DEL CUERO	

Fecha	
Escala	
Lámina	2-7

		CALCU	LOS FAR	A LA DE	IEKIMINA	ICION DE	LADE	SIDAD D	CALCULOS FARA LA DELERIMINACIÓN DE LA DENSIDAD DEL CUERO		
Fecha	Dympa	Droducto	Masa	Masa	Volumen	Volumen Volumen Volumen	Volumen		Volumen	Volumen	Densidad
Muestreo		רוטממכנט	cuero(g.)	cuero(Kg.)	Inicial (mL)	Inicial (m3)	Final (mL)	Final (m3)	desplaz(mL)	desplaz(m3)	cuero(Kg.) Inicial (mL)Inicial (m3)Final (mL) Final (m3) desplaz(mL) desplaz(m3) cuero(kg/m3)
24-Mar-11	3	Bandas	20.50	0.0205	006	0.0009	918	0.00092	18	0.000018	1138.89
24-Mar-11	3	Bandas	15.30	0.0153	920	0.0009	934	0.00093	14	0.000014	1092.86
24-Mar-11	3	Bandas	29.50	0.0295	006	0.0009	676	0.00093	29	0.000029	1017.24
24-Mar-11	3	Bandas	39.30	0.0393	930	0.0009	996	0.00097	36	0.000036	1091.67
PROMEDIO BANDAS BOMBO 3:	ANDAS	BOMBO 3:	26.15	0.0262	913	0.0009	937	0.00094	24	0.000024	1085.16
24-Mar-11	2	Bandas	28.40	0.0284	800	0.0008	827	0.00083	27	0.000027	1051.85
24-Mar-11	2	Bandas	72.80	0.0728	850	0.0009	920	0.00092	70	0.000070	1047.48
24-Mar-11	2	Bandas	23.50	0.0235	006	0.0009	920	0.00092	20	0.000020	1175.00
24-Mar-11	2	Bandas	21.60	0.0216	920	0.0009	939	0.00094	19	0.000019	1136.84
PROMEDIO BANDAS BOMBO 5:	ANDAS	BOMBO 5:	36.58	0.0366	898	0.0009	901	0.00000	34	0.000034	1102.79
24-Mar-11	7	Bandas	44.00	0.0440	006	0.0009	939	0.00094	39	0.000039	1128.21
24-Mar-11	7	Bandas	19.30	0.0193	900	0.0009	915	0.00092	15	0.000015	1286.67
24-Mar-11	7	Bandas	43.20	0.0432	930	0.0009	970	0.00097	40	0.000040	1080.00
24-Mar-11	7	Bandas	23.30	0.0233	920	0.0009	940	0.00094	20	0.000020	1165.00
PROMEDIO BANDAS BOMBO 7:	ANDAS	BOMBO 7:	32.45	0.0325	913	0.0009	941	0.00094	29	0.000029	1164.97
PROMEDIO BANDAS	DIO BAN	IDAS	34.51	0.0345	890	0.0009	921	0.00092	31	0.000031	1133.88
24-Mar-11	9	Integrales	43.50	0.0435	800	0.0008	839	0.00084	39	0.000039	1115.38
24-Mar-11	9	Integrales	73.30	0.0733	800	0.0008	860	0.00086	09	0.000060	1221.67
24-Mar-11	9	Integrales	67.50	0.0675	800	0.0008	848	0.00085	48	0.000048	1406.25
24-Mar-11	9	Integrales	66.00	0.0660	800	0.0008	855	0.00086	55	0.000055	1200.00
PROMEDIO INTEGRALES BOMBO 6:	EGRALE	S BOMBO 6	62.58	0.0626	800	0.0008	851	0.00085	51	0.000051	1235.83

00:001	CATEGORÍA DEL DIAGRAMA Por calificar □Para información□ Por aprobar □Para archivar □ Por eliminar □Certificado □ Realizado por: Vinueza Diana ESPOCH Cálculos para la determinación de la Densidad del Cuero Lámina Escala Fecha Escala Fecha
1	a la dete sidad de Escala
0000	tulos para la Dens nina
70	Cálc Lán
2000	ESPOCH FACULTAD DE CIENCIAS ESCUELA DE INGENIERÍA QUÍMICA Lámir Realizado por: Vinueza Diana 2-8
100	ESPOCH ULTAD DE CIEN ESCUELA DE GENIERÍA QUÍM zado por: Vinueza
	FAC INC
	CATEGORÍA DEL DIAGRAMA or calificar □Para informaciór or aprobar □Para archivar □ or eliminar □Certificado □
0.00.0	CATEGORÍA DEL DIAGR or calificar □Para inform or aprobar □Para archive or eliminar □Certificado
05:30	CATEGO Or calific Or aprobe Or elimin
	CALCULOS PARA LA DETERMINACION DE LA DENSIDAD DEL CUERO P

Fecha	Dombo	Description Office	Masa	Masa	Volumen	Volumen Volumen Volumen	Volumen	Volumen	Volumen	Volumen	Densidad
Muestreo	0011100	רוטממכנט	cuero(g.)	cuero(Kg.)	Inicial (mL)	Inicial (m3)	Final (mL)	Final (m3)	desplaz(mL)	desplaz(m3)	cuero(Kg.) Inicial (mL) Inicial (m3) Final (mL) Final (m3) desplaz(mL) desplaz(m3) cuero(kg/m3)
30-Mar-11	3	Bandas	21.80	0.0218	800	0.0008	820	0.00082	20	0.000020	1090.00
30-Mar-11	3	Bandas	23.70	0.0237	820	0.0008	840	0.00084	20	0.000020	1185.00
30-Mar-11	3	Bandas	20.20	0.0202	840	0.0008	829	0.00086	19	0.000019	1063.16
30-Mar-11	3	Bandas	22.80	0.0228	860	0.0009	880	0.00088	20	0.000020	1140.00
PROMEDIO BANDAS BOMBO 3:	NDAS B	OMBO 3:	22.13	0.0221	830	0.0008	850	0.00085	20	0.000020	1119.54
30-Mar-11	4	Integral	90.20	0.0902	880	0.0009	096	0.00096	08	0.000080	1127.50
30-Mar-11	4	Integral	00.08	0.0800	800	0.0008	870	0.00087	0/	0.000070	1142.86
30-Mar-11	4	Integral	91.50	0.0915	800	0.0008	882	0.00088	82	0.000082	1115.85
30-Mar-11	4	Integral	72.90	0.0729	800	0.0008	862	0.00086	62	0.000062	1175.81
PROMEDIO INTEGRALES BOMBO 4	EGRALES	BOMBO 4:	83.65	0.0837	820	0.0008	894	0.00089	74	0.000074	1140.50
30-Mar-11	2	Integral	26.30	0.0563	800	0.0008	850	0.00085	20	0.000050	1126.00
30-Mar-11	2	Integral	24.00	0.0240	850	0.0009	870	0.00087	20	0.000020	1200.00
30-Mar-11	2	Integral	52.10	0.0521	870	0.0009	927	0.00093	57	0.000057	914.04
30-Mar-11	2	Integral	80.60	0.0806	600	0.0006	099	0.00066	09	0.000060	1343.33
PROMEDIO INTEGRALES BOMBO 5	EGRALES	BOMBO 5:	53.25	0.0533	780	0.0008	827	0.00083	47	0.000047	1145.84
PROMEDIO INTEGRALES	O INTEG	RALES	68.45	0.0685	800	0.0008	860	0.00086	09	0900000	1143.17

a la determinación de	la Densidad del Cuero	Lámina Escala Fecha		
Cálculos para	la Dens	Lámina	2-9	
ESPOCH Cálculos para la determinación de	ESCUELA DE INCENTEDÍA OLÍMICA	INGEINIENIA COIMICA	Realizado por: Vinueza Diana	
CATEGORÍA DEL DIAGRAMA	Por calificar □Para informació⊡ Por aprobar □Para archivar □	Por eliminar Certificado		
NOTAS	CALCULOS PARA LA DETERMINACION DE LA	DENSIDAD DEL CUERO		

CALCULOS PARA LA DETERMINACION DE LA DENSIDAD DEL CUERO

							- :				
Fecha	Bombo	Producto	Masa	Masa	Volumen	Volumen	Volumen	Volumen	Volumen	Volumen	Densidad
Muestreo		_	cuero(g.)	cuero(Kg.)	Inicial (mL)	Inicial (mL) Inicial (m3)	Final (mL)	Final (m3)	desplaz(mL) desplaz(m3)	desplaz(m3)	cuero(kg/m3)
1-Abr-11	3	Bandas	37.00	0.0370	800	0.0008	831	0.00083	31	0.000031	1193.55
1-Abr-11	3	Bandas	28.10	0.0281	830	0.0008	855	0.00086	25	0.000025	1124.00
1-Abr-11	3	Bandas	32.00	0.0320	006	6000.0	276	0.00093	27	0.000027	1185.19
1-Abr-11	3	Bandas	31.00	0.0310	940	6000.0	896	0.00097	28	0.000028	1107.14
PROMEDIO BANDAS BOMBO 3:	3ANDAS	30MBO 3:	32.03	0.0320	868	6000.0	895	0.00000	28	0.000028	1152.47
1-Abr-11	9	Bandas	21.50	0.0215	800	8000'0	817	0.00082	17	0.000017	1264.71
1-Abr-11	9	Bandas	22.90	0.0229	820	0.0008	840	0.00084	20	0.000020	1145.00
1-Abr-11	9	Bandas	26.80	0.0268	840	0.0008	862	0.00086	22	0.000022	1218.18
1-Abr-11	9	Bandas	28.80	0.0288	870	0.0009	895	0.00090	25	0.000025	1152.00
PROMEDIO BANDAS BOMBO 6:	3ANDAS	30MBO 6:	25.00	0.0250	833	0.0008	854	0.00085	21	0.000021	1194.97
PROM	PROMEDIO BANDAS	IDAS	28.51	0.0285	850	6000'0	874	0.00087	24	0.000024	1173.72
1-Abr-11	4	Integrales	79.40	0.0794	800	0.0008	898	0.00087	89	0.000068	1167.65
1-Abr-11	4	Integrales	91.20	0.0912	800	0.0008	879	0.00088	79	0.000079	1154.43
1-Abr-11	4	Integrales	73.80	0.0738	800	0.0008	867	0.00087	67	0.000067	1101.49
1-Abr-11	4	Integrales	116.80	0.1168	800	0.0008	603	0.00000	103	0.000103	1133.98
PROMEDIO INTEGRALES BOMBO 4:	TEGRALE	S BOMBO 4:	90.30	0.0903	800	0.0008	879	0.00088	79	0.000079	1139.39
1-Abr-11	2	Integrales	75.90	0.0759	800	0.0008	865	0.00087	65	0.000065	1167.69
1-Abr-11	2	Integrales	64.20	0.0642	800	0.0008	855	0.00086	55	0.000055	1167.27
1-Abr-11	2	Integrales	108.50	0.1085	800	0.0008	895	0.00090	95	0.000095	1142.11
1-Abr-11	2	Integrales	60.40	0.0604	800	0.0008	852	0.00085	52	0.000052	1161.54
PROMEDIO INTEGRALES BOMBO 5:	TEGRALE	S BOMBO 5:	77.25	0.0773	800	0.0008	867	0.00087	67	0.000067	1159.65
1-Abr-11	7	Integrales	111.80	0.1118	800	0.0008	868	0.00000	86	0.000098	1140.82
1-Abr-11	7	Integrales	76.60	0.0766	800	0.0008	865	0.00087	65	0.000065	1178.46
1-Abr-11	7	Integrales	74.10	0.0741	800	0.0008	861	0.00086	61	0.000061	1214.75
1-Abr-11	7	Integrales	82.10	0.0821	800	0.0008	871	0.00087	71	0.000071	1156.34
PROMEDIO INTEGRALES BOMBO 7:	TEGRALE	S BOMBO 7:	86.15	0.0862	800	0.0008	874	0.00087	74	0.000074	1172.59
PROMED	PROMEDIO INTEGRALES	RALES	83.78	0.0838	800	0.0008	873	0.00087	73	0.000073	1149.52

NOTAS	CATEGORÍA DEL DIAGRAMA	ESPOCH EACHTAN DE CIENCIAS	Cálculos pa	Cálculos para la determinación de	nación de
CALCULOS PARA LA DETERMINACION DE LA	Por calificar □Para informació⊡ Por aprobar □Para archivar □	ESCUELA DE NGENIEDÍA OLIÚMICA		la Densidad del Cuero	ero
DENSIDAD DEL CUERO	Por eliminar Certificado		Lámina	Lámina Escala Fecha	Fecha
		Realizado por: Vinueza Diana	2-10		

Fecha	Gdmog	Bombo Broducto	Masa	Masa	Volumen	Volumen Volumen	Volumen	Volumen	Volumen	Volumen	Densidad
Muestreo	2011120	בוסממכנס	cuero(g.)	cuero(g.) cuero(Kg.)	Inicial (mL)	Inicial (mL) Inicial (m3) Final (mL)	Final (mL)		desplaz(mL)	desplaz(m3)	Final (m3) desplaz(mL) desplaz(m3) cuero(kg/m3)
6-Abr-11	3	Bandas	21.00	0.0210	800	0.0008	818	0.00082	18	0.000018	1166.67
6-Abr-11	3	Bandas	38.40	0.0384	820	0.0008	851	0.00085	31	0.000031	1238.71
6-Abr-11	3	Bandas	56.30	0.0563	850	0.0009	902	0.00090	52	0.000052	1082.69
6-Abr-11	3	Bandas	66.50	0.0665	006	0.0009	626	96000'0	59	0.000059	1127.12
PROMEDIO BANDAS BOMBO 3:	BANDAS	30MBO 3:	45.55	0.0456	843	0.0008	883	0.00088	40	0.000040	1153.80
6-Abr-11	9	Bandas	29.50	0.0295	800	0.0008	823	0.00082	23	0.000023	1282.61
6-Abr-11	9	Bandas	29.50	0.0295	820	0.0008	849	0.00085	29	0.000029	1017.24
6-Abr-11	9	Bandas	19.40	0.0194	850	0.0009	867	0.00087	17	0.000017	1141.18
6-Abr-11	9	Bandas	20.80	0.0208	867	0.0009	885	0.00089	18	0.000018	1155.56
PROMEDIO BANDAS BOMBO 6:	BANDAS	30MB0 6:	24.80	0.0248	834	0.0008	856	98000'0	22	0.000022	1149.15
PROMI	PROMEDIO BANDAS	DAS	35.18	0.0352	838	0.0008	698	0.00087	31	0.000031	1151.47

NOTAS	CATEGORÍA DEL DIAGRAMA	ESPOCH FACTIL TAD DE CIENCIAS		Cálculos para la determinación de	nación de
CALCULOS PARA LA DETERMINACION DE LA	Por calificar □Para información Por aprobar □Para archivar	ESCUELA DE ESCUELA DE DI MACENTEDÍA OLIÚMICA		la Densidad del Cuero	ero
DENSIDAD DEL CUERO	Por eliminar	INGENIENTA COUNTICA	Lámina	Lámina Escala Fecha	Fecha
		Realizado por: Vinueza Diana	2-11		

			~								
Fecha	Rombo	Producto	Masa	Masa	Volumen	Volumen	Volumen	Volumen	Volumen	Volumen	Densidad
Muestreo			cuero(g.)	cuero(Kg.)	Inicial (mL)	Inicial (m3)	Final (mL)	Final (m3)	desplaz(mL)	desplaz(mL) desplaz(m3)	cuero(kg/m3)
8-Abr-11	3	Bandas	25.00	0.0250	800	0.0008	820	0.00082	20	0.000020	1250.00
8-Abr-11	3	Bandas	25.80	0.0258	820	8000.0	841	0.00084	21	0.000021	1228.57
8-Abr-11	3	Bandas	21.30	0.0213	840	0.0008	860	0.00086	20	0.000020	1065.00
8-Abr-11	3	Bandas	27.90	0.0279	098	6000.0	889	0.00089	29	0.000029	962.07
PROMEDIO BANDAS BOMBO 3:	BANDAS	BOMBO 3:	25.00	0.0250	088	8000.0	853	0.00085	23	0.000023	1126.41
8-Abr-11	9	Bandas	21.30	0.0213	006	6000'0	920	0.00092	20	0.000020	1065.00
8-Abr-11	9	Bandas	25.20	0.0252	920	6000.0	940	0.00094	20	0.000020	1260.00
8-Abr-11	9	Bandas	34.90	0.0349	940	6000.0	973	0.00097	33	0.000033	1057.58
8-Abr-11	9	Bandas	43.60	0.0436	750	0.0008	790	0.00079	40	0.000040	1090.00
PROMEDIO BANDAS BOMBO 6:	BANDAS	BOMBO 6:	31.25	0.0313	878	600000	906	0.00091	28	0.000028	1118.14
PROME	PROMEDIO BANDAS	IDAS	28.13	0.0281	854	6000.0	879	0.00088	25	0.000025	1122.28
8-Abr-11	4	Integrales	207.90	0.2079	002	0.0007	887	0.00089	187	0.000187	1111.76
8-Abr-11	4	Integrales	90.20	0.0902	200	0.0007	778	0.00078	78	0.000078	1156.41
8-Abr-11	4	Integrales	113.40	0.1134	200	0.0007	799	0.00080	66	0.000099	1145.45
8-Abr-11	4	Integrales	153.40	0.1534	700	0.0007	830	0.00083	130	0.000130	1180.00
PROMEDIO INTEGRALES BOMBO 4:	TEGRALE	S BOMBO 4:	141.23	0.1412	700	0.0007	824	0.00082	124	0.000124	1148.41
8-Abr-11	2	Integrales	65.50	0.0655	002	0.0007	757	0.00076	57	0.000057	1149.12
8-Abr-11	2	Integrales	107.40	0.1074	700	0.0007	792	0.00079	92	0.000092	1167.39
8-Abr-11	2	Integrales	83.70	0.0837	800	0.0008	870	0.00087	70	0.000070	1195.71
8-Abr-11	2	Integrales	115.40	0.1154	700	0.0007	792	0.00079	92	0.000092	1254.35
PROMEDIO INTEGRALES BOMBO 5	TEGRALE	S BOMBO 5:	93.00	0.0930	725	0.0007	803	0.00080	78	0.000078	1191.64
8-Abr-11	7	Integrales	72.70	0.0727	800	0.0008	862	0.00086	62	0.000062	1172.58
8-Abr-11	7	Integrales	92.50	0.0925	870	6000.0	950	0.00095	80	0.000080	1156.25
8-Abr-11	7	Integrales	73.80	0.0738	800	0.0008	860	0.00086	60	0.000060	1230.00
8-Abr-11	7	Integrales	73.50	0.0735	800	0.0008	860	0.00086	60	0.000060	1225.00
PROMEDIO INTEGRALES BOMBO 7	TEGRALE	S BOMBO 7:	78.13	0.0781	818	0.0008	883	0.00088	99	0.000066	1195.96
PROMED	PROMEDIO INTEGRALES	RALES	117.11	0.1171	713	0.0007	813	0.00081	101	0.000101	1170.03

NOTAS	CATEGORÍA DEL DIAGRAMA	ESPOCH EACTH TAD DE CIENCIAS	-	Cálculos para la determinación de	inación de
CALCULOS PARA LA DETERMINACION DE LA	Por calificar Por calificar Para información ESCUELA DE	ESCUELA DE		la Densidad del Cuero	uero
DENSIDAD DEL CUERO	Por eliminar	INGEINIERIA QUIMICA	Lámina	Lámina Escala Fecha	Fecha
		Realizado por: Vinueza Diana	2-12		

-105-

PARADA: 2RH	PES	O Kg	60	
BOMBO : Ensayos		ANDAS	6	
RECICLAJE: I	PRO	MEDIO	10	
PRODUCTO	%	CANTIDAD	TIEMPO	OBSERVACIONES
AGUA A 35°C	200	0, 110 112, 12	20	0502.1177.0107.120
ESCURRE				
AGUA A 35°C	200		20	
ESCURRE	200			
AGUA A 32°C	100			
METABISULFITO DE SODIO	0.4	0.24	20	
ESCURRE HASTA QUEDE 50%	0.7	0.24	20	
SULFATO DE AMONIO	1.3	0.78		
DESENCALANTE ORGANICO	1.2	0.78		
METABISULFITO DE SODIO	0.3	0.72	60	
CORTE=INCOLORO (FENOLFTALEINA		0.10	00	
CORTE=INCOLORO (FENOLFTALEINA CORTE=AZUL (AZUL BROMOTIMOL)	·/			
		-		
PH = 8,0 - 8,5 (CINTA DE pH) ENZIMA PARA PURGADO	0.0	0.40	40	
	0.2	0.12	40	
PH = 7,0 - 7,5 (CINTA DE pH)				
CORTE= AZUL CLARO O VERDOSO (AZUL BR	СОМОТІМО	L)	
ESCURRE				
AGUA FRIA	150		15	
ESCURRE				
AGUA FRIA	150		15	
ESCURRE				
AGUA RESIDUAL pH=1	100			60L
DENSIDAD= 9.9			`	
SAL	2	1.20	20	
DENSIDAD= 6,5-7	ļ	DENSIDAD	= 7	
ACIDO FORMICO (1x10)	0.8	0.48	30	Dilucion en 4.8L agua residual
ACIDO SULFURICO (1x10)	1.2	0.72	120	Dilucion en 7.2L de agua residu
FUNGICIDA	0.05	0.03		
pH = 2,8 - 3,0 (CINTA DE PH)	pH= 3			
CORTE= AMARILLO OK				
CROMO	1.65	0.99	30	
VER ATRAVESADO OK				
СКОМО	1.65	0.99		
FUNGICIDA	0.05	0.03		
BASIFICANTE	0.2	0.12	40	
BASIFICANTE	0.25	0.15	8 HORAS	
pH = 3,6 - 3,8 (CINTA DE pH)	8.E =Ha			
CORTE = VERDE MANZANA OK				
TEMPERATURA CONTRACCION= OK		 		

NOTAS	CATEGORÍA DEL DIAGRAMA	ESPOCH FACULTAD DE		del Proceso Reciclaje de	de Curtido Baños
FORMULACION DEL RECICLAJE I	Por calificar Para información Por aprobar ara archivar	CIENCIAS ESCUELA DE ING. QUÍMICA	Lámina	Escala	Fecha
DEL RECICLAJE I	Por eliminar Certificado	Realizado por: Vinueza Diana	3-1		

GUIA PROCESO C	URTII	oo cc	N AGL	JA RECICLADA
PARADA: 1206		O Kg	65	
BOMBO: Ensayos		ANDAS	6	
RECICLAJE: II		MEDIO	10.83	
PRODUCTO	%	CANTIDAD	TIEMPO	OBSERVACIONES
AGUA A 35°C	200		20	
ESCURRE				
AGUA A 35°C	200		20	
ESCURRE				
AGUA A 32°C	100			
METABISULFITO DE SODIO	0.4	0.26	20	
ESCURRE HASTA QUEDE 50%				
SULFATO DE AMONIO	1.3	0.85		
DESENCALANTE ORGANICO	1.2	0.78		
METABISULFITO DE SODIO	0.3	0.20	60	
CORTE=INCOLORO (FENOLFTALEINA	4)			
CORTE=AZUL (AZUL BROMOTIMOL)				
PH = 8,0 - 8,5 (CINTA DE pH)				
ENZIMA PARA PURGADO	0.2	0.12	40	
PH = 7,0 - 7,5 (CINTA DE pH)				
CORTE= AZUL CLARO O VERDOSO	AZUL BE	ROMOTIM	OL)	
ESCURRE				
AGUA FRIA	150		15	
ESCURRE	100			
AGUA FRIA	150		15	
ESCURRE	130		10	
AGUA RESIDUAL pH=1	100	65.00		65L
DENSIDAD= 10	100	00.00		USE
SAL	2	1.30	20	
DENSIDAD= 6,5-7		ENSIDAD=		
ACIDO FORMICO (1x10)	0.8	0.52	30	Dilucion on E 21 agua residual
ACIDO FORMICO (1x10) ACIDO SULFURICO (1x10)	1.2	0.52	120	Dilucion en 5.2L agua residual
FUNGICIDA	0.05	0.78	120	Dilucion en 7.8L de agua residua
pH = 2,8 - 3,0 (CINTA DE PH)		0.03		
	pH= 3			
CORTE= AMARILLO OK	1.65	1.07	20	
CROMO	1.65	1.07	30	
VER ATRAVESADO OK	1.65	1.07		
CROMO	1.65	1.07		
FUNGICIDA	0.05	0.03	40	
BASIFICANTE	0.2	0.13	40	
BASIFICANTE	0.25	0.16	8 HORAS	
pH = 3,6 - 3,8 (CINTA DE pH)	pH= 3.8			
CORTE = VERDE MANZANA OK				
TEMPERATURA CONTRACCION= OK				

NOTAS	CATEGORÍA DEL DIAGRAMA	ESPOCH FACULTAD DE		del Proceso Reciclaje de	de Curtido Baños
FORMULACION DEL RECICLAJE II	Por calificar Para informac. Por aprobar Para archivar	CIENCIAS ESCUELA DE ING. OUÍMICA	Lámina	Escala	Fecha
DEE RECICEMBE II	Por eliminar Certificado	Realizado por: Vinueza Diana	3-2		

GUIA PROCESO C	URTI	DO CC	N AGI	JA RECICLADA
PARADA: 1208	PES	SO Kg	64	
BOMBO : Ensayos	Nro E	BANDAS	6	
RECICLAJE: III	PRO	MEDIO	10.67	
PRODUCTO	%	CANTIDAD	TIEMPO	OBSERVACIONES
AGUA A 35°C	200		20	
ESCURRE				
AGUA A 35°C	200		20	
ESCURRE				
AGUA A 32°C	100			
METABISULFITO DE SODIO	0.4	0.26	20	
ESCURRE HASTA QUEDE 50%				
SULFATO DE AMONIO	1.3	0.83		
DESENCALANTE ORGANICO	1.2	0.77		
METABISULFITO DE SODIO	0.3	0.19	60	
CORTE=INCOLORO (FENOLFTALEINA	A)			
CORTE=AZUL (AZUL BROMOTIMOL)	-			
PH = 8,0 - 8,5 (CINTA DE pH)				
ENZIMA PARA PURGADO	0.2	0.13	40	
PH = 7,0 - 7,5 (CINTA DE pH)				
CORTE= AZUL CLARO O VERDOSO	AZUL B	ROMOTIM	OL)	
ESCURRE				
AGUA FRIA	150		15	
ESCURRE				
AGUA FRIA	150		15	
ESCURRE				
AGUA RESIDUAL pH=1	100	64.00		64L
DENSIDAD= 10.5				<u> </u>
SAL	2	1.28	20	
DENSIDAD= 6,5-7		ENSIDAD:	= 7	
ACIDO FORMICO (1x10)	0.8	0.51	30	Dilucion en 5L agua residual
ACIDO SULFURICO (1x10)	1.2	0.77	120	Dilucion en 7L de agua residual
FUNGICIDA	0.05	0.03		
pH = 2,8 - 3,0 (CINTA DE PH)	pH= 3			
CORTE= AMARILLO OK				
СКОМО	1.7	1.09	30	
VER ATRAVESADO OK				
СКОМО	1.7	1.09		
FUNGICIDA	0.05	0.03		
BASIFICANTE	0.2	0.13	40	
BASIFICANTE	0.25	0.16	8 HORAS	
pH = 3,6 - 3,8 (CINTA DE pH)	pH= 3.8			
CORTE = VERDE MANZANA OK				
TEMPERATURA CONTRACCION= OK				

NOTAS	CATEGORÍA DEL DIAGRAMA	ESPOCH FACULTAD DE CIENCIAS		del Proceso Reciclaje de	o de Curtido Baños
FORMULACION DEL RECICLAJE	Por calificar Para informac. Por aprobar ara archivar	ESCUELA DE ING. QUÍMICA	Lámina	Escala	Fecha
III Por eliminar Certificado	Realizado por: Vinueza Diana	3-3			

GUIA PROCESO C		DO CO	N AGI	IA RECICI ADA
PARADA: 1212		O Kg	68	AREGIOLABA
BOMBO : Ensayos		ANDAS	6	
RECICLAJE: IV		MEDIO	11.33	
PRODUCTO	%	CANTIDAD		OBSERVACIONES
AGUA A 35°C	200	CANTIDAD	20	OBSERVACIONES
ESCURRE	200			
AGUA A 35°C	200		20	
ESCURRE	200			
AGUA A 32°C	100			
METABISULFITO DE SODIO	0.4	0.27	20	
ESCURRE HASTA QUEDE 50%	0.4	0.27	20	
SULFATO DE AMONIO	1.3	0.88		
DESENCALANTE ORGANICO	1.2	0.82		
METABISULFITO DE SODIO	0.3	0.82	60	
CORTE=INCOLORO (FENOLFTALEINA		0.20	00	
CORTE=AZUL (AZUL BROMOTIMOL)	, , , , , , , , , , , , , , , , , , , ,			
PH = 8,0 - 8,5 (CINTA DE pH)				
ENZIMA PARA PURGADO	0.2	0.14	40	
PH = 7,0 - 7,5 (CINTA DE pH)	0.2	0.14	40	
CORTE= AZUL CLARO O VERDOSO	(A 71.11 D.	I COMOTINA	OL)	
ESCURRE	AZUL BI	TOMOTIM!	OL)	
	150		15	
AGUA FRIA	150		15	
ESCURRE	150		15	
AGUA FRIA	150		15	
ESCURRE	400	00.00		
AGUA RESIDUAL pH=1	100	68.00		68L
DENSIDAD= 11.4	4.5	4.00	00	
SAL	1.5	1.02	20	
DENSIDAD= 6,5-7		ENSIDAD=		
ACIDO FORMICO (1x10)	0.8	0.54	30	Dilucion en 5,5L agua residual
ACIDO SULFURICO (1x10)	1.2	0.82	120	Dilucion en 8,5L de agua residua
FUNGICIDA	0.05	0.03		
pH = 2,8 - 3,0 (CINTA DE PH)	pH= 3			
CORTE= AMARILLO OK	4.05	4.40		
CROMO	1.65	1.12	30	
VER ATRAVESADO OK	4.05			
CROMO	1.65	1.12		
FUNGICIDA	0.05	0.03		
BASIFICANTE	0.2	0.14	40	
BASIFICANTE	0.25	0.17	8 HORAS	
pH = 3,6 - 3,8 (CINTA DE pH)	pH= 3.8			
CORTE = VERDE MANZANA OK				
TEMPERATURA CONTRACCION= OK				

NOTAS	CATEGORÍA DEL DIAGRAMA	ESPOCH FACULTAD DE CIENCIAS		del Proceso Reciclaje de	de Curtido Baños
FORMULACION DEL RECICLAJE	Por calificar Para informac. Por aprobar ara archivar	ESCUELA DE ING. OUÍMICA	Lámina	Escala	Fecha
IV	Por eliminar Certificado	Realizado por: Vinueza Diana	3-4		

GUIA PROCESO C	URTI	DO CC	N AGI	JA RECICLADA
PARADA: 1215	PES	SO Kg	62	
BOMBO : Ensayos	Nro B	BANDAS	6	
RECICLAJE: V	PRO	MEDIO	10.33	
PRODUCTO	%	CANTIDAD	TIEMPO	OBSERVACIONES
AGUA A 35°C	200		20	
ESCURRE				
AGUA A 35°C	200		20	
ESCURRE				
AGUA A 32°C	100			
METABISULFITO DE SODIO	0.4	0.25	20	
ESCURRE HASTA QUEDE 50%				
SULFATO DE AMONIO	1.3	0.81		
DESENCALANTE ORGANICO	1.2	0.74		
METABISULFITO DE SODIO	0.3	0.19	60	
CORTE=INCOLORO (FENOLFTALEINA	A)			
CORTE=AZUL (AZUL BROMOTIMOL)				
PH = 8,0 - 8,5 (CINTA DE pH)				
ENZIMA PARA PURGADO	0.2	0.12	40	
PH = 7,0 - 7,5 (CINTA DE pH)				
CORTE= AZUL CLARO O VERDOSO	AZUL B	ROMOTIM	OL)	
ESCURRE				
AGUA FRIA	150		15	
ESCURRE				
AGUA FRIA	150		15	
ESCURRE				
AGUA RESIDUAL pH=1	100	62.00		62L
DENSIDAD= 11.6				
SAL	1	0.62	20	
DENSIDAD= 6,5-7	DI	ENSIDAD=	6.5	
ACIDO FORMICO (1x10)	0.8	0.50	30	Dilucion en 5,5L agua residual
ACIDO SULFURICO (1x10)	1.2	0.74	120	Dilucion en 7.5L de agua residual
FUNGICIDA	0.05	0.03		
pH = 2,8 - 3,0 (CINTA DE PH)	pH= 3			
CORTE= AMARILLO OK				
СКОМО	1.65	1.023	30	
VER ATRAVESADO OK				
СКОМО	1.65	1.023		
FUNGICIDA	0.05	0.03		
BASIFICANTE	0.2	0.12	40	
BASIFICANTE	0.25	0.16	8 HORAS	
pH = 3,6 - 3,8 (CINTA DE pH)	pH= 3.8			
CORTE = VERDE MANZANA OK				
TEMPERATURA CONTRACCION= OK				

NOTAS	CATEGORÍA DEL DIAGRAMA	ESPOCH FACULTAD DE		del Proceso Reciclaje de	de Curtido
FORMUL A GLOVE	Por calificar Para informac.	CIENCIAS	Con		Danos
FORMULACION DEL RECICLAJE V	Por aprobar archivar	ESCUELA DE ING. OUÍMICA	Lámina	Escala	Fecha
BEE RECICEAGE V	Por eliminar Certificado	Realizado por: Vinueza Diana	3-5		

GUIA PROCESO C	URTI	ро со	N AGL	JA RECICLADA
PARADA: 1219	PES	O Kg	60	
BOMBO : Ensayos	Nro B	ANDAS	6	
RECICLAJE:VI	PROI	MEDIO	10.00	
PRODUCTO	%	CANTIDAD	TIEMPO	OBSERVACIONES
AGUA A 35°C	200		20	
ESCURRE				
AGUA A 35°C	200		20	
ESCURRE				
AGUA A 32°C	100			
METABISULFITO DE SODIO	0.4	0.24	20	
ESCURRE HASTA QUEDE 50%				
SULFATO DE AMONIO	1.3	0.78		
DESENCALANTE ORGANICO	1.2	0.72		
METABISULFITO DE SODIO	0.3	0.18	60	
CORTE=INCOLORO (FENOLFTALEINA	A)			
CORTE=AZUL (AZUL BROMOTIMOL)				
PH = 8,0 - 8,5 (CINTA DE pH)				
ENZIMA PARA PURGADO	0.2	0.12	40	
PH = 7,0 - 7,5 (CINTA DE pH)				
CORTE= AZUL CLARO O VERDOSO (AZUL BE	ROMOTIMO	OL)	
ESCURRE				
AGUA FRIA	150		15	
ESCURRE				
AGUA FRIA	150		15	
ESCURRE				
AGUA RESIDUAL pH=1	100	60.00		60L
DENSIDAD= 11.2				
SAL	1.5	0.90	20	
DENSIDAD= 6,5-7	DI	ENSIDAD=	6.5	
ACIDO FORMICO (1x10)	0.8	0.48	30	Dilucion en 4.8L agua residual
ACIDO SULFURICO (1x10)	1.2	0.72	120	Dilucion en 7.2L de agua residua
FUNGICIDA	0.05	0.03		
pH = 2,8 - 3,0 (CINTA DE PH)	pH= 3			
CORTE= AMARILLO OK				
CROMO	1.7	1.02	30	
VER ATRAVESADO OK				
CROMO	1.7	1.02		
FUNGICIDA	0.05	0.03		
BASIFICANTE	0.2	0.12	40	
BASIFICANTE	0.25	0.15	8 HORAS	
pH = 3,6 - 3,8 (CINTA DE pH)	pH= 3.8			
CORTE = VERDE MANZANA OK				
TEMPERATURA CONTRACCION= OK				

NOTAS	CATEGORÍA DEL DIAGRAMA	ESPOCH FACULTAD DE CIENCIAS		del Proceso Reciclaje de	de Curtido Baños
FORMULACION DEL RECICLAJE	Por calificar Para informac. Por aprobar ara archivar	ESCUELA DE ING. OUÍMICA	Lámina	Escala	Fecha
VI	Por eliminar Certificado	Realizado por: Vinueza Diana	3-6		

PARADA: 1222	PES	SO Kg	65	
BOMBO : Ensayos	Nro E	BANDAS	6	
RECICLAJE: VII		MEDIO	10.83	
PRODUCTO	%	CANTIDAD	TIEMPO	OBSERVACIONES
AGUA A 35°C	200		20	
ESCURRE				
AGUA A 35°C	200		20	
ESCURRE				
AGUA A 32°C	100			
METABISULFITO DE SODIO	0.4	0.26	20	
ESCURRE HASTA QUEDE 50%				
SULFATO DE AMONIO	1.3	0.85		
DESENCALANTE ORGANICO	1.2	0.78		
METABISULFITO DE SODIO	0.3	0.20	60	
CORTE=INCOLORO (FENOLFTALEINA	()			
CORTE=AZUL (AZUL BROMOTIMOL)				
PH = 8,0 - 8,5 (CINTA DE pH)				
ENZIMA PARA PURGADO	0.2	0.13	40	
PH = 7,0 - 7,5 (CINTA DE pH)				
CORTE= AZUL CLARO O VERDOSO (AZUL B	ROMOTIM	OL)	
ESCURRE			,	
AGUA FRIA	150		15	
ESCURRE				
AGUA FRIA	150		15	
ESCURRE				
AGUA RESIDUAL pH=1	100	65.00		64L
DENSIDAD= 11.8				
SAL	1	0.65	20	
DENSIDAD= 6,5-7		ENSIDAD:	= 7	
ACIDO FORMICO (1x10)	0.8	0.52	30	Dilucion en 5L agua residual
ACIDO SULFURICO (1x10)	1.2	0.78	120	Dilucion en 7L de agua residua
FUNGICIDA	0.05	0.03		2. ac. c
pH = 2,8 - 3,0 (CINTA DE PH)	pH= 3			
CORTE= AMARILLO OK				
CROMO	1.7	1.105	30	
VER ATRAVESADO OK	···			
CROMO	1.7	1.105		
FUNGICIDA	0.05	0.03		
BASIFICANTE	0.2	0.13	40	
BASIFICANTE	0.25	0.16	8 HORAS	
pH = 3,6 - 3,8 (CINTA DE pH)	pH= 3.8		- /.0.0.0	
CORTE = VERDE MANZANA OK	J U.U			
TEMPERATURA CONTRACCION= OK				

NOTAS	CATEGORÍA DEL	ESPOCH FACULTAD DE		del Proceso Reciclaje de	de Curtido Baños
FORMULACION DEL RECICLAJE	DIAGRAMA Por calificar Para informac. Por aprobar archivar	CIENCIAS ESCUELA DE ING. QUÍMICA	Lámina	Escala	Fecha
VII Por eliminar Certificado	Realizado por: Vinueza Diana	3-7			

ANEXO IV MEDICION DE VOLUMEN DE DESCARGA

a)

Medición de Volumen de	lumen de a		
ión de Vo	Descarga	Escal	
Medic		Lámina Escala Fecha	4-1
ESPOCH FACULTAD DE CIENCIAS	ESCUELA DE INGENIERÍA	QUÍMICA	Realizado por: Vinueza Diana
CATEGORÍA DEL DIAGRAMA	Por calificar Para información	Por eliminar Certificado	
NOTAS		b) Medicion de bombo de	curtido

ANEXO V DETERMINACION DE LA DENSIDAD DEL CUERO

ESPOCH CATEGORÍA DEL DIAGRAMA

NOTAS

NOTAS	Caledonia Del Diagna		Determina	Determinación de la Densidad del	leh hehist	
	☐	FACULIAD DE CIENCIAS		יים או לא ווסוי	וסוממת מכו	
	For callifical Para intormacion ESCITET PE INCENIEDÍA	ESCLIEL A DE INCENTEDÍA		Cuero		
a) Pesaie muestra de cuero	Por aprobar	ESCUELA DE INGENIENIA				_
1.) 14. 1.: 2 1.1	Dor eliminar Certificado	CUIMICA	Lámino	Lead Looks	Looko	
b) Medicion dei Volumen			Гапппа	ESCAIA	r cella	
desplazado		Realizado por: Vinueza Diana	5-1			
			1			

ANALISIS DEL CONTENIDO DE Cr₂O₃

ESPOCH	FACULTAD DE	CIENCIAS ESCUELA DE
CATEGORÍA DEL DIAGRAMA	or calificar Para información	or aprobar Para archivar

	FACULTAD DE CIENCIAS ESCUELA DE INGENIERÍA QUÍM
CALEGONIA DEL DIAGNAMA	Por calificar □Para información □ Por aprobar □Para archivar Por eliminar □Certificado □

Muestra de agua residual Adición de Ácidos Oxidación Cr+3 a Cr+6

 \overrightarrow{c} \overrightarrow{a}

NOTAS

Lámina Es	6-1	
Escala		
Fecha		

ESPOCH			(
FACULTAD DE	Analisis de	Analisis del Contenido de Cr ₂ O ₃	$de Cr_2O_3$
CIENCIAS			
ESCUELA DE	Lámina	Escala Fecha	Fecha
INGENIERÍA QUÍMICA	6-1		
Realizado por: Vinueza Diana	1		

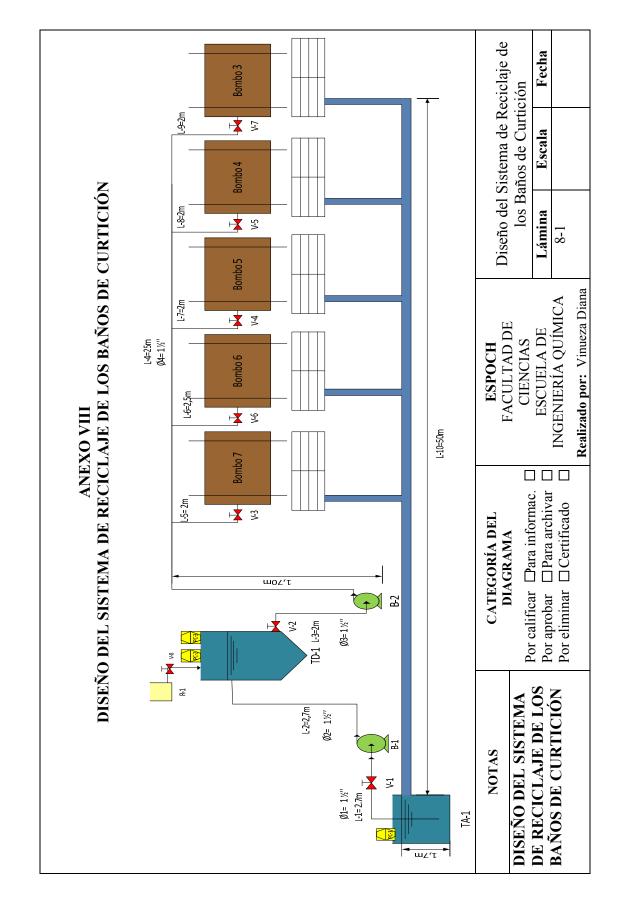
	_	na
ámina,	6-1	
Escala		
Fecha		

- 1	
S	١
	ı
	ı
- 1	

ANALISIS DEL CONTENIDO DE C₁₂O₃

(q

а<u>)</u>


NOTAS	CATEGORIA DEL DIAGRAMA	ESPOCH	A (1: A	(F.:	5
	Dor calificar Dara información	FACULTAD DE CIENCIAS Análisis del Contenido de Ci ² O ³	Analisis de	ei Contenido	de Cr ₂ O ₃
Disolución de Agua	aprobar	ESCUELA DE			
Kesidual Oxidada	Por eliminar Certificado	INGENIERIA COIMICA	Lámina	Lámina Escala Fecha	Fecha
Viraje de Titulacion (Narania a Azul)		Realizado por: Vinueza Diana	7-9		
(Maranja a Mara)					

a)

p

claje	Fecha
Ensayos de Reciclaje	Lámina Escala Fecha 7-1
Ensa	Lámina 7-1
ESPOCH FACULTAD DE CIENCIAS ESCUELA DE	INGENIERÍA QUÍMICA Realizado por: Vinueza Diana
CATEGORÍA DEL DIAGRAMA Por calificar Para información Dor carcher Dors grahisor	Por eliminar Certificado
NOTAS Medición Densidad	Control de AtravesadoControl con Verde de Bromo Cresol

