

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO

FACULTAD DE CIENCIAS

CARRERA DE INGENIERÍA QUÍMICA

SIMULACIÓN Y VALIDACIÓN DE UN SISTEMA DE DESTILACIÓN PARA LA SEPARACIÓN DE AZEÓTROPOS DE DIISOPROPILETER – ISOPROPANOL – AGUA EN PROCESOS MEJORADOS PARA LA INDUSTRIA QUÍMICA

Trabajo de titulación

TIPO: Propuesta Tecnológica

Presentado para optar el grado académico de:

INGENIERA QUÍMICA

AUTORA: REBECA ELIZABETH LASCANO NÚÑEZ

DIRECTOR: Ing. JUAN PABLO CHUQUIN VASCO

RIOBAMBA – ECUADOR

© 2021, Rebeca Elizabeh Lascano Nuñez

Se autoriza la reproducción total o parcial, con fines académicos, por cualquier medio o procedimiento, incluyendo cita bibliográfica del documento, siempre y cuando se reconozca el Derecho del Autor.

Yo, Rebeca Elizabeth Lascano Nuñez, declaro que el presente trabajo de titulación es de mi autoría y los resultados del mismo son auténticos. Los textos en el documento que provienen de otras fuentes están debidamente citados y referenciados

Como autora asumo la responsabilidad legal y académica de los contenidos de este trabajo de titulación; el patrimodio intelectual pertenece a la Escuela Superior Politécnica de Chimborazo

Riobamba, 23 de Julio de 2021

REBECA ELIZABETH LASCANO NUÑEZ Firmado digitalmente por REBECA ELIZABETH LASCANO NUÑEZ Fecha: 2021.07.28 00:10:44 -05'00'

Rebeca Elizabeth Lascano Nuñez 180444410-5

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE CIENCIAS CARRERA DE INGENIERÍA QUÍMICA

El tribunal del Trabajo de Titulación certifica que: El trabajo de titulación; tipo Propuesta Tecnológica, SIMULACIÓN Y VALIDACIÓN DE UN SISTEMA DE DESTILACIÓN PARA LA SEPARACIÓN DE AZEÓTROPOS DE DIISOPROPILETER – ISOPROPANOL – AGUA EN PROCESOS MEJORADOS PARA LA INDUSTRIA QUÍMICA, realizado por la señora: REBECA ELIZABETH LASCANO NUÑEZ, ha sido minuciosamente revisado por los Miembros del Trabajo de Titulación, el mismo que cumple con los requisitos científicos, técnicos, legales, en tal virtud el Tribunal Autoriza su presentación.

	FIRMA	FECHA
Ing. Carlos Ramiro Cepeda Godoy	Firmado electrónicamente por: CARLOS RAMIRO CEPEDA GODOY	2021-07-23
DELEGADO DEL TRIBUNAL		
Ing. Juan Pablo Chuquín Vasco DIRECTOR DE TRABAJO DE TITULACIÓN	Firmado electrónicamente por JUAN PABLO CHUQUIN	2021-07-23
Ing. Daniel Antonio Chuquín Vasco	DANIEL ANTONIO CHUQUIN VASCO	2021-07-23
MIEMBRO DEL TRIBUNAL		2021 07 23

DEDICATORIA

Esta tesis esta dedicada:

A Dios, por haberme dado sabiduría y fuerza guiándome en el trayecto de mi vida, por permitirme llegar a este momento tan especial, por protegerme durante todo mi camino y sobretodo por darme fuerza para superar obstáculos y dificultades a lo largo de mi vida.

A mis padres Vinicio y Lady quienes han sido los principales promotores de mis sueños, gracias a ellos por confiar y creer en mí y en mis expectativas. Gracias a mi madre por haberme formado como una mujer de bien, por ser la mujer que me dio la vida y me enseñó a vivirla; a mi padre, por el valor y coraje que siempre me ha inculcado y por sus enseñanzas. Desde lo más profundo de mi corazon gracias por su infinito amor, esfuerzo y paciencia y por permitirme llegar a cumplir hoy un sueño más.

A mi esposo y amigo Daniel, que durante estos años de carrera ha sabido apoyarme para continuar y nunca renunciar, por ser parte importante en el logro de mis metas tanto profesionales como personales. Gracias por toda tu ayuda y amor verdadero. Fuiste mi motivación más grande para culminar con éxito este proyecto.

A mi hija Annie, a pesar de su corta edad me ha enseñado tanto en tan poco tiempo. Eres el detonante de felicidad en mi vida, tu afecto y cariño me impulsan a esforzarme más cada día para buscar lo mejor para ti.

A mi hermano Joshua, por acompañarme y apoyarme desde siempre, por ser tan bueno conmigo. Gracias no solo por ser parte fundamental de este gran logro, sino también por todos los gratos momentos que pasamos a lo largo de nuestras vidas.

A mi amiga Michelle, quien a sido mi mano derecha durante todo este tiempo. Te agradezco no solo por la ayuda incondicional, sino por todos los buenos momentos que hemos convivido juntas.

Rebeca.

AGRADECIMIENTO

Agradezco en primer lugar a Dios por guiarme y acompañarme en el transcurso de mi vida, por ser mi fortaleza en momentos de debilidad, por brindarme una vida llena de aprendizajes, experiencias y sobretodo por darme la familia que tengo.

El más sincero agradecimiento a la Escuela Superior Politécnica de Chimborazo, en especial a la Facultad de Ciencias por brindarme la oportunidad para realizar mis estudios y formarme profesionalmente. Además al Grupo de Investigación en Seguridad Ambiente e Ingeniería, "GISAI", por permitirme la realización de esta investigación.

De igual manera, agradezco al Ing. Daniel Chuquín por la oportunidad y la confianza depositada en mí para desarrollar el presente proyecto de titulación, por su enseñanza, guía y paciencia, por darme la oportunidad de crecer profesionalemente. Sin duda, un profesional que admiro sobremanera.

Finalmente, mi gratitud para todas aquellas personas que formaron parte en este camino, quienes me brindaron conocimiento, lecciones, cooperaciones y sonrisas y los que creyeron en mí.

Rebeca.

TABLA DE CONTENIDO

INDIC	E DE TABLAS	ix
INDIC	E DE FIGURAS	X
INDIC	E DE ANEXOS	xii
SIGLA	S / ABREVIACIONES	xiii
RESUN	MEN	xiv
SUMM	IARY	XV
CAPIT	'ULO I	
1.	INTRODUCCIÓN	1
1.1.	Antecedentes	1
1.2.	Planteamiento del problema	2
1.3.	Justificación del proyecto	3
1.4.	Objetivos	3
1.4.1.	Objetivo general	3
1.4.2.	Objetivo específicos	4
1.5.	Alcance	4
CAPIT	TULO II	
2.	MARCO TEORICO	5
2.1.	Estado del arte	5
2.1.1.	Hidratación de propileno y tratamiento	5
2.1.2.	Simulación de proceso de destilación	6
2.1.3.	Red Neuronal Artificial (RNA) en procesos de destilación	7
2.2.	Base Teóricas	9
2.2.1.	IPA (Isopropanol)	9
2.2.2.	DIPE (Diisopropiléter)	9
2.2.3.	DWSIM	10
2.2.4.	Características	10
2.2.5.	ChemSep (cape-open)	10
2.2.6.	Elementos de una RNA	11
227	Caractorísticas do una rod nouronal	11

2.2.7.1.	Topología	12
2.2.7.2.	Mecanismos de aprendizaje	13
2.2.8.	Área de aplicación de las RNA	14
2.2.9.	Ventajas de RNA	14
<i>2.2.10.</i>	Keras	14
2.2.11.	TensorFlow	15
2.2.12.	Numpy	15
2.2.13.	Matplotlib	15
2.2.14.	Pyton	15
2.2.15.	Jupyter Notebook	15
2.3.	Marco Legal.	16
2.3.1.	Software libre en Ecuador	16
2.3.2.	Licencia del simulador DWSIM	17
CAPITU	U LO III	
3.	METODOLOGÍA	18
3.1.	Etapas de la metodología	18
3.2.	Establecimiento de parámetros de funcionamiento	19
<i>3.2.1.</i>	Generalidades del proceso	20
<i>3.2.2.</i>	Secuencia directa convencional	20
3.2.2.1.	Parámetro de funcionamiento de la columna de destilación C1	21
3.2.2.2.	Parámetro de funcionamiento de la columna de destilación C2	21
<i>3.2.2.3</i> .	Parámetro de funcionamiento de la columna de destilación C3	21
3.3.	Simulación de DWSIM	23
3.4.	Validación de resultados de la simulación	30
3.5.	Procesamiento de datos	35
3.6.	Diseño de la red neuronal artificial	36
3.7.	Entrenamiento de datos	36
3.8.	Validación de resultados de la RNA	37
3.9.	Análisis estadístico	38
CAPITU	ULO IV	
4.	GESTIÓN DEL PROYECTO	39
4.1.	Presupuesto	39

4.2.	Recurso y Materiales	39
4.3.	Cronograma	40
4.4.	Discusión y análisis de resultados	41
4.4.1.	Informe de resultados de la simulación en DWSIM	41
4.5.	Validación de los resultados provenientes de DWSIM	43
4.6.	Reporte de resultados de la RNA	45
4.6.1.	Error cuadrático medio	45
4.6.2.	Gráfico sobre el comportamiento de la RNA	45
4.6.3.	Código de la RNA en Jupyter Notebook	46
4.6.4.	Gráficos de comparación entre las salidas predichas y las reales	47
4.6.4.1.	Análisis de la base de datos empleada durante el diseño, entrenamiento y	
	validación de la RNA	48
4.7.	Resultado del análisis estadístico en JASP	51
CONCI	LUSIONES	54
RECO	MENDACIONES	56
GLOSA	ARIO	57
BIBLIC	OGRAFÍA	•••••
ANEXC	ns	

INDICE DE TABLAS

Tabla 1-3. Condiciones operativas iniciales para el sistema de estudio	20
Tabla 2-3. Condiciones operativas de la columna de destilación C-1	21
Tabla 3-3. Condiciones operativas de la columna de destilación C-2.	22
Tabla 4-3. Condiciones operativas de la columna de destilación C-3	22
Tabla 5-3. Parámetros operativos utilizados en la simulación de DWSIM	23
Tabla 6-3. Parámetros de entrada de RNA	35
Tabla 7-3. Parámetros de salida de RNA	35
Tabla 8-3. Restricciones para las entradas de RNA	36
Tabla 1-4. Presupuestos del proyecto de titulación	39
Tabla 2-4. Cronograma del proyecto de titulación	40
Tabla 3-4. Resultados de la columna C-1 en DWSIM	42
Tabla 4-4. Resultados de la columna C-2 en DWSIM	43
Tabla 5-4. Resultados de la columna C-3 en DWSIM	43
Tabla 6-4. Comparación de las fracciones molares obtenidas en la simulación y en los	
valores referentes	44
Tabla 7-4. Comparación de las temperaturas obtenidas en la simulación y en los valores	
referentes	44
Tabla 8-4. Error cuadrático medio de cada fase de diseño de la RNA	45

INDICE DE FIGURAS

Figura 1-2. Esquema básico red neuronal.	11
Figura 2-2. Tipos de capas.	12
Figura 3-2. Red neuronal monocapa.	12
Figura 4-2. Esquema de una red neuronal multicapas.	13
Figura 1-3. Metodología del trabajo de titulación.	18
Figura 2-3. Esquema de la secuencia de PSD.	21
Figura 3-3. Flowsheet de la simulación en DWSIM	23
Figura 4-3. Entorno para selección de componentes en DWSIM	24
Figura 5-3. Entorno para selección de unidades de medida en DWSIM	25
Figura 6-3. Entorno de ChemSep para especificaciones de presiones	25
Figura 7-3. Entorno de ChemSep para selección de modelo termodinámico (DECHEMA).	26
Figura 8-3. Entorno de condiciones para flujo de alimentación	26
Figura 9-3. Configuración operativa de C-1.	27
Figura 10-3. Especificación de condiciones para C-1.	27
Figura 11-3. Configuración operativa de C-2.	28
Figura 12-3. Especificación de condiciones para C-2	28
Figura 13-3. Configuración operativa de C-3	29
Figura 14-3. Opciones numéricas de solución	29
Figura 15-3. Recirculación del sistema	30
Figura 16-3. Valores de la entrada de la simulación	31
Figura 17-3. Valores del destilado del C-1	31
Figura 18-3. Valores del fondo del C-1	32
Figura 19-3. Valores del destilado del C-2	32
Figura 20-3. Valores del fondo del C-2	33
Figura 21-3. Valores del destilado del C-3.	33
Figura 22-3. Valores del fondo del C-3.	34
Figura 23-3. Valores de la recirculación de la simulación	34
Figura 24-3. Estructura de la RNA	37
Figura 1-4. Simulación completa del sistema de destilación para la separación de	
azeótropos de DIPE-IPA-Agua en DWSIM	41
Figura 2-4. Resultados en DWSIM.	42
Figura 3-4. Resumen del entrenamiento.	45
Figura 4-4. Rendimiento del entrenamiento de la RNA	46

Figura	5-4. Valores considerados para el entrenamiento, prueba y validación	47
Figura	6-4. Fracción molar del tope de DIPE real vs el predicho por la RNA en la C1	48
Figura	7-4. Fracción molar del fondo de Flujo Molar real vs el predicho por la RNA en	
la C1		49
Figura	8-4. Fracción molar del fondo de IPA real vs el predicho por la RNA en la C1	49
Figura	9-4. Fracción molar del fondo de DIPE real vs el predicho por la RNA en la C2	50
Figura	10-4. Fracción molar del fondo de DIPE real vs el predicho por la RNA en la C3	50

INDICE DE ANEXOS

ANEXO A. Base de datos recopilados para RNA
ANEXO B. Librerías utilizadas para el diseño, entrenamiento y validación de la RNA
ANEXO C. Variables utilizadas para el diseño, entrenamiento y validación de la RNA
ANEXO D. Notebook del programa ejecutado en Jupyter
ANEXO E. Valores reales vs valores predichos en el tope de C1 para DIPE
ANEXO F. Valores reales vs valores predichos en el tope de C1 para Flujo Molar e IPA
ANEXO G. Valores reales vs valores predichos en el fondo de C2 para DIPE
ANEXO H. Valores reales vs valores predichos en el tope de C-3 para DIPE
ANEXO I. Análisis estadístico completo de las salidas ejecutado en JASP para DFM C1
ANEXO J. Análisis estadístico completo de las salidas ejecutado en JASP para IPA C1
ANEXO K. Análisis estadístico completo de las salidas ejecutado en JASP para DIPE C1
ANEXO L. Análisis estadístico completo de las salidas ejecutado en JASP para DIPE C2
ANEXO M. Análisis estadístico completo de las salidas ejecutado en JASP para DIPE C3

SIGLAS / ABREVIACIONES

IPA Isopropanol
DIPE Diisopropiléter

SGDDescenso De Gradiente EstocásticoAdamEstimación Adaptativa De MomentosPSDDestilación Por Variación De PresiónHADDestilación Azeotrópica Heterogénea

RNA Red Neuronal Artificial

°C Unidad de temperatura, grados centígrados

T Temperatura (en °C)

Atm Unidad de presión, atmósferas

Kmol/s Kilo mol por segundo

P Presión (en atm)

MSE Error cuadrático medio
C1 Columna de destilación 1
C2 Columna de destilación 2
C3 Columna de destilación 3

T-in Temperatura de entrada del sistema

IPA-in Fracción molar de IPA en la entrada del sistemaDIPE-in Fracción molar de DIPE en la entrada del sistema

DFM Flujo molar en el fondo

B1 Fondo de la columna de destilación 1
D1 Tope de la columna de destilación 1
B2 Fondo de la columna de destilación 2
D3 Tope de la columna de destilación 3

PR Peng-Robinson

UNIQUAC Universal Quasi-Chemical Activity Coefficients

Modified UNIFAC Functional-group Activity Coefficients Modified

RESUMEN

La presente investigación tiene como finalidad la simulación y validación de un sistema de destilación con variación de presion para separar una mezcla de Diisopropileter (DIPE) -Isopropanol (IPA) -Agua, en la industria química con el fin de ejecutar una base de datos para diseñar una red neuronal artificial (RNA) capaz de predecir las principales fracciones molares en las columnas de destilación y en la recirculación. El desarrollo de la RNA se ejecutó con una base de datos obtenida del simulador de procesos químicos de código abierto DWSIM. La base de datos consta de 150 datos con seis entradas: Temperatura de entrada, Fracción molar de la mezcla en la entrada de IPA, Fracción molar de la mezcla en la entrada de DIPE, Presión del condensador de la columna de destilación C1, Presión del condensador de la columna de destilación C2, Presión del condensador de la columna de destilación C3. Además, se obtendrán cinco salidas: el flujo molar en el fondo, fracción molar de IPA en el fondo y fracción molar de DIPE en el tope de la columna de destilación C1; la fracción molar de DIPE en el fondo y fracción molar de DIPE en el tope de la columna de destilación C3. La red se diseñó utilizando lenguaje de programación Phyton en el entorno informático de Jupyter Notebook, se utilizó 244 neuronas ocultas en su estructura, el entrenamiento se ejecutó con el algorítmo de Optimización Estimación Adaptativa de Momentos (Adam) y como función de activación se utilizó función tanh y función lineal. El valor de Error Cuadrático Medio en el Entrenamiento es de es 0.006891, en la Prueba es 0.006667 y en la Validación es 0.008051. La validación de la RNA a partir de tres análisis comparativos ejecutados en el software JASP expresan la aceptación de la hipótesis nula dado que los valores evaluados no difieren significativamente lo que implica que los valores evaluados son significativamente similares.

Palabras clave: <INGENIERÍA Y TECNOLOGÍA QUÍMICA> <AZEÓTROPO> <DESTILACIÓN POR CAMBIO DE PRESIÓN> <SIMULADOR DWSIM> <ISOPROPANOL> <DIISOPROPILÉTER>

ABSTRACT

The objective of this study is to simulate and validate a distillation system with pressure variation to separate a mixture of Diisopropyl ether (DIPE) -Isopropanol (IPA) – Water in the chemical industry to run a database to design an artificial neural network (ANN) capable of predicting the main molar fractions in the distillation columns and the recirculation. The development of the ANN was carried out with a database obtained from the open-source chemical process simulator DWSIM. The database has 150 data with six entries, Inlet temperature, the Molar fraction of the mixture at the IPA inlet, Molar fraction of the mixture at the DIPE inlet, Pressure of condenser of distillation column C1, Pressure of condenser of distillation column C2, Pressure of condenser of distillation column C3. Also, five outputs will be generated, the bottom molar flow, bottom IPA mole fraction and DIPE mole fraction at the top of distillation column C1, the mole fraction of DIPE at the bottom and mole fraction of DIPE at the top of the C3 distillation column. The network was designed using the Python programming language in the Jupiter Notebook computing environment. 244 hidden neurons were used in its structure, the training was executed with the Adaptive Moment Estimation Optimization algorithm (Adam), and as activation function, we used TANH function and linear function. The Mean Square Error value in Training was 0.006891, in the Test the value was 0.006667 and in the Validation 0.008051. The validation of the ANN from three comparative analyses executed in the JASP software expresses the acceptance of the null hypothesis since the evaluated values do not differ significantly, which implies that the evaluated values are significantly similar.

Keywords: <ENGINEERING AND CHEMICAL TECHNOLOGY> <AZEOTROPE> <PRESSURE CHANGE DISTILLATION> <DWSIM SIMULATOR> <ISOPROPANOL> <DIISOPROPYLETTER>

CAPÍTULO I

1. INTRODUCCIÓN

1.1. Antecedentes

Los Objetivos de Desarrollo Sostenible (2015), fueron aprobados en el 2015 por la Organización de Naciones Unidas, los objetivos son 17 y buscan transformar el mundo y mejorar la vida. Los objetivos abarcan desde la eliminación de la pobreza hasta la lucha contra el cambio climático. Al enfocarse en el objetivo 12, Producción y Consumo Responsable, nos exhorta a hacer más con menos. La industria química genera aproximadamente un tercio de la energía total utilizada en el sector industrial; además, la necesidad de mejorar la sostenibilidad en la producción de combustibles y productos químicos impulsan investigaciones significativas para repensar su uso (Kiss et al., 2020: p. 117788).

Inicialmente, la hidratación de propileno produce un efluente industrial rico en IPA y un subproducto de DIPE, juntos forman un azeótropo binario; los productos por separado son muy importantes en la industria química (Jun et al., 2020, p. 20736). IPA es ampliamente utilizado como aditivo para combustibles de petróleo y combustibles de aviación (Tsai et al., 2014, p. 196) y DIPE posee un potencial como mezcla de aceite debido a su alto octanaje y resistencia a explosiones (Jun et al., 2020, p. 20736).

El método más importante en la industria de procesos químicos es la destilación, pese a que el consumo de energía es muy alto. (Yildirim et al., 2011, p. 405). La separación de azeótropos binarios se caracteriza por el hecho de que es imposible realizarla mediante destilación simple y la manera más común para resolver este problema es agregar un tercer componente, que permita la separación de la mezcla (Luyben, 2013, p. 2). Yildirim et al., (2011, p. 406) considera que la separación de mezclas que contienen tres o más componentes requiere un alto costo de capital y de energía .

De acuerdo con Mulia (2011, p. 1533), la Destilación por Cambio de Presión (PSD) es una técnica eficaz exclusivamente para mezclas cuyas composiciones azeotrópicas cambian con la presión para que los componentes de la alimentación puedan ser recuperados fácilmente. Además, Luyben (2013, p. 2), considera que la pureza del producto y la economía del proceso en la PSD es mejor que en la destilación extractiva.

Una solución económicamente rentable requiere el uso de Softwares Open Source, mismos que son capaces de crear entornos de operación que generen resultados muy cercanos a los reales. Sin embargo, una limitación muy clara es la cantidad de datos e información necesaria para poder simular y obtener resultados fehacientes, misma que no siempre esta disponible. Por otro lado, trabajar en un Software Open Source conlleva el riesgo de que el mismo no cuente con la robustez necesaria para simular el sistema y no se puedan obtener resultados confiables.

1.2. Planteamiento del problema

En la actualidad la producción verde y limpia esta muy presente en las industrias químicas y la recuperación de las sustancias orgánicas de los efluentes industriales, sobretodo de IPA y DIPE generan un alto valor económico (Jun et al., 2020, p. 6). Sin embargo, la separación de esta mezcla azeotrópica requiere emplear técnicas mejoradas, siendo las más comunes la destilación azeotrópica homogénea, destilación azeotrópica heterogénea, destilación con efecto salino y destilación por cambio de presión (King et al., 1987, p: 64).

Luyben (2013, p. 3), menciona que estudios comparativos comprueban que PSD es una mejor opción que la destilación extractiva desde un punto de vista económico y el nivel de pureza del producto. Sin embargo, un requisito previo para el proceso PSD es que la composición del azeótropo debe variar significativamente al variar la presión. Por lo tanto, PSD es útil solo para las mezclas que posean composiciones azeotrópicas que varien con la presión, de esta manera se podrá recuperar fácilmente los componentes de la alimentación.

En su artículo, Chao (2019, p:3), aborda la separación de DIPE – IPA – Agua utilizando dos métodos, HAD y PSD; exploró varios patrones de integración de calor parcial y total para mejorar la eficiencia energética y concluyó que el PSD presentó un mayor ahorro energético con respecto al HAD.

Con el fin de optimizar el proceso, el presente proyecto de titulación propone la simulación y validación de un sistema destilación para la separación de azeótropos de diisopropileter – isopropanol – agua basado en la configuración de tres columnas empleando el Simulador de Procesos Químicos de Código Abierto DWSIM; los resultados obtenidos se compararán con los valores de la modelación del sistema en mención provenientes de artículos de alto impacto.

Finalmente, se desarrollará una base de datos que se emplee para desarrollar una Red Neuronal Artificial (RNA) empleando el lenguaje de programación Pyhton en el entorno informáticode

Jupyter Notebook, mismo que es capaz de predecir el flujo molar en el fondo, fracción molar de IPA en el fondo y fracción molar de DIPE en el tope de la columna de destilación 1; la fracción molar de DIPE en el fondo y fracción molar de DIPE en el tope de la columna de destilación 3 al ingresar las condiciones de Temperatura de entrada, Fracción molar de la mezcla en la entrada de IPA, Fracción molar de la mezcla en la entrada de DIPE, Presión del condensador de la columna de destilación 1, Presión del condensador de la columna de destilación 3 en el sistema.

1.3. Justificación del proyecto

En la producción de hidratación directa de Isopropanol (IPA), la separación de las mezclas Diisopropiléter/Isopropanol/Agua (DIPE/IPA/Agua) se encuentra con frecuencia y tiene una influencia vital económica. IPA y DIPE son solventes orgánicos importantes en la industria química y la mezcla contienen múltiples azeótropos homogéneos y heterogéneos de ebullición mínima que son sensibles a la presión. IPA es muy importante en la producción de acetona, peróxido de hidrógeno, metil isobutil cetona, nitrato de isopropilo, productos farmacéuticos y pesticidas (Jun et al, 2019, p. 20735). Puede ser utilizado como alcohol farmacéutico de fricción, disolvente en la formulación de pinturas, adhesivos, entre otros. Es un compuesto incoloro con olor muy fuerte e inflamable. DIPE es un disolvente utilizado para la extracción de fragancias, suministro líquido de polvo sin humo, cemento de goma, entre otros (Chao et al., 2019, p:2).

En la actualidad, la simulación computacional permite el desarrollo de herramientas que favorecen a una mejor toma de decisiones con un riesgo mínimo y un alta optimización de recursos; DWSIM, PYTHON y Jupyter Notebook son Softwares Open Source que permite la simulación y validación de proceso con resultados muy cercanos a los reales y la aplicación de una red neuronal capaz de predecir los resultados del proceso en relación a sus variables de entrada.

Finalmente, el presente proyecto de titulación se enmarca en la línea de investigación de Procesos, Tecnológicos e Industrial de la carrera de Ingeniería Química y del Grupo de Investigación en Seguridad Ambiente e Ingeniería de la ESPOCH "GISAI".

1.4. Objetivos

1.4.1. Objetivo general

Simular y validar un sistema de destilación para la separación de azeótropos de Diisopropileter - Isopropanol - Agua en procesos mejorados para la Industria Química.

1.4.2. Objetivos específicos

- Simular el sistema mediante la multiplataforma de procesos químicos de códigos abierto
 DWSIM y comparar su eficiencia frente al sistema convencional.
- Validar el proceso de destilación para separar azeótropos Diisopropileter Isopropanol –
 Agua mediante la comparación de los resultados obtenidos en el simulador con los valores provistos en bibliografía.
- Cuantificar la cantidad de diisopropileter e isopropanol recuperados y la cantidad de agua removida por el sistema de destilación para separar el azeótropo diisopropileter – isopropanol – agua.
- Diseñar una Red Neuronal Artificial que permita predecir la fracción molar de los principales componentes extraídos en el sistema de destilación propuesto a partir de las condiciones de funcionamiento: presión y temperatura.

1.5. Alcance.

El presente documento simula y valida un proceso de separación de azeótropos (diisopropileter – isopropanol – agua) utilizando una destilación de cambio de presión que ayuda a la separación de los componentes de la mezcla en cada una de las columnas y permite reciclar una parte del producto para ingresarlo como otra alimentación.

La simulación se desarrolla en el Simulador de Procesos Químicos de Código Abierto DWSIM. Finalmente, posterior a la validación de la simulación, se desarrolla una base de datos para el diseño de una RNA en el lenguaje de programación Pyhton en el entorno informáticode Jupyter Notebook, mismo que permite predecir el flujo molar en el fondo, fracción molar de IPA en el fondo y fracción molar de DIPE en el tope de la columna de destilación 1; la fracción molar de DIPE en el fondo y fracción molar de DIPE en el tope de la columna de destilación 3.

CAPÍTULO II

2. MARCO TEORICO

2.1. Estado del arte

2.1.1. Hidratación de propileno y tratamiento.

Chao et al (2019, p. 254), mencionan que para la producción de hidratación directa de IPA, es indispensable realizar la separación de mezclas de DIPE-IPA-Agua; misma que es frecuente y los beneficios económicos en el proceso son altos. Por lo tanto, el componente que se busca separar es una mezcla azeotrópica.

Arifin y Chien (2007, p. 2535), proponen una destilación azeotrópica alternativa que ejecute la deshidratación de IPA, los estudios analizan separaciones azeotrópicas binarias. Si embargo, no se analizan azeótropos ternarios.

Gao et al (2017, p. 270), plantean variariaciones en los procesos de simulación de cambio de presión de doble columna con destilación extractiva y el cambio de presión de triple columa con destilación extractiva para la separación de un sistema ternario. Se identificó que un proceso presenta mayor eficiencia como ruta tecnológica económica para la separación del sistema.

Luo et al, (2014) presentan dos formas comparativas para separa mezclas DIPE-IPA siendo la destilación por variación de presión y destilación extractiva. Se identifica que el esquema PSD tiene un mayor ahorro de energía. Además, Armenta et al (2019, 935) demuestra que el uso de DIPE se ha incrementado como mezcla de aceite debido a su alto octanaje y resistencia a las explosiones.

Iqbal et al (2016, p. 5), mencionan que las mezclas de azeótropos ebullen a temperaturas que son similares, de aproximadamente 1 °C a presión ambiente. Por lo tanto, para poder separarlos con una alta pureza no solo se requiere una destilación ordinaria; es por ello, que es necesario utilizar técnicas mejoradas como: destilación azeotrópica homogénea, destilación azeotrópica heterogénea, la destilación con efectos de sal o las técnicas de destilación por cambio de presión.

Mulia et al (2011, p.1533), argumentan que la presión es un factor importante en las destilaciones pues generan un cambio significativo a nivel económico y en la viabilidad del proceso. Por lo

tanto, la variación de presiones en una secuencia de destilaciones para mezclas azeotrópicas ternarias genera un resultado con menor consumo de energía, menor caudal reciclado y un mayor cambio en la composición azeotrópica.

Lin et al (2020, p. 117293), enuncian que la separación de mezclas ternarias que están compuestas por éter diisopropílico-isopropanol-agua generan curvas de residuos que son muy complejos e incluyen: tres azeótropos binarios, un azeótropo ternario, tres regiones de destilación y envoltura líquido-líquido.

Por otra parte, Luyben, W. (2008, p. 2681), enuncian que el azeótropo IPA-DIPE-Agua es un compuesto que cambia significativamente con la presión, lo que implica que para obtener una separación eficiente es necesario operar tres torres de destilación que trabajen a presiones diferentes, de esta forma su recuperación es mas fácil; este proceso se denomina destilación azeotrópica con cambio de presión.

Finalmente, Lladosa et al (2011, p. 1267), plantean otra alternativa para lograr una destilación de este azeótropo, siendo esta utilizar una destilación extractiva, para lo cual se añade un disolvente con el fin de separar esta mezcla. Sin embargo, al agregar un disolvente podría plantear graves problemas medioambientales. Por lo tanto, se descarta esta posibilidad.

2.1.2. Simulación de proceso de destilación

Buitrago (2017, p. 1246), aclara que en la actualidad una de las principales herramientas en la industria es el uso de software para generar modelos y simulaciones de procesos tanto químicos como físicos; mediante los cuales, se busca cumplir con los requisitos y reducir el tiempo de calculo para diseñar un equipo. Además, el costo experimental de una planta piloto puede reducirse drásticamente al reducir los experimentos y utilizar simulaciones por computadora, con el fin de analizar el comportamiento en los componentes del proceso (Tangsriwong et al., 2019, p. 012057).

En este proceso es necesario realizar la separación DIPE-IPA-Agua utilizando un software de código libre, DWSIM, teniendo en cuenta las propiedades de equilibrio de fase del azeótropo ternario, para predecir el comportamiento de la fase del sistema. Jun (2020, p. 20736), menciona que el modelo UNIQUAC es capaz de describir con precisión el comportamiento de fases del sistema ternario.

Arce (2013, p. 871) menciona que al ejecutarse varios análisis se compruebó que para el azótropo DIPE-IPA-Agua tambien pueden aplicarse los modelos NRTL, UNIQUAC y UNIFAC-Dortmund (Modified UNIFAC), de los cuales, el último presenta las mejores predicciones y es el más óptimo. Además, Lladosa et al (2007, p. 271), utilizan modelos como Wilson, NRTL y UNIQUAC con el fin de estudiar el comportamiento de una mezcla azeotrópica DIPE-IPA empleando como disolvente el 2-metietanol.

Tangsriwong et al (2019, p. 012057), realizarón una comparación entre los resultados simulados en el software comercial de Aspen Plus y el software de código abierto DWSIM con el fin de evaluarlos con el diagrama de flujo de masa y calor que se utilizó como referencia. Las simulaciones se ejecutaron en condiciones de estado estacionario, procesos adiabáticos y pérdidas de presión insignificantes. Finalmente, se comprobó una diferencia entre los valores reportados menor al 5%, lo cual demuestra que los dos softwares pueden realizar tareas similares con resultados muy próximos entre sí.

Finalmente, un dato muy relevante en el estudio de Tangsriwong et al (2019, p. 012057) es que se corroboró que el software DWSIM es capaz de simular procesos químicos, ejecutar cálculo de propiedades termodinámicas y composiciones químicas con una precisión alta, en especial para productos gaseosos. Se identificó un error del 5%, aceptable, en la composición química y propiedades estatales. Sin embargo, los resultados indican que la precisión de la simulación de DWSIM y Aspen Plus son relativamente iguales. Por lo tanto, DWSIM puede ser utilizado como un software para simulación y modelación de procesos alternativo.

2.1.3. Red Neuronal Artificial (RNA) en procesos de destilación

El uso de redes neuronales artificiales en procesos presentan grandes ventajas, especificamente la eficiencia que se obtiene es muy alta y los resultados se entregan en un tiempo muy corto (Chen et al, 2021, p. 100053). Shin et al (2017, p.124124), implementan redes neuronales artificiales en ingeniería tiene como objetivo principal predecir las respuestas de los sistemas no lineales bajo control de proceso. Además, Biyanto et al (2010, p. 178), mencionan que existe gran campo de aplicación en la ingeniería como en modelos de procesos, controladores, optimización y detección de fallas.

Deep learning es un algoritmo automático jerárquico que trata de simular al aprendizaje humano con el objetivo de obtener nuevos conocimientos (Machine Learning Mastery, 2020). El uso de la biblioteca de código abierto de TensorFlow es ideal para ejecutar cálculos numéricos y realizar un aprendizaje automático a gran escala, dado que, el código es capaz de agrupar una cantidad amplia de modelos y redes neuronales (Biyanto et al, 2010, p. 178).

Ramchandran (1994, p. 1), argumenta el desarrollo de un modelo de proceso inverso de red neuronal utilizando dos torres de destilación empleando agua y metanol; en el cual, los datos requeridos para la RNA se obtuvieron de simulaciones de estado estacionario de las columnas simuladas en un software comercial. Además, utilizó un algoritmo de optimización no lineal.

Frattini y Rocha (1997, p. 1227), proponen el desarrollo y prueba de dos esquemas de control aplicados en una columna de destilación por lotes adaptativa y no lineal. Las metodologías de control son asistidas por ordenador

Chetouani (2007, p.119), establece un modelo confiable aplicable tanto en régimen de estado estacionario como para estados inestables de un proceso no lineal. El principal objetivo es reflejar el comportamiento del proceso en condiciones normales y permitir identificar un modo normal de un anormal.

Biyanto et al (2010, p.177), concluyen que las RNA son capaces de fijar modelos directos e inversos rápidamente a partir de un pocos datos de bucle abierto de entrada-salida del sistema binario de una sola columna de destilación con un error cuadrático medio bajo.

Posteriormente, Osuolale y Zhang (2014, p.562), emplean RNA para mejorar la eficiencia energética y además optimizan en tiempo real el funcionamiento de las columnas de destilación que incorporan la segunda ley de la termodinámica.

Taqvi et al, (2017, p. 302), desarrollaron la forma de detectar de forma temprana las irregularidades que pueda presentar una columnas de destilación al realizar variaciones en la velocidad de alimentación, composición de alimentación o reboiler. La simulación fue ejecutada en Aspen Plus, de la cual, se recolectó varios datos que se utilizaron en una RNA que trabajaba con un algoritmo de retropropagación que determinaba el MSE.

Shin, Smith y Hwang (2020, p. 124124), mediante el Software Aspen HYSIS recopilan una masiva cantidad de datos de simulación dinámica, los cuales se tomaron en cuenta según todos los escenarios de operación factible. Además, los datos se utilizaron para el entrenamiento y prueba de la RNA.

Sánchez, Segovia y Hernández (2020, p. 133), diseñaron una RNA que modela la dinámica de una columna de pared divisoria que separa un efluente simulada en Aspen Plus Dynamics. Se

ejecutaron dos clases de estudios dinámicos, uno en ciclo abierto y otro en cerrado; los cuales, buscan encontrar en donde se obtiene mayor error.

Actualmente, en el país existe un creciente interés por parte de la comunidad académica en el desarrollo e implementación de RNA aplicada en todo campo de estudio, esto debido a que la red puede ser manipulada hasta lograr procesar la información deseada para entregar respuestas en base a la experiencia adquirida. Al realizar un enfoque en la ingeniería, los costos de experimentación se reducen al mínimo puesto que, la RNA al tener experiencia es capaz de predecir los posibles resultados, generando un ahorro en el proceso.

2.2. Bases Teóricas

2.2.1. IPA (Isopropanol)

IPA, también conocido como alcohol isopropílico, isopropanol o 2-propanol; es un líquido no polar, incoloro, de alta volatilidad (rápida evaporación) y posee una alta densidad energética. La principal forma de extraer IPA es en la hidratación de propileno catalizada por ácidos, en la cuál, se genera diisopropiléter (DIPE) como subproducto. Dadas las relevantes características, previamente mencionadas, IPA es un producto muy demandado principalmente como disolvente de limpieza, agente intermedio en procesos industriales, uso sanitarios y aditivo de combustibles. Principalmente, es utilizado mayormente como aditivo en combustibles de petróleo por su alta densidad de energía y valor calorífico (Jun et al., 2020, p. 20735).

2.2.2. DIPE (Diisopropiléter)

DIPE, también conocido como diisopropiléter o éter diisopropílico, es líquido no polar; sin embargo, es ligeramente soluble en agua. Además, es un compuesto incoloro. Industrialmente se obtiene como subproducto en la producción de isopropanol por hidratación de propileno. Es utilizado principalmente como aditivo de gasolina, solvente para extraer nicotina en la producción de tabaco y disolvente (Uyumaza, A., 2020, p. 116919). Además, al ser un subproducto generado en la producción de isopropanol del proceso de hidratación de propileno se puede utilizar como aditivo de gasolina debido al alto índice de octanaje y la propiedad anticongelante (Jun et al., 2020, p. 120135).

2.2.3. DWSIM

DWSIM es un simulador de procesos para ingeniería química de código abierto y libre descarga. Además, cumple con CAPE-OPEN, interfaz que posee una serie de especificaciones para un amplio rango de aplicaciones en simulaciones. Este estándar establece los requisitos con los que debe cumplir el código a la hora de calcular las funciones termodinámicas, equilibrios químicos y de fases, etc (Medeiros, 2020).

DWSIM posee varias funciones que se encuentra en grandes simuladores comerciales como ASPEN PLUS, HYSIS o CHEMCAD, mismos que por su alto costo representan un problema la adquisición para pequeñas empresas, universidades y sobretodo estudiantes. La ventaja de este software es su compatibilidad con múltiples sistemas operativos incluyendo Windows, Linux y macOS (Medeiros, 2020).

2.2.4. Características

DWSIM presenta una interfaz gráfica fácil de usar y sobre todo intuitiva; además, permite el uso de operaciones unitarias, modelos termodinámicos complejos, herramientas para caracterizar crudos y soporte para sistemas reactivos (Medeiros, 2020).

Adicionalmente cuenta con modelos termodinámicos mayormente empleados en el desarrollo de simulaciones como: Peng-Robinson, Peng-Robinson-Stryjek-Vera 2, Soave-Redlich-Kwong, Lee-Kesler, Lee-Kesler-Plöcker, UNIFAC (-LL), UNIFAC modificado (Dortmund), UNIQUAC, NRTL, COSMO- SAC, Chao-Seader, Grayson-Streed, LIQUAC, Extended UNIQUAC, Raoult's Law, IAPWS-97, Steam Tables, IAPWS-08 Seawater (Medeiros, 2020).

2.2.5. ChemSep (cape-open)

ChemSep (2020), es un simulador de columna utilizado para ejecutar operaciones de destilación, extracción y absorción. La interfaz es fácil e intuitiva, combina un modelo clásico de columna de etapa de equilibrio con un modelo de columna de no equilibrio. Además, la base de datos de productos químicos es muy amplia y abarga alrededor de 400 items.

Los modelos de columnas ChemSep pueden ser insertados en varios paquetes de hojas de flujo compatible con CAPE-OPEN como en DWSIM, mismos que pueden variar desde la simulación para resolver un problema de separación específico o una planta química completa (Kooijman y Taylor, 2020).

2.2.6. Elementos de una RNA

Los elementos principales según Byanto et al, (2010, p: 181) que requiere una red neuronal artificial son:

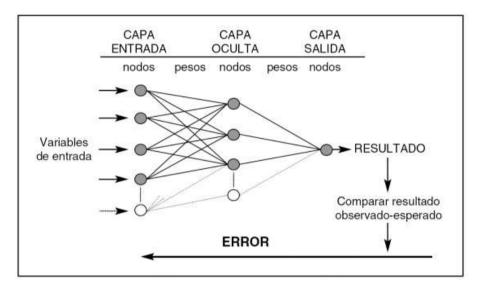


Figura 1-2. Esquema básico red neuronal

Fuente: Manzanares A., 2018

- Neuronas o nodos: Conjunto de unidades de procesamiento.
- Regla de Propagación: Es un elemento relevante que posee diferentes formas como: lineal, cuadrática, distancias o polinómicas (no lineal).
- Patrón de conectividad entre neuronas: Las conexiones son definidas por un peso, mismos que determinan el efecto que tiene las entradas sobre las salidas.
- Función de activación o transferencia: Determina el nuevo nivel de activación basado en la entrada y el nivel actual. Pueden ser: lineal, tanh, escalón, sinusoidal, entre otras.

2.2.7. Características de una red neuronal

Se puede clasificar según Byanto et al, (2010, p:180-181) de la siguiente manera:

- Topología
- Mecanismos de aprendizaje
- Tipo de asociación entre la entrada y salida
- Forma de representar la información de entrada y salida

2.2.7.1. *Topología*

Básicamente, es la arquitectura de la red neuronal la cuál se basa en el número de capas, número de neuronas por capa, grado de conectividad y tipo de conexiones entre neuronas (Rivas, 2017, p.19).

El número de capas se subdivide en capas de entrada, capas ocultas y capas de salidas respectivamente. La primera capa en una red neuronal son las capas de entrada, las cuales, codifican las variables del problema. Posteriormente, se colocan las capas ocultas, mismas que encuentran internas en la red, no tienen contacto con el exterior y representan todas las conexiones posibles entre las capas. Finalmente, las capas de salida son las que transfieren la información de la red al exterior (Lévy, 2008).

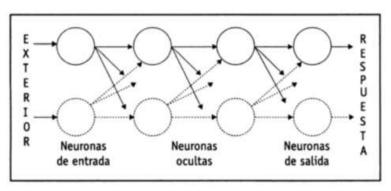


Figura 2-2. Tipos de capas

Fuente: Lévy, 2008

Byanto et al (2010, p:182), menciona que el número de capas indican si son monocapas o multicapas. Las monocapas representan un modelo de red simple, la cual posee todas sus neuronas completamente conectada. Las multicapas son redes que poseen más de una capa y se encuentran agrupadas e interconectadas entre sí; es decir, una capa recibe la señal de entrada de otra capa y envia la salida a la capa más cercana a la salida de la red. Este tipo de redes pueden conectarse hacia adelante o hacia adelante y atrás.

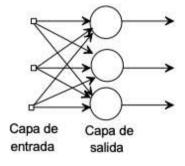


Figura 3-2. Red neuronal monocapa

Fuente: Serrano, 2009

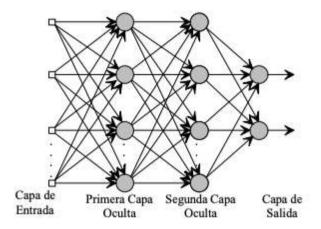


Figura 4-2. Esquema de una red neuronal multicapas.

Fuente: Serrano, 2009.

Finalmente, según el grado de conexión se puede tener redes totalmente o parcialmente conectadas, cada una haciendo exactamente lo que su nombre menciona. Por lo tanto, para este trabajo se utilizará una red multicapas, con una capa de entrada, seis capas ocultas colocadas en forma decreciente y una capa de salida; la red se encuentra completamente conectada.

2.2.7.2. *Mecanismos de aprendizaje*.

El aprendizaje de una RNA se basa en la modificación de los pesos, los cuales estan sujetos a la respuesta de la información de la entrada; es decir, cuando los pesos permanecen estables, la red a aprendido (Byanto et al, 2010, p.180-181). Existen varias tipos de aprendizaje entre los más utilizados se mencionan:

- Aprendizaje supervisado: Se requiere la supervisión en el control del proceso de aprendizaje
- Aprendizaje por corrección de error: Compara las salidas obtenidas por la red con la salida deseada y modifica los pesos según se requiera.
- Aprendizaje estocástico: Realiza cambios aleatorios en los pesos y los evalua partiendo de un objetivo deseado y de la distribución de probabilidades.
- Aprendizaje no supervisado: No requiere de un supervisior para ajustar los pesos en el proceso

En este trabajo se utilizará el aprendizaje estocástico dado que es ideal para el reconocimiento de patrones y para optimización de los mismos.

2.2.8. Área de aplicación de las RNA

Según Byanto et al, (2010, p.180), no existen reglas definidas para la aplicación exacta de las arquitecturas de las RNA; sin embargo, según su función pueden ser agrupadas de la siguiente manera:

- Clasificación: Se basa en la discriminación entre dos o mas grupos basados en semejanzas o diferencias.
- Agrupamiento: Organiza las observaciones en grupos con similares características.
- Generalización: Realiza una generación referida según el conjunto de base de ejemplos.
- Predicción: Utiliza información actual y predice que es lo más probable que ocurra.
- Optimización: Intenta generar una respuesta globar para un problema.

Este trabajo de titulación busca una RNA de predicción, con el fin de entregarle datos de entrada y que sea capaz de predecir sus salidas.

2.2.9. Ventajas de RNA

Algunas ventajas de las RNA según Rivas (2017) se puede mencionar:

- Auto-organización: Las RNA organiza la información que recibe en el transcurso del aprendizaje utilizando métodos matemáticos como perceptrón, adeline, entre otros.
- Tolera fallos parciales: Al existir redundancia en la información puede causar una destrucción parcial de la red; sin embargo no la destruye completamente.
- Aprendizaje adaptativo: Es capaz de aprender a partir de un conjunto de datos siendo representados como entradas y pesos.

2.2.10. Keras

Keras es una interfaz de programa de aplicación (API) de red neuronal de alto nivel de código abierto, escrita en Python (Chollet, 2015). Puede ejecutarse sobre diferentes bibliotecas de aprendizaje automático, como TensorFlow (desarrollada por Google), CNTK (desarrollada por Microsoft) y Theano (desarrollada por la Universidad de Montreal) (Nhu, H., 2020, p: 104458).

Según el sitio web oficial de Keras (2021), es una interfaz de programación de aplicaciones diseñada para seres humanos, no máquinas. Es ampliamente utilizado en la construcción de redes neuronales profundas y modelos de optimización. Además, cuenta con una extensa documentación y guías para desarrolladores.

2.2.11. TensorFlow

TensorFlow es una plataforma de aprendizaje automático de código abierto para desarrollar modelos a partir de datos de entrenamiento en poco tiempo haciendo uso de recursos informáticos heterogéneos como CPU, GPU y TPU. TensorFlow proporciona un amplio conjunto de funciones y clases que permiten a los usuarios crear modelos complejos desde cero (Janardhana, 2020, p:189).

2.2.12. NumPy

NumPy es una biblioteca que proporciona un medio flexible para definir y manipular vectores, matrices y matrices de mayor dimensión. Es decir, es una colección de módulos, llamada biblioteca, que le da al programador objetos de matriz complejos y herramientas de álgebra lineal (McClaren, 2018, p:54).

2.2.13. Matplotlib

Matplotlib es una biblioteca para Python que le permite principalmente trazar las matrices de NumPy. Está diseñado para ser intuitivo y fácil de usar, e imita la interfaz de trazado de MATLAB, un conjunto de herramientas y un lenguaje ampliamente utilizado para computación y matemáticas aplicada. Por lo tanto, Matplotlib permite la visualización de resultados numéricos con solo unas pocas líneas de código lineal (McClaren, R., 2018, p:57).

2.2.14. Python

Python es un lenguaje de programación flexible y de código abierto, que permite desarrollar aplicaciones de bajo y alto nivel. Además, es multiplataforma y de aprendizaje contínuo. Puede ser ejecutado en diferentes sistemas operativos como Windows, Linux o MAC o simplemente usarlo en el intérprete correspondiente (Visus, 2021).

2.2.15. Jupyter Notebook

El entorno informáticode Jupyter Notebook es básicamente un cuardeno de código que permite combinar código y texto organizados en celdas que pueden correr individualmente. La facilidad que presenta este entorno informáticoes que puede registrar todo el proceso de desarrollo de un programa de una manera muy didáctica y ordenada (Proyect jupyter, 2021).

2.3. Marco Legal

2.3.1. Software libre en Ecuador

Según el Ministerio de Telecomunicaciones y de la Sociedad de la Información (2020), "En Ecuador, el modelo de Software Libre se convierte en una política tecnológica, en dónde el código abierto, las licencias de uso libre, el uso de estándares abiertos y el trabajo comunitario, facilitan la inclusión digital, la soberanía tecnológica y la innovación local, optimizando el gasto estatal, favoreciendo el desarrollo local y promoviendo la integración regional". Por lo tanto, se puede mencionar algunas normativas que corroboran lo antes citado.

Constitución de la República (2008)

La Constitución garantiza la soberanía nacional, el acceso a tecnologías, capacitación desarrollo e integración regional; además, las tecnologías como hardware y software están incluidas en los sectores estratégicos (Silva, F., 2015).

Plan Nacional del Buen Vivir (PNBV)

El PNBV contempla como parte de sus estratégias las Tecnologías, innovación y conocimiento planteando 12 objetivos que se utilizan como guía; entre los cuales, el objetivo 10 redacta claramente el impulso a la transformación de la matriz productiva y ejerce especial incapié en el uso de software libre en la generación de una industria local (Silva, F., 2015).

Plan Nacional de Gobierno electrónico (PNGE)

En el año de 2007 en la Carta Iberoamericada de Gobierno electrónico formula 12 principios que otorgan derecho a los ciudadanos para poder relacionarse con el Estado electrónicamente. Además, en el principio 7 correspondiente a "Adecuación tecnológica", menciona el uso de software libre y estándares abiertos en razón a la sostenibilidad a largo plazo y la socialización del conocimiento (Silva, F., 2015).

Código Orgánico de Economía Social de los Conocimientos, Creatividad e Innovación (2016)

Apartado Segundo

De las tecnologías libres y formatos abiertos.

Artículo 142.-Tecnologías libres.- El software de código abierto, hardware libre, estándares abiertos y contenidos libres son considerados como tecnologías libres. Un software cuyo titular garantiza al usuario el acceso al código fuente y le permite usar el mismo con cualquier proposito, se considera de código abierto. Además, este software debe brindar libertades como el estudiar el funcionamiento y modificarlo para adaptarlo a su necesidad, acceder al código fuente, libertad para redistribuir copias y tambien de sus versiones modificadas a terceros (Ministerio de Telecomunicaciones y de la Sociedad de la Información, 2020).

Artículo 151.- Libre elección de software: La libre elección de software en dispositivos que permitan más de un sistema operativo es derecho del usuario (Ministerio de Telecomunicaciones y de la Sociedad de la Información, 2020).

Decreto No.1014 (abril de 2008)

Se establece como política pública el uso de software libre en sistemas y equipos informáticos de las entidades de la Administración Pública Central, basandose en el Cumplimiento de recomendaciones Internacionales (La carta Iberoamericana de Gobierno Electrónico) y en alcanzar la soberanía, autonomía tecnológica y el ahorro significativo de recursos públicos (Ministerio de Telecomunicaciones y de la Sociedad de la Información, 2020).

2.3.2. Licencia del simulador DWSIM

El simulador de procesos químicos de código abierto DWSIM (2021), en su página web oficial detalla la información legal correspondiente al software:

DWSIM es un simulador de procesos químicos compatible con CAPE-OPEN y tiene una interfaz gráfica fácil de usar con muchas características que antes solo estaban disponibles en simuladores de procesos químicos comerciales. Es compatible en Windows, Linux, Android, macOS e iOS, el cual posee la *General Public License v3* del Sistema Operativo GNU. Además, permite crear, cargar, modificar, ejecutar y guardar diagramas de flujo directamente desde el código. (DWSIM, 2021)

CAPÍTULO III

3. METODOLOGÍA

3.1. Etapas de la metodología

La metodología aplicada para el presente trabajo de titulación corresponde ha:

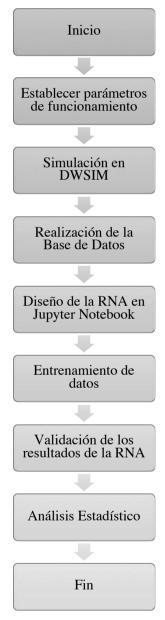


Figura 1-3. Metodología del trabajo de titulación

Realizado por: Lascano, Rebeca, 2021

La propuesta tecnológica en este trabajo de titulación presenta la simulación de un sistema de destilación para separar un azeótropo de DIPE–IPA-Agua y posteriormente, el modelado de una RNA capaz de predecir las composiciones de IPA y DIPE en los fondos de las columnas y en la recirculación del proceso. El enfoque del trabajo es cuantitativo, puesto que, se utilizan los datos que se obtuvieron en la simulación en DWSIM para la alimentación de la RNA.

Finalmente, la realización de un análisis estadístico es fundamental para determinar la confiabilidad y el grado de error que existe entre los valores extraídos de la simulación y los valores que predice la RNA.

Toda la información recopilada para el desarrollo del presente proyecto proviene de:

Fuente Primaria:

Conocimientos teóricos y experimentales obtenidos por el autor a partir de su formación académica, conocimiento tecnológico enfocado en simulación de procesos utilizando DWSIM, procesamiento de datos empleando Excel y JASP. Finalmente, lenguaje de programación Python y desarrollo en Jupyter Notebook.

Fuente Secundaria:

- Artículos científicos academicamente relevantes, principalmente de grado Q1 y Q2 publicados en revistas científicas indexadas en ScienceDirect y Scopus.
- Libros digitales relacionados al tema.
- Bibliotecas digitales asociadas a la ESPOCH.
- Sitios web oficiales de los softwares utilizados en la investigación.

3.2. Establecimiento de parámetros de funcionamiento

Comparison of heterogeneous azeotropic and pressure-swing distillations for separating the diisopropylether/isopropanol/water mixtures, propuesto por Chao Guang, Xiaojing Shi, Zhishan Zhang, Chao Wang, Chen Wang, Jun Gao (2019) de College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China. El artículo científico se utilizó para obtener la información base para ejecutar la simulación en DWSIM.

3.2.1. Generalidades del proceso

El flujo que ingresa como alimentación del sistema es de 520 kmol/h con una composición molar de 65.8% IPA, 28.1% DIPE y 6.1% Agua (Guang C., et al., 2019, p:1-29).

Para el caso de estudio las condiciones operativas son:

Tabla 1-3. Condiciones operativas iniciales para el sistema de estudio

Parámetro	Cantidad	Unidad
Presión	1	Atm
Temperatura	340.59	K
Base de alimentación (flujo molar)	520	Kmol/h
Composición inicial de IPA	0.658	%
Composición inicial de DIPE	0.281	%
Composición inicial de Agua	0.061	%

Fuente: (Guang C., et al., 2019, p.22)
Realizado por: Lascano, Rebeca, 2021

Las purezas deseadas de producto IPA para la columna 1 es 99,8% y para DIPE en la columna 2 es 99,8%.

3.2.2. Secuencia directa convencional

En la Figura 1-3, se presenta la secuencia directa de las columnas de destilación por variación de presión (información detallada) utilizada para separar la mezcla azeotrópica IPA-DIPE-Agua, basado en la información proporcionada por Guang (2019, p.22).

El fondo de la primera columna extrae principalmente IPA y acumula en el destilado un flujo rico en agua, DIPE y trazas de IPA; el mismo que, es utilizado como alimentación para la segunda columna, en el fondo se extrae principalmente DIPE y en el destilado un flujo rico en Agua y trazas de IPA y DIPE; la cuál se utiliza como alimentación para la tercera columna, en el fondo se extrae principalmente Agua y el tope de la columna se recircula como alimentación para la primera columna.

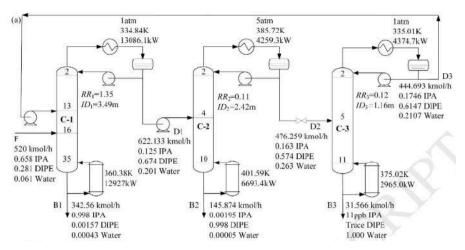


Figura 2-3. Esquema de la secuencia de PSD

Fuente: (Guang et al., 2019, p.22)

3.2.2.1. Parámetros de funcionamiento de la columna de destilación C1.

Tabla 2-3. Condiciones operativas de la columna de destilación C1

Parámetros de C1	Cantidad	Unidad
Presión	1	atm
Número de platos de la columna	36	-
Número de plato de entrada de la alimentación	16	-
Número de plato de entrada del reflujo	13	-
Relación de reflujo (RR)	1.35	-
Flujo del reflujo	444.693	Kmol/h
Fracción molar IPA (fondo)	342.56	%
Fracción molar IPA (destilado)	0.125	%
Fracción molar DIPE (destilado)	0.674	%
Flujo molar del destilado	622.133	Kmol/h
Flujo molar del fondo	342.56	Kmol/h
Carga térmica en el condensador	13086.1	kW
Carga térmica en el reboiler	12927	kW
(0	I	L

Fuente: (Guang et al., 2019, p.22)
Realizado por: Lascano, Rebeca, 2021

El documento no especifíca la procedencia de la energía que se utilizará para la calefacción del sistema.

3.2.2.2. Parámetros de funcionamiento de la columna de destilación C2.

Tabla 3-3. Condiciones operativas de la columna de destilación C2

Parámetros de C2	Cantidad	Unidad
Presión	5	atm
Número de platos de la columna	11	-
Número de plato de entrada de la alimentación	4	-
Relación de reflujo (RR)	0.11	-
Fracción molar DIPE (fondo)	0.998	%
Fracción molar DIPE (destilado)	0.574	%
Fracción molar IPA (destilado)	0.163	%
Flujo molar del destilado	476.259	Kmol/h
Flujo molar del fondo	145.874	Kmol/h
Carga térmica en el condensador	4259.3	kW
Carga térmica en el reboiler	6693.4	kW

Fuente: (Guang et al., 2019, p.22)
Realizado por: Lascano, Rebeca, 2021

El documento no especifíca la procedencia de la energía que se utilizará para la calefacción del sistema.

3.2.2.3. Parámetros de funcionamiento de la columna de destilación C3.

Tabla 4-3. Condiciones operativas de la columna de destilación C3

Parámetros de C3	Cantidad	Unidad
Presión	1	atm
Número de platos de la columna	12	-
Número de plato de entrada de la alimentación	5	-
Relación de reflujo (RR)	0.12	-
Fracción molar Agua (fondo)	1	%
Fracción molar DIPE (destilado)	0.6147	%
Fracción molar IPA (destilado)	0.1746	%
Flujo molar del destilado	444.693	Kmol/h
Flujo molar del fondo	31.566	Kmol/h
Carga térmica en el condensador	4374.7	kW
Carga térmica en el reboiler	2965.0	kW

Fuente: (Guang et al., 2019, p.22) Realizado por: Lascano, Rebeca, 2021

El documento no especifíca la procedencia de la energía que se utilizará para la calefacción del sistema.

3.3. Simulación de DWSIM

Utilizando las condiciones de funcionamiento especificadas en las Tablas 2-3, 3-3 y 4-3 se ejecutó el diseño en el Simulador de Procesos Químicos de Código Abierto DWSIM para la separación del azeótropo DIPE-IPA-Agua.

Figura 3-3. Flowsheet de la simulación en DWSIM

Realizado por: Lascano, Rebeca, 2021

El uso de "ChemSep Column" y los paquetes termodinámicos empleados en las torres de destilación en la ejecución de la simulación mejoran la aproximación de los resultados obtenidos.

Todas las líneas de flujo operan con el paquete de propiedades de Peng-Robinson (PR). Las torres de destilación trabajan con distintos modelos termodinámicos siendo: UNIQUAC / Modified UNIFAC (D) / UNIQUAC Q', respectivamente; además, todas trabajan con presión de vapor Antoine y Entralpía en Exceso

Tabla 5-3. Parámetros operativos utilizados en la simulación de DWSIM

Parámetros	Entrada	Columna 1	Columna 2	Columna 3	Recirculación (destilado 3)
Presión (atm)	1	1	5	1	1
Temperatura (°C)	-	ı	ı	ı	-
# de platos	-	36	11	12	-
# plato de alimentación	-	16-13	4	5	1
% IPA	65.80	-	-	-	17.46

% DIPE	28.10	1	-	-	61.47
% Agua	6.10	1	1	-	21.07
Flujo molar de la corriente (Kmol/h)	520.00	1	1	1	1
Flujo molar del destilado (Kmol/h)	-	622.133	476.259	444.693	1
Carga térmica en el reboiler fondo (kW)	-	12927.0	6693.4	2965.0	-

Nota: Los espacios vacíos en la tabla corresponden a parámetros que no aplican en la sección o son calculados por defecto en el simulador.

Fuente: (Guang et al, 2019, p.22).

Realizado por: Lascano, Rebeca, 2021.

La Tabla 5-3, se presenta los valores que corresponden a los ingresados en el simulador; además se recalca que para el uso de las columnas de destilación en ChempSep se necesita especificar dos parámetros de funcionamiento adicional al valor de presión.

Por lo tanto, se requiere realizar pruebas para determinar las condiciones óptimas para el funcionamiento de la simulación.

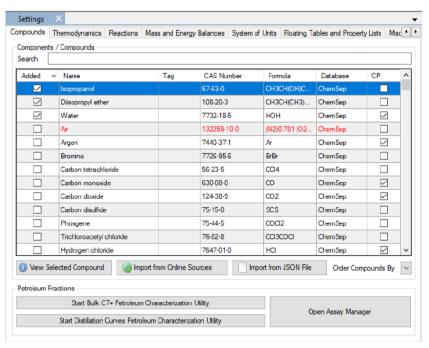


Figura 4-3. Entorno para selección de componentes en DWSIM

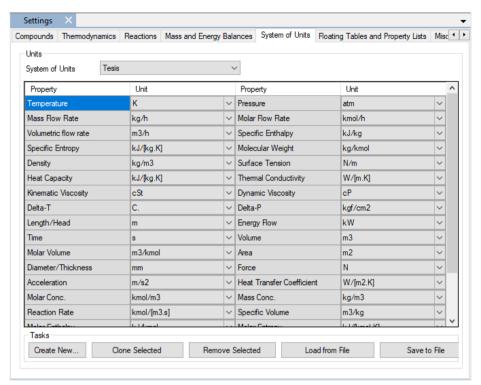


Figura 5-3. Entorno para selección de unidades de medida en DWSIM

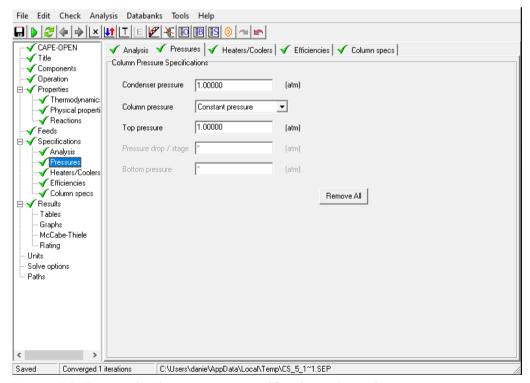


Figura 6-3. Entorno de ChemSep para especificaciones de presiones

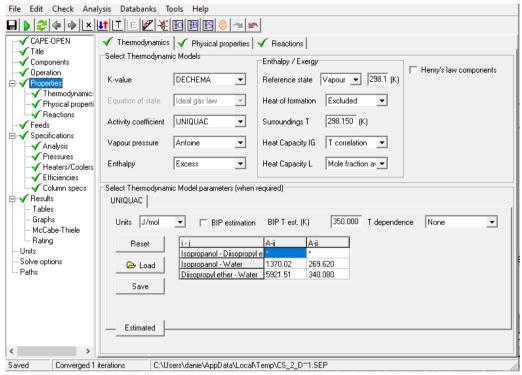


Figura 7-3. Entorno de ChemSep para selección de modelo termodinámico (DECHEMA)

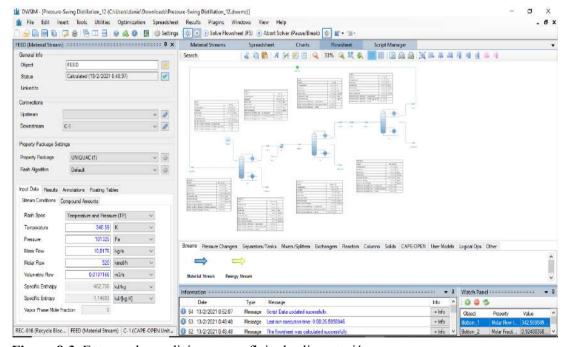


Figura 8-3. Entorno de condiciones para flujo de alimentación

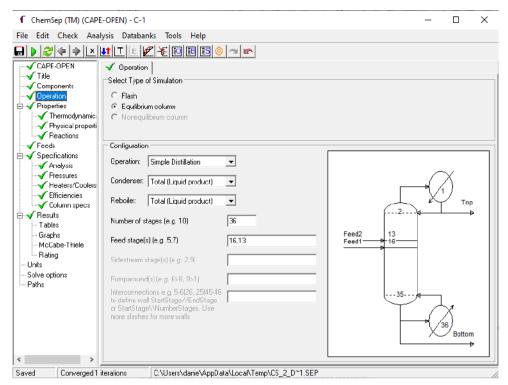


Figura 9-3. Configuración operativa de C1

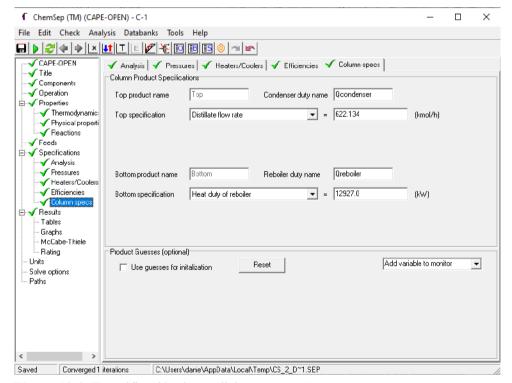


Figura 10-3. Especificación de condiciones para C1

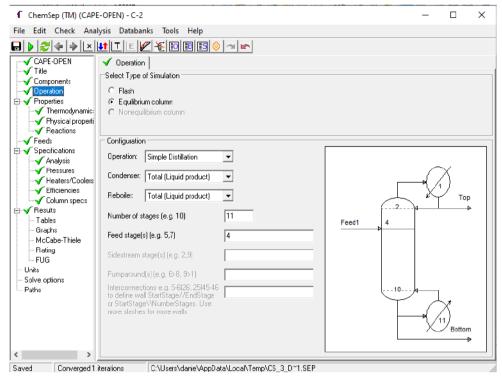


Figura 11-3. Configuración operativa de C2

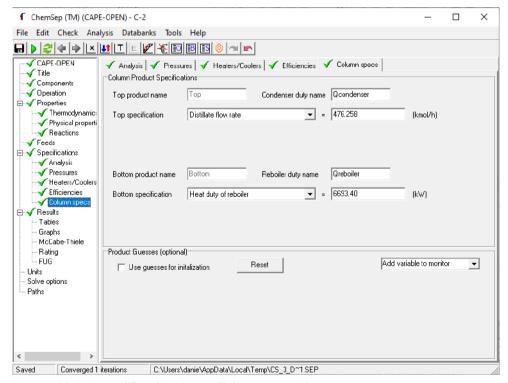


Figura 12-3. Especificación de condiciones para C2

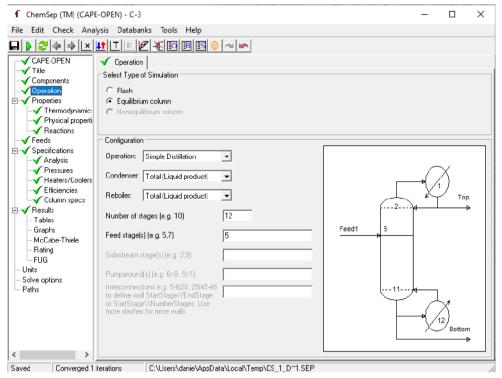


Figura 13-3. Configuración operativa de C3

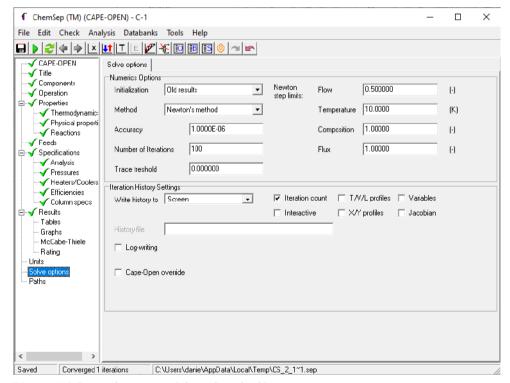


Figura 14-3. Opciones numéricas de solución

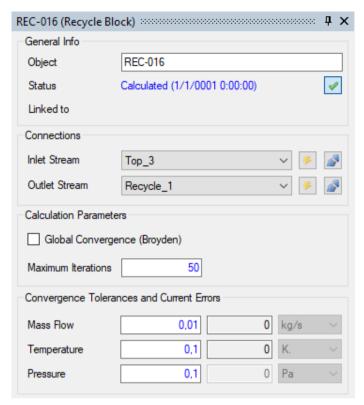


Figura 15-3. Recirculación del sistema

En la Figura 14-3, el simulador emplea el método matemático Newton y el número de iteración se puede modificar según el funcionamiento del sistema, en esta simulación se establecieron 100 iteraciones para garantizar el óptimo trabajo de cada torre de destilación. Además, para el entorno de recirculación se puede modificar el número de iteraciones según el proceso, en este trabajo se emplea un número de 50.

3.4. Validación de resultados de la simulación

La validación del sistema se ejecutó al comparar los valores provenientes de la simulación en DWSIM y los valores definidos en bibliografía. Los valores que se comparan son: flujo molar en el fondo, fracción molar de IPA en el fondo y fracción molar de DIPE en el tope de la columna de destilación 1; la fracción molar de DIPE en el fondo y fracción molar de DIPE en el tope de la columna de destilación 3 (ANEXO E, F, G, H)

DWSIM permite generar tablas con las propiedades necesarias para cada sección del proceso, siendo estas calculadas o de funcionamiento en la simulación. Por lo tanto, cada torre presenta su tabla en la que especifica principalmente las fracciones molares de los compuestos y los flujos molares.

Feed		
Object	FEED	
Tem perature	340,59	К
Pressure	101325	Pa
Mass Flow	10,0176	kg/s
Molar Flow	520	km ol/h
Volumetric Flow	0,0137166	m3/s
Mixture Density	730,327	kg/m3
Molar Fraction (Mixture) / Isopropanol	0,658	
Molar Fraction (Mixture) / Diisopropyl ether	0,281	
Molar Fraction (Mixture) / Water	0,061	

Figura 16-3. Valores de la entrada de la simulación

Top_1		
Object	Top_1	
Temperature	338,902	К
Pressure	101325	Pa
Mass Flow	12,8442	kg/s
Molar Flow	622,134	kmol/h
Volumetric Flow	4,80434	m3/s
Mixture Density	2,67346	kg/m3
Molar Fraction (Mixture) / Isopropanol	0,164872	
Molar Fraction (Mixture) / Diisopropyl ether	0,586629	
Molar Fraction (Mixture) / Water	0,248498	

Figura 17-3. Valores del destilado del C1

Bottom 1			
Object	Bottom_1		
Temperature	355,214	К	
Pressure	101325	Pa	
Mass Flow	5,85475	kg/s	
Molar Flow	342,56	kmol/h	
Volumetric Flow	0,00812229	m3/s	
Mixture Density	720,825	kg/m3	
Mixture Molar Weight	61,5282	kg/kmol	
Molar Fraction (Mixture) / Isopropanol	0,965921		
Molar Fraction (Mixture) / Diisopropyl ether	0,0340693		
Molar Fraction (Mixture) / Water	9,55875E-06		

Figura 18-3. Valores del fondo del C1

top2		
Object	Top_2	
Temperature	392,432	К
Pressure	506625	Pa
Mass Flow	8,83855	kg/s
Molar Flow	476,258	kmol/h
Volumetric Flow	0,851977	m3/s
Mixture Density	10,3742	kg/m3
Mass Fraction (Mixture) / Isopropanol	0,172342	
Molar Fraction (Mixture) / Diisopropyl ether	0,483988	
Mass Fraction (Mixture) / Water	0,0874779	

Figura 19-3. Valores del destilado del C2

Bottom 2		
Object	Bottom_2	
Temperature	403,427	K
Pressure	506625	Pa
Mass Flow	4,00567	kg/s
Molar Flow	145,876	kmol/h
Volumetric Flow	0,00755411	m3/s
Mixture Density	530,263	kg/m3
Mixture Molar Weight	98,8541	kg/kmol
Molar Fraction (Mixture) / Isopropanol	0,0776134	
Molar Fraction (Mixture) / Diisopropyl ether	0,921736	
Molar Fraction (Mixture) / Water	0,000650441	

Figura 20-3. Valores del fondo del C2

top3		
Object	Top_3	
Temperature	351,264	К
Pressure	101325	Pa
Mass Flow	8,68059	kg/s
Molar Flow	444,694	kmol/h
Volumetric Flow	3,56029	m3/s
Mixture Density	2,43817	kg/m3
Molar Fraction (Mixture) / Isopropanol	0,205199	
Molar Fraction (Mixture) / Diisopropyl ether	0,518342	
Molar Fraction (Mixture) / Water	0,276459	

Figura 21-3. Valores del destilado del C3

Bottom 3		
Object	Bottom_3	
Temperature	372,936	К
Pressure	101325	Pa
Mass Flow	0,157959	kg/s
Molar Flow	31,5648	kmol/h
Volumetric Flow	0,000191031	m3/s
Mixture Density	826,874	kg/m3
Mixture Molar Weight	18,0154	kg/kmol
Molar Fraction (Mixture) / Isopropanol	8,75313E-07	
Molar Fraction (Mixture) / Diisopropyl ether	6,87006E-07	
Molar Fraction (Mixture) / Water	0,999998	·

Figura 22-3. Valores del fondo del C3

Recycle 1		
Object	Recycle_1	
Temperature	351,264	К
Pressure	101325	Pa
Mass Flow	8,68059	kg/s
Molar Flow	444,694	km ol/h
Volumetric Flow	3,56029	m3/s
Mixture Density	2,43817	kg/m3
Mixture Molar Weight	70,2734	kg/kmol
Molar Fraction (Mixture) / Isopropanol	0,205199	
Molar Fraction (Mixture) / Diisopropyl ether	0,518342	
Molar Fraction (Mixture) / Water	0,276459	

Figura 23-3. Valores de la recirculación de la simulación

3.5. Procesamiento de datos

La simulación realizada en DWSIM debe estar completa y validada para generar una base de datos que consiste en repeticiones (150 veces) con variaciones aleatorias de los parámetros, los cuales, serán utilizados en el diseño de la red neuronal.

Tabla 6-3. Parámetros de entrada de RNA

	ENTRADAS								
Parámetro	Temperatura Entrada	IPA Entrada	DIPE Entrada	Presión C1	Presión C2	Presión C3			
Detalles	°C [Todas las corrientes]	Adimensional [%]	Adimensional [%]	Atm [Torre 1]	Atm [Torre 2]	Atm [Torre 3]			
Identificación	T-in	IPA-in	DIPE-in	P-C1	P-C2	P-C3			

Realizado por: Lascano, Rebeca, 2021

Tabla 7-3. Parámetros de salida de RNA

SALIDAS						
Ubicación	Column	a C1	Colu	mna C2	Columna C3	
Colcucion	Destilado	Fondo	Destilado	Fondo	Destilado	
Fracciones molares	Flujo molar	IPA	DIPE	DIPE	IPA	
Tracciones moiares	DIPE				DIPE	
Identificación	DFM-C1	IPA-C1	DIPE-C2	DIPE-C2	IPA-C3	
Tuentificación	DIPE-C1				DIPE-C3	

Realizado por: Lascano, Rebeca, 2021

Los datos recolectados se generan a partir del análisis y de las repeticiones sucesivas del proceso simulado con parámetros aleatorios; posteriormente, estos datos se usarán en el entrenamiento y aprendizaje de la red neuronal artificial.

Consideraciones en la simulación:

Temperatura (alimentación) = 340.59 K

• La variación de la temperatura debe ser constante en todas las corrientes. El rango empleado para la temperatura de entrada se considera entre 100-790 K.

- El rango empleado para el IPA en la entrada se considera entre 0.31-0.78
- El rango empleado para el DIPE en la entrada se considera entre 0.03-0.41
- El rango empleado para la presión en C1 se considera entre 0.50 3.00 atm
- El rango empleado para la presión en C2 se considera entre 2.30 7.11 atm
- El rango empleado para la presión en C3 se considera entre 0.50 1.50 atm

Tabla 8-3. Restricciones para las entradas de RNA

RESTRICCIONES								
Parámetro	Temperatura	Presión	Fracción Molar					
Detalles	K	Atm	Adimensional					
	[todas las corrientes]	[en las 3 columnas]	[%]					
Rango	100-790	0.5-7.11	0.03-0.78					

Nota: La simulación no se ejecuta si los parámetros son menores o mayores a los rangos establecidos

Realizado por: Lascano, Rebeca, 2021

La base de datos (*ver ANEXO A*) que se requiere para el entrenamiento y aprendizaje de la RNA se ejecutó en Jupyter Notebook con 127 datos del presente conglomerado de forma aleatoria; para la validación de datos se utilizó 23 datos restantes del banco de datos para corroborar el funcionamiento de RNA.

3.6. Diseño de la red neuronal artificial

Los parámetros de entrada en los que se basa la RNA son: temperatura, fracción molar de IPA - DIPE y presión. De la misma manera, los parámetros de salida son: flujo molar en el destilado, fracción molar en el destilado y fondo de IPA y DIPE correspondiente de las 3 columnas de destilación según se especifica en las Tablas 6-3 y 7-3.

Los datos deben ser normalizados para obtener un mejor procesamiento de datos, para lo cuál, se ejecuta el comando en el programa.

3.7. Entrenamiento de datos

La presente RNA está completamente conectada, se utilizan 244 neuronas ocultas distribuidas en seis capas (Gráfico 2-3) y emplea el método adaptativo Adam. Además, los datos al ser pequeños y presentar ruido requieren que el número de neuronas sea alto y esto provoca que el tiempo para la resolución sea mayor.

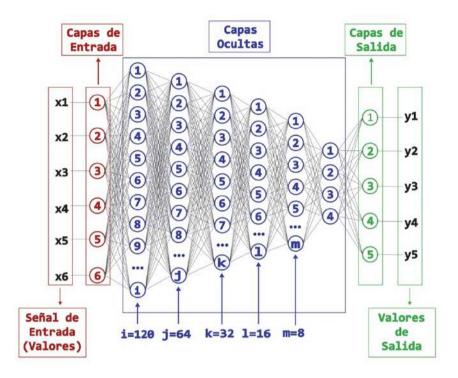


Gráfico 2-3. Estructura de la RNA

Finalmente, para adaptar el modelo RNA de deep learning se emplea un Early Stopping para generar paradas anticipadas en el modelo, un Reduce Learning Rate On Plateau para reducir la tasa de aprendizaje después de que el modelo deje de mejorar con la probabilidad de ajustar los pesos en el mismo. Además, el número de epochs es de 1000.

3.8. Validación de resultados de la RNA

Los parámetros a tomar en cuenta para la validación de los resultados son el MSE y la presición en los datos, de esta manera se demuestra el nivel de confiabilidad en el modelo. El análisis estadístico se profundizará aplicando el programa JASP y Excel.

- Error Cuadrático Medio (MSE) se utiliza para compara un valor predicho con un valor experimental y mide el error existente entre ambos datos.
- Presición es el número correcto de predicciones que tiene el modelo.

La configuración para el entrenamiento, prueba y validación de la RNA se clasifica de forma aleatoria; utilizando el 70% para el entrenamiento (105 datos), 15% para la prueba (22 datos) y 15% para la validación (22 datos).

El modelo de RNA presenta capas totalmente conectadas, puesto que el número de entradas son seis, lo que permite que el entrenamiento no sea tan complicado y se pueda asignar funciones de activación dentro de cada neurona.

3.9. Análisis estadístico

La evaluación de los valores receptados de la experimetación en el software DWSIM y los valores predichos en la red neuronal son comparados y analizados estadísticamente utilizando el software estadístico libre y de código abierto JASP. Las pruebas a considerar en el presente proyecto de titulación son:

- ANOVA: Se utiliza para determinar las diferencias estadísticas significativas entre los datos reales y los predichos. Analysis of Variance (ANOVA), el procedimiento funciona al comparar la varianza entre las medias de los grupos como forma de validar si son distintos entre sí o no. Se busca elegir entre las siguientes hipótesis:
- Hipótesis nula: $\mu_A = \mu_B$
- Hipótesis alternativa: Las medidas son diferentes

Donde μ_j simboliza la media de la muestra de la cual se ha analizado una parte representativa. Si las muestras presenta medias diferentes se rechazará la hipótesis nula ((GOSS, 2018).

- Correlación Pearson: La prueba mide la relación estadística entre dos variables continuas y su coeficiente puede tomar valor entre +1 a -1 dependiendo de su asociación (GOSS, 2018).
- Prueba t para dos muestras pareadas: El método exige que cada conjunto de medidas se distribuya de forma normal y que la precisión y sesgo sean constantes en el intervalo de valores en que se realiza la medida.
- Hipótesis nula: $\mu_d = 0$
- Hipótesis alternativa: Las medidas son diferentes

Para probar la hipótesis nula, no debe existir diferencias entre las medias de los métodos (Miller, 2002, p. 51).

CAPÍTULO IV

4. GESTIÓN DEL PROYECTO

4.1. Presupuesto

Tabla 1-4. Presupuestos del proyecto de titulación

	PRESUPUESTO							
ACTIVIDAD	MONTO _	FUENTE DEFINA	ANCIAMIENTO					
ACTIVIDAD	MONTO	INTERNA	EXTERNA					
Curso DWSIM	\$200	X						
Curso Python	\$250	X						
Copias e Impresiones	\$40	X						
Empastados	\$70	X						
Imprevistos	\$30	X						
TOTAL		\$590						

Realizado por: Lascano, Rebeca, 2021

4.2. Recursos y Materiales

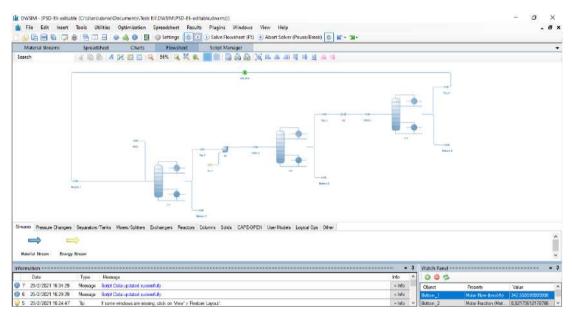
El presente proyecto de titulación se desarrolla con el empleo de los softwares:

- Simulador de procesos químicos de código abierto DWSIM (versión 5.8 update 11): Simulación de un sistema de destilación para la separación de azeótropos de diisopropiléter-isopropanol-agua.
- Software CAPE-OPEN / ChemSep: Complemento en DWSIM para la simulación.
- Lenguaje de programación Python (*versión 5.8 update 5*) y entorno informáticoJupyter Notebook: Diseño de la Red Neuronal Artificial.
- SPSS: Software para análisis estadístico de los resultados en DWSIM y Jupyter

El ordenador que se utilizó para ejecutar los procedimientos necesarios en este trabajo es una laptop Toshiba Satellite S55-B, procesador Intel(R) Core(TM) i7-4510U CPU @ 2.00GHz, 2601 Mhz, todos los requerimientos son requisitos mínimos.

4.3. Cronograma

Tabla 2-4. Cronograma del proyecto de titulación


		1									7	ΓΙΕΊ	MP	0										
ACTIVIDAD		MF	ES 1			MF	S 2			MF	S 3			MF	ES 4			MI	ES 5			MI	ES 6	
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Recolección de																								
la información																								
del modelo																								
base																								
Desarrollo del																								
modelo base en																								
DWSIM																								
Obtención de																								
los pares de																								
datos																								
necesarios																								
Diseño y																								
entrenamiento																								
de la red																								
Neuronal																								
Validación de																								
los resultados																								
arrojados por																								
la red																								
Obtención de																								
información del																								
proceso	L																L							
Redacción del																								
trabajo final																								

4.4. Discusión y análisis de resultados

4.4.1. Informe de resultados de la simulación en DWSIM

La simulación completa de un sistema de destilación para la separación de azeótropos de DIPE-IPA-Agua realizada en el Simulador de código abierto DWSIM, mismo que se presenta en la Figura 1-4.

Un punto descable es que la simulación no presenta modificaciones con relación al modelo de refercia. Además, los resultados obtenidos de la simulación se presentan como objetos de interés en el estudio, mismos que se presentan en la Figura 2-4 y en la Tabla 3-4, respectivamente.

Figura 1-4. Simulación completa del sistema de destilación para la separación de azeótropos de DIPE-IPA-Agua en DWSIM

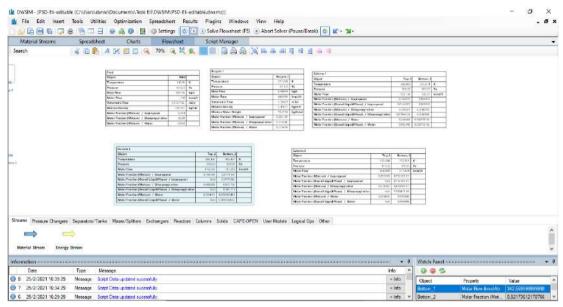


Figura 2-4. Resultados en DWSIM

Los resultados obtenidos de las columnas en la simulación se pueden visualizar en las Tabla 3-4, 3-5 y 3-6.

Tabla 3-4. Resultados de la columna C1 en DWSIM

Column 1			
Object	Top_1	Bottom_1	
Temperature	338,902	355,214	К
Pressure	101325	101325	Pa
Molar Flow	622,134	342,56	kmol/h
Molar Fraction (Mixture) / Isopropanol	0,164872	0,965921	
Molar Fraction (Overall Liquid Phase) / Isopropanol	0,0145503	0,965921	
Molar Fraction (Mixture) / Diisopropyl ether	0,586629	0,0340693	
Molar Fraction (Overall Liquid Phase) / Diisopropyl ether	1,95796E-06	0,0340693	
Molar Fraction (Mixture) / Water	0,248498	9,55875E-06	
Molar Fraction (Overall Liquid Phase) / Water	0,985448	9,55875E-06	

Tabla 4-4. Resultados de la columna C2 en DWSIM

Column 2			
Object	Top_2	Bottom_2	
Temperature	392,432	403,427	К
Pressure	506625	506625	Pa
Molar Flow	476,258	145,876	kmol/h
Molar Fraction (Mixture) / Isopropanol	0,191599	0,0776134	
Molar Fraction (Overall Liquid Phase) / Isopropanol	NaN	0,0776342	
Molar Fraction (Mixture) / Diisopropyl ether	0,483988	0,921736	
Molar Fraction (Overall Liquid Phase) / Diisopropyl ether	NaN	0,921715	
Molar Fraction (Mixture) / Water	0,324413	0,000650441	
Molar Fraction (Overall Liquid Phase) / Water	NaN	0,000650862	

Tabla 5-4. Resultados de la columna C3 en DWSIM

Column 3			
Object	Top_3	Bottom_3	
Temp erature	351,264	372,936	К
Pressure	101325	101325	Pa
Molar Flow	444, 694	31,5648	kmol/h
Molar Fraction (Mixture) / Isopropanol	0,205199	8,75313E-07	
Molar Fraction (Overall Liquid Phase) / Isopropanol	NaN	8,71614E-07	
Molar Fraction (Mixture) / Diisopropyl ether	0,518342	6,87006E-07	
Molar Fraction (Overall Liquid Phase) / Diisopropyl ether	NaN	7,78041E-09	
Molar Fraction (Mixture) / Water	0,276459	0,999998	
Molar Fraction (Overall Liquid Phase) / Water	NaN	0,999999	

Realizado por: Lascano, Rebeca, 2021

4.5. Validación de los resultados provenientes de DWSIM

Es indispensable realizar una validación de los datos obtenidos en la simulación con los resultados existentes en bibliografía para comprobar la veracidad de los mismos. El trabajo expuesto por Guang (2019, p. 11), se utilizará para ejecutar la validación del trabajo.

La comparación realizada entre los datos obtenidos en la simulación de DWSIM y los valores referentes dejan en evidencia ciertos valores anormales en el porcentaje del error. Esto se puede explicar dado que los valores tanto en la referencia como en la simulación son muy pequeños; por lo tanto, tienen una significancia menor y se pueden considerar despreciables.

El error porcentual emplea la siguiente fórmula:

$$E(\%) = \frac{V_{deseado} - V_{experimental}}{V_{deseado}}$$
 (Ec 1-4)

Tabla 6-4. Comparación de las fracciones molares obtenidas en la simulación y en los valores referentes

Resultados	Colu	mna 1	Colun	nna 2	Columna 3			
resultatos	Destilado	Fondo	Destilado	Fondo	Destilado	Fondo		
IPA DWSIM	0.164	0.965	0.191	0.0077	0.205	8 x10 ⁷		
IPA (deseado)	0.125	0.998	0.163	0.00195	0.1746	11 x 10 ⁹		
Error (%)	0.312	0.0331	0.1718	2.9487	0.1741	71.7273		
DIPE DWSIM	0.586	0.034	0.483	0.921	0.518	6 x 10 ⁷		
DIPE (deseado)	0.674	0.00157	0.574	0.998	0.6147	Trace		
Error (%)	0.1306	20.6561	0.1585	0.0772	0.1573	-		
AGUA DWSIM	0.248	0.0000095	0.324	0.00065	0.276	0.999		
AGUA (deseado)	0.201	0.00043	0.263	0.00005	0.2107	1.00		
Error (%)	0.2338	0.9779	0.2319	12.0000	0.3099	0.0010		

La existencia de porcentajes muy grandes en la Tabla 6-4 se justifica dado que, los valores se encuentran en trazas en el proceso; por lo tanto, pueden ser despreciables. Además, las fracciones molares (señaladas con color) mismas que son las variables de interés, presentan un porcentaje de error muy bajo; por lo tanto, la diferencia no es significativa.

Tabla 7-4. Comparación de las temperaturas obtenidas en la simulación y en los valores referentes

Resultados	Colum	ına 1	Colum	Columna 2 Column		
Resultation	Destilado	Fondo	Destilado	Fondo	Destilado	Fondo
Temperatura K DWSIM	338.90	355.21	392.43	403.42	351.26	372.93
Temperatura K (deseada)	334.84	360.38	385.72	401.59	335.01	375.02
Error (%)	0.0121	0.0143	0.0174	0.0046	0.0485	0.0056

Realizado por: Lascano, Rebeca, 2021

El porcentaje de error en la temperatura es muy bajo, lo que implica que la diferencia no es significativa. La variación de la temperatura en el diseño si es representativa, por lo tanto, que el porcentaje de error sea muy bajo le favorece al proceso.

La simulación del sistema de destilación para la separación de azeótropos de diisopropiléterisopropanol-agua presentan condiciones de operación válidos, comparados con el diseño original, lo que implica que es posible la realización de una base de datos para alimentar la RNA con una confianza alta.

4.6. Reporte de resultados de la RNA

La red neuronal artificial que se presenta en este trabajo posee 6 entradas, 7 salidas y seis capas ocultas distribuidas con 128-64-32-16-4 nodos respectivamente, lo que corresponde a 244 nodos. La red se encuentra completamente conectada (Gráfico 2-3.).

4.6.1. *Error cuadrático medio (MSE)*

Tabla 8-4. Error cuadrático medio de cada fase de diseño de la RNA

Fase	MSE
Entrenamiento	0.006891
Prueba	0.006667
Validación	0.008051

Realizado por: Lascano, Rebeca, 2021

Los valores de MSE para la fase de entrenamiento, prueba y validación son muy bajos, lo cuál es deseable puesto que mientras mas cerca al cero estén los valores significa que el error disminuye. Por lo tanto, los datos que se presentan en la Tabla 8-4 son aceptables para el funcionamietno correcto de la RNA.

4.6.2. Gráficos sobre el comportamiento de la RNA

En el Figura 1-4 se puede observar un resumen del entrenamiento, mismo que detalla el número de capas, los nodos y los parametros. El número total de parámetros entrenados es de 11.957.

Resumen del Entrenamiento¶

In [13]: mod.summary() Model: 'EliModelol" Layer (type) Output Shape ---input_1 (InputLayer) [(None, 6, 1)] flatten (Flatten) (None, 6) dense (Dense) (None, 128) dense 1 (Dense) (None, 64) 8256 dense_2 (Dense) (None, 32) 2080 528 dense_3 (Dense) (None, 16) dense 4 (Dense) (None, 8) 136 dense_5 (Dense) (None, 4) dense_6 (Dense) (None, 5) 25

Figura 3-4. Resumen del entrenamiento

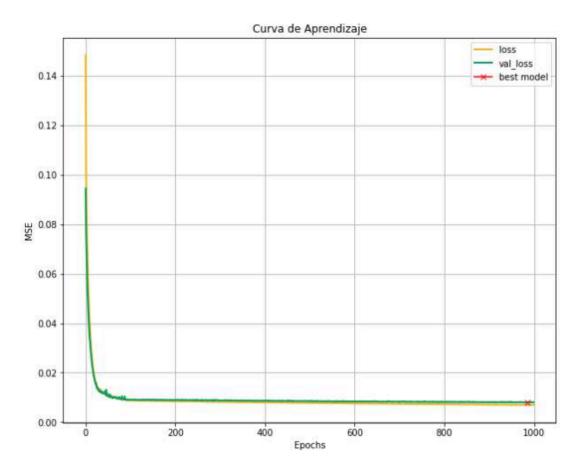


Figura 4-4. Rendimiento del entrenamiento de la RNA

La evolución del error cuadrático medio final en la fase de entrenamiento es de 0.006891 (Figura 2-4). La curva de entrenamiento (amarilla) y la curva de prueba (verde) son muy cercanas entre si, lo que implica que la capacidad de predicción en la red es alta.

4.6.3. Código de la RNA en Jupyter Notebook

El código desarrollado en el lenguaje de programación python en el entorno informático Jupyter Notebook para el entrenamiento, prueba y validación de la RNA así como las librerías y las variables utilizadas se presentan en los *ANEXOS B, C, D* e incluye:

- Librerias
- Extraer, filtrar y mostrar base de datos

- Normalizar los datos de entrada y salida
- Configurar la cantidad de datos utilizada para entrenamiento, prueba y validación
- Creación del modelo
- Diseño de la RNA
- Resumen total del entrenamiento
- Gráfico del aprendizaje
- Extracción de los pesos previamente entrenados
- Predicciones de las salidas según las entradas
- Exportar los valores predichos a una hoja en excel (sin normalizar)
- Gráficos de comparación

4.6.4. Gráficos de comparación entre las salidas predichas y las reales

El análisis de datos se ejecuta de la siguiente manera: Un conjunto de 130 valores con seis entradas y cinco salidas se utilizan para el entrenamiento, un conjunto de 22 valores con seis entradas y cinco salidas para la prueba y con 23 valores con seis entradas y cinco salidas para la validación. El entrenamiento y prueba se realiza para obtener los pesos sinápticos requeridos para la etapa de validación; además, es necesario recalcar que los valores son tomados de forma aleatoria (Figura 2-4).

Mostrar valores que se consideran para Entrenamiento¶

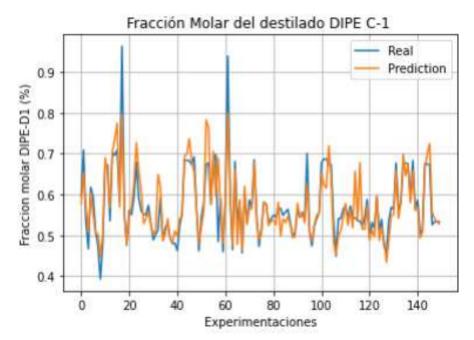
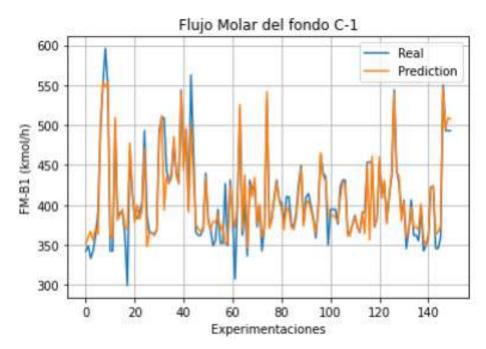

```
In [10]:
print ("número de datos para entrenamiento = " + str(x train.shape[0]))
print ("número de datos para prueba = " + str(x test.shape[0]))
print ("número de datos para validación = " + str(y_valid.shape[0]))
print('')
print ("x_train shape: " + str(x_train.shape))
print ("x_test shape: " + str(x_test.shape))
print ("x_valid shape: " + str(x_valid.shape))
print(
print ("y_train shape: " + str(y_train.shape))
print ("y_test shape: " + str(y_test.shape))
print ("y_valid shape: " + str(y_valid.shape))
número de datos para entrenamiento = 105
número de datos para prueba = 22
número de datos para validaciÃ3n = 23
x_train shape: (105, 6, 1)
x_test shape: (22, 6, 1)
x_valid shape: (23, 6, 1)
y_train shape: (105, 5)
y test shape: (22, 5)
y valid shape: (23, 5)
```

Figura 5-4. Valores considerados para el entrenamiento, prueba y validación

4.6.4.1. Análisis de la base de datos empleada durante el diseño, entrenamiento y validación de la RNA


Se detalla a continuación los valores reales obtenidos del software DSWIM, los valores predichos por la RNA y el error porcentual asociado a ellos de cada una de las salidas.

Los datos correspondientes al tope de C1para fracción molar de DIPE se encuentran en el *ANEXO E*, se presenta un error porcentual promedio 0,0463. Además, se presenta la gráfica comparativa entre los valores predichos y los valores reales (Figura 3-4).

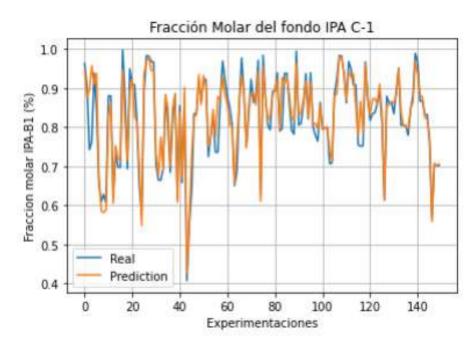


Figura 6-4. Fracción molar del tope de DIPE real vs el predicho por la RNA en la C1 **Realizado por:** Lascano, Rebeca, 2021

Los datos que corresponde al fondo de C1 para el flujo molar y fracción molar de IPA se encuentran en el *ANEXO F* y tienen como error porcentual promedio 0.0297 y 0.0353 respectivamente. Además, en el Figura 4-4, se presenta la comparación gráfica entre los valores predichos y los valores reales.

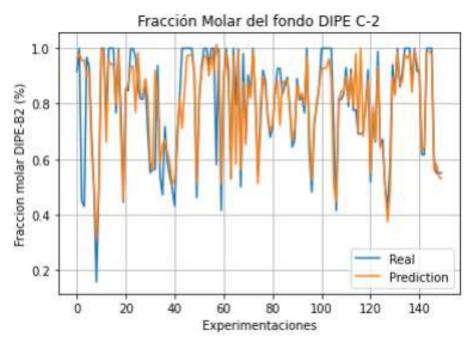
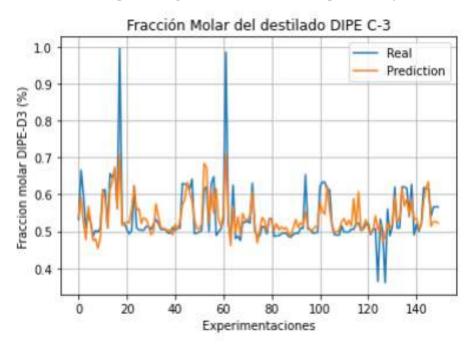


Figura 7-4. Fracción molar del fondo de Flujo Molar real vs el predicho por la RNA en la C1 **Realizado por:** Lascano, Rebeca, 2021


Figura 8-4. Fracción molar del fondo de IPA real vs el predicho por la RNA en la C1 **Realizado por:** Lascano, Rebeca, 2021

En el *ANEXO G* se presentan los datos correspondientes al fondo de C2 para la fracción molar de DIPE, como error porcentual promedio 0,0854. Además, en el Figura 6-4 se visualiza la comparación gráfica entre los valores predichos y los reales.

Figura 9-4. Fracción molar del fondo de DIPE real vs el predicho por la RNA en la C2 **Realizado por:** Lascano, Rebeca, 2021

Finalmente, en el *ANEXO H* se presentan los valores que corresponden al tope de C3 para la fracción molar de DIPE, mismos que presentan un error porcentual promedio 0,0562. Además, se observa la comparación gráfica entre los valores predichos y reales (Gráfica 7-4).

Figura 10-4. Fracción molar del fondo de DIPE real vs el predicho por la RNA en la C3 **Realizado por:** Lascano, Rebeca, 2021

El grado de compatibilidad reflejado en las gráficas de dispersión entre los valores reales (azul) y los predichos (naranja) son muy altos. Además, existen ligeros desfases muy notables al sobreponer las curvas, principalmente en la fracción molar del fondo de DIPE en la C3, debido al ruido que presentan los datos por ser muy pequeños. Finalmente, el MSE para el entrenamiento es 0,006891, prueba es 0,006667 y validación es 0.008051; los valores al ser muy cercanos al cero pone en evidencia la viabilidad de los procesos.

4.7. Resultados del análisis estadístico en JASP

Los resultados que presenta de la RNA son satisfactorios; sin embargo, es necesario realizar un análisis estadístico comparativo con el fin de determinar el nivel de confiabilidad entre los datos predichos y los reales. El estudio se ejecutó en el software estadístico libre y de código abierto JASP, en el cuál, se analizarón los métodos ANOVA, correlación de Pearson y prueba t para dos muestras pareadas.

El análisis ANOVA de DFM en C1 presenta un valor de F de 0.191, el valor de p es 0.662 y un nivel de confianza es de 95%. Al comparar el nivel de confianza con el valor de p, este último es mayor. Por lo tanto, se acepta la hipótesis nula lo que implica que no existen diferencias significativas entre los valores evaluados. Mientras tanto, en la correlación de Pearson de DFM en C1 el valor de r es 0.942, siendo un valor muy cercano a 1. Por lo tanto, la correlación es positiva e implica que no existen diferencias significativas entre los valores evaluados. Además, en la prueba t para dos muestras pareadas de DFM en C1 el valor de p es 0.081 y el nivel de confianza es 95%. El valor p es mayor que el nivel de confianza. Por lo tanto, se acepta la hipótesis nula dado que los valores evaluados no difieren significativamente. Finalmente, posterior a los tres métodos que entregan resultados similares, se concluye que los valores evaluados son significativamente similares (*veasé en el ANEXO I*).

El análisis ANOVA de IPA en C1 presenta un valor de F de 0.074, el valor de p es 0.785 y un nivel de confianza es de 95%. Al comparar el nivel de confianza con el valor de p, este último es mayor. Por lo tanto, se rechaza la hipótesis alterntativa puesto que no existen diferencias significativas entre los valores evaluados. Mientras tanto, en la correlación de Pearson de IPA en C1 el valor de r es 0.942, siendo un valor muy cercano a 1. Por lo tanto, la correlación es positiva e implica que no existen diferencias significativas entre los valores evaluados. Además, en la prueba t para dos muestras pareadas de IPA en C1 el valor de p es 0.294 y el nivel de confianza es 95%. El valor p es mayor que el nivel de confianza. Por lo tanto, se rechaza la hipótesis alternativa dado que los valores evaluados no difieren significativamente. Finalmente, posterior

a los tres métodos que entregan resultados similares, se concluye que los valores evaluados son significativamente similares (*veasé en el ANEXO J*).

El análisis ANOVA de DIPE en C1 presenta un valor de F de 0.002, el valor de p es 0.969 y un nivel de confianza es de 95%. Al comparar el nivel de confianza con el valor de p, este último es mayor. Por lo tanto, se rechaza la hipótesis alterntativa puesto que no existen diferencias significativas entre los valores evaluados. Mientras tanto, en la correlación de Pearson de DIPE en C1 el valor de r es 0.835, siendo un valor muy cercano a 1. Por lo tanto, la correlación es positiva e implica que no existen diferencias significativas entre los valores evaluados. Además, en la prueba t para dos muestras pareadas de DIPE en C1 el valor de p es 0.986 y el nivel de confianza es 95%. El valor p es mayor que el nivel de confianza. Por lo tanto, se rechaza la hipótesis alternativa dado que los valores evaluados no difieren significativamente. Finalmente, posterior a los tres métodos que entregan resultados similares, se concluye que los valores evaluados son significativamente similares (veasé en el ANEXO K).

El análisis ANOVA de DIPE en C2 presenta un valor de F de 0.002, el valor de p es 0.967 y un nivel de confianza es de 95%. Al comparar el nivel de confianza con el valor de p, este último es mayor. Por lo tanto, se rechaza la hipótesis alterntativa puesto que no existen diferencias significativas entre los valores evaluados. Mientras tanto, en la correlación de Pearson de DIPE en C2 el valor de r es 0.860, siendo un valor muy cercano a 1. Por lo tanto, la correlación es positiva e implica que no existen diferencias significativas entre los valores evaluados. Además, en la prueba t para dos muestras pareadas de DIPE en C2 el valor de p es 0.987 y el nivel de confianza es 95%. El valor p es mayor que el nivel de confianza. Por lo tanto, se rechaza la hipótesis alternativa dado que los valores evaluados no difieren significativamente. Finalmente, posterior a los tres métodos que entregan resultados similares, se concluye que los valores evaluados son significativamente similares (veasé en el ANEXO L).

El análisis ANOVA de DIPE en C3 presenta un valor de F de 0.139, el valor de p es 0.709 y un nivel de confianza es de 95%. Al comparar el nivel de confianza con el valor de p, este último es mayor. Por lo tanto, se rechaza la hipótesis alterntativa puesto que no existen diferencias significativas entre los valores evaluados. Mientras tanto, en la correlación de Pearson de DIPE en C3 el valor de r es 0.762, siendo un valor cercano a 1. Por lo tanto, la correlación es positiva e implica que no existen diferencias significativas entre los valores evaluados. Además, en la prueba t para dos muestras pareadas de DIPE en C3 el valor de p es 0.350 y el nivel de confianza es 95%. El valor p es mayor que el nivel de confianza. Por lo tanto, se rechaza la hipótesis alternativa dado que los valores evaluados no difieren significativamente. Finalmente, posterior

a los tres métodos que entregan resultados similares, se concluye que los valores evaluados son significativamente similares (*veasé en el ANEXO M*).

CONCLUSIONES

- Se simuló un sistema de destilación para la separación del azeótropo diisipropiléter isopropanol agua en procesos mejorados para la Industria Química utilizando el simulador de procesos químicos de código abierto DWSIM. El sistema fue propuesto por Guang C, et all, (2019) y publicado en la revista Chemical Engineering Research and Design; mismo que se usó como referente para establecer las bases de diseño, condiciones de operación y evaluación del funcionamiento. Además, el sistema fué validado mediante el desarrollo de una red neuronal artificial.
- Se validó los resultados que se receptan de la red neuronal artificial (RNA) mediante un análisis estadístico comparativo entre los valores predichos por DWSIM y los reales por la red, con un valore de confiabilidad general del 95% y se compueba que no existen diferencias significativas en los datos que se analizaron.
- Se cuantificó la cantidad de diisopropiléter de la C2 e isopropanol de la C1 removidos, siendo 97.70% y 99.60% respectivamente, datos obtenidos posterior a ejecutar variaciones en los parámetros de entrada. Además, de casi el 100% de agua en la C3.
- Se diseñó una red neuronal artificial utilizando el lenguaje de programación Python en el entorno informático de Jupyter Notebook, utilizando una base de datos extraída de varias experimentaciones en la simulación en DWSIM. La red neuronal artificial (RNA) es capaz de predecir las fracciones molares de isopropiléter, diisopropiléter y flujo molar seleccionadas como salidas. La RNA consta de seis entradas, 6 capas ocultas dispuestas de 244 nodos, cinco salidas, utiliza el algorítmo de optimización Estimación Adaptativa de Momentos (Adam) y como función de activación se utilizó función tanh y función lineal. Obteniendose un MSE de validación de 0.008051.
- Se diseñó la RNA con cinco variables de entradas: temperatura (T-in), fracción molar IPA de entrada de flujo (IPA-in), fracción molar DIPE de entrada de flujo (DIPE-in), presión de la columna 1 (P-C1), presión de la columna 2 (P-C2), presión de la columna 3 (P-C3); y es capaz de predecir variables de salida como: flujo molar del fondo de la columna 1 (DFM-B1), fracción molar IPA del fondo de la columna 1 (IPA-B1), fracción molar DIPE del tope de la columna 1 (DIPE-D1), fracción molar DIPE del fondo de la columna 2 (DIPE-B2), fracción molar DIPE del fondo de la columna 3 (DIPE-D3).

• Se comprueban resultados muy similares entre los datos que arroja la simulación ejecutada en DWSIM y el referente. Además, cabe recalcar que al optar por una simulación en un software open source la robustez y precisión del mismo es significativamente diferente a un software de pago como lo es ASPEN PLUS. Lo que se explica las pequeñas variaciones en los resultados.

RECOMENDACIONES

- Ejecutar un análisis de sensibilidad previo a la elección de variables, con el fin de identificar las variaciones existentes y los efectos que generen en los productos que se desea obtener
- Comprobar que los valores que se obtengan en la simulación de DWSIM coincidan con los valores reales pertenecientes al documento base, con el propósito de asegurar la veracidad de los valores próximos a identificar para la base de datos.
- Revisar y familiarizarse con el lenguaje de programación a utilizar para que no existan errores de tipo syntaxis al crear el código

GLOSARIO

Azeótropo: Es una mezcla de compuestos químicos (dos o más componentes) que se encuentra en estado líquido y que se comporta como si fuese un solo compuesto.

Destilación: Es un método que se usa para separar los componentes de una solución líquida, el cual depende de la distribución de estos componentes entre una fase de vapor y una fase líquida

Destilación por cambio de presión: El mecanismo se basa en separar azeótropos, siendo posible solamente para algunos sistemas, ya que algunos de ellos presentan limitantes fisicoquímicas y económicas, ocasionando que el producto obtenido no sea rentable.

Diisopropiléter (**DIPE**): Éter secundario utilizado frecuentemente como disolvente.

Isopropanol (IPA): Es un alcohol, es utiliza como disolvente universal.

Red neuronal artificial (RNA): Son un modelo computacional que fue evolucionando a partir de diversas aportaciones científicas que están registradas en la historia.

ADAM: El algoritmo de optimización de Adam es una extensión del descenso de gradiente estocástico que recientemente ha tenido una adopción más amplia para aplicaciones de aprendizaje profundo en visión por computadora y procesamiento de lenguaje natural.

Función de activación: Define la salida de un nodo dada una entrada o un conjunto de entradas.

Pandas: Biblioteca de software utilizada para la manipulación y análisis de datos.

BIBLIOGRAFÍA

ARCE, Alberto; et al. "(Vapour + liquid) equilibrium of (DIPE + IPA + water) at 101.32 kPa". Journal of Chem. Thermodynamic [en línea], 2003, (España), vol. 35 (1), pp: 871-884 [Consulta: 03 de enero 2021]. Disponible en: doi:10.1016/S0021-9614(03)00018-1

ARIFIN, S., CHIEN, I. "Combined preconcentrator/recovery column design for isopropyl alcohol dehydration process". Journal of Industrial & Engineering Chemistry Research [en línea], 2007, (China), vol. 46 (8), pp: 2535-2543 [Consulta: 16 de febrero 2021]. Disponible en: https://doi.org/10.1021/ie061446c

ARMENTA, M., VALDEZ, R., SILVA, R. "Diisopropyl ether production via 2-propanol dehydration using supported iron oxides catalysts". Journal of Fuel [en línea], 2019, (Mexico), vol. 236 (1), pp: 934-941 [Consulta: 11 de febrero 2021]. Disponible en: https://doi.org/10.1016/j.fuel.2018.06.138

ASAMBLEA NACIONAL DEL ECUADOR. Código Orgánico de La Economía Social de Los Conocimientos, Creatividad e Innovación [en línea]. Ecuador: 2016. [Consulta: 13 de agosto 2020] Disponible en: http://www.wipo.int/edocs/lex

BIYANTO, Totok; et al. "Artificial neural network-based modeling and controlling of distillation column system". Journal of Engineering, Science and Technology [en línea], 2010, (Malasya), vol. 6 (1), pp: 177-188 [Consulta: 26 de noviembre 2020]. Disponible en: <u>DOI:</u> 10.4314/ijest.v2i6.63709

BUITRAGO, J., AMAYA, D., y RAMOS, O. "Model and Simulation of a Hydrotreatment Reactor for Diesel Hydrodesulfurization in Oil Refining". Journal of Contemporary Engineering Sciences [en línea], 2017, (Colombia), vol. 10 (25), pp: 1245-1254 [Consulta: 15 de febrero 2021]. Disponible en: https://doi.org/10.12988/ces.2017.710135

CHAO, Guang; et al. "Comparison of heterogeneous azeotropic and pressure-swing distillations for separating the diisopropylether/isopropanol/water mixtures". Journal of Chemical Engineering Research and Design [en línea], 2019, (China), vol. 143 (1), pp: 249-260. [Consulta: 23 de julio 2020]. Disponible en: https://doi.org/10.1016/j.cherd.2019.01.021

CHEMSEP. Chemsep Web Site [blog]. 2020. [Consulta: 17 de agosto 2020]. Disponible en: http://www.chemsep.org/

CHETOUANI, Yahya. "Using Artificial Neural networks for the modelling Of a distillation column". Journal of Technomathematics Research Foundation [en línea], 2007, (Francia), vol. 4 (7), pp: 119-33. [Consulta: 30 de agosto 2020]. Disponible en: http://www.tmrfindia.org/ijcsa/V4I310.pdf

DURST, Dupont, y GOKEL, George. *Química Orgánica Experimental* [en línea]. Barcelona-España: Reverté, 2007 [Consulta: 15 de agosto 2020]. Disponible en: https://books.google.com.ec/books?id=xiqTfEO1a2gC&printsec=frontcover&hl=es#v=onepage&q&f=false

ENZYME ADVISING GROUP. Redes neuronales con Python: ¿por qué es el mejor lenguaje para IA? [blog]. 2020. [Consulta: 01 de septiembre 2020]. Disponible en: https://blog.enzymeadvisinggroup.com/

FERRERO, Rosana. ¿Qué es el anova de una vía [blog]. 2020. [Consulta: 02 de febrero 2021]. Disponible en: https://www.maximaformacion.es/blog-dat/que-es-el-anova-de-una-via/

GAO, Xiaoxi; et all. "A combination of pressure-swing and extractive distillation for separating complex binary azeotropic system". Journal of Chemical Engineering and Processing: Process Intensification [en línea], 2017, (China), vol. 122 (1), pp: 269-276 [Consulta: 18 de febrero 2021]. Disponible en: https://doi.org/10.1016/j.cep.2017.10.012

GOSS, Mark. Análisis estadístico con JASP: una guía para estudiantes [en línea], Barcelona-España: FUOC, 2018. [Consulta: 29 de septiembre 2020]. Disponible en: http://openaccess.uoc.edu/webapps/o2/bitstream/10609/102926/6/An%C3%A1lisis%20estad%C3%ADstico%20con%20JASP%20una%20gu%C3%ADa%20para%20estudiantes.pdf

IQBAL, Asma y AKHLAQ, Syed. "Pressure swing distillation of azeotropicmixture — A simulation study". Journal of Perspectives in Science [en línea], 2016, (India), vol. 8 (1), pp: 4-6. [Consulta: 26 de septiembre 2020]. Disponible en: https://doi.org/10.1016/j.pisc.2016.01.001

JANARDHANAN, PS. "Project repositories for machine learning with TensorFlow". Journal of Procedia Computer Science [en línea], 2020, (India), vol. 171 (1), pp: 188-196 [Consulta: 03 de enero 2021]. Disponible en: https://doi.org/10.1016/j.procs.2020.04.020

JUN, Qi; et al. "Heat-Integrated Azeotropic Distillation and Extractive Distillation for the Separation of Heterogeneous Ternary Azeotropes of Diisopropyl Ether/Isopropyl Alcohol/Water". Journal of Industrial & Engineering Chemistry Research [en línea], 2019, (China), vol. 58(45), pp: 20734-20745. [Consulta: 30 de agosto 2020]. Disponible en: <u>DOI:</u> 10.1021/acs.iecr.9b03846

JUN, Qi; et al. "Ionic liquid extractive distillation for the recovery of diisopropyl ether and isopropanol from industrial effluent: Experiment and simulation". Journal of Cleaner Production [en línea], 2020, (China), vol. 254 (1), pp: 120132 [Consulta: 22 de agosto 2020]. Disponible en: https://doi.org/10.1016/j.jclepro.2020.120132

KING, Judson; et al. "Separation & Purification: Critical Needs and Oportunities". Journal of The National Academies Press [en línea], 1987, (Washingon, DC), pp. 63-64. [Consulta: 29 de agosto 2020]. Disponible en: https://doi.org/10.17226/19188

KISS, Anton y SMITH, Robin. "Rethinking energy use in distillation processes for a more sustainable chemical industry". Journal of Energy [en línea], 2020, (United Kingdom), vol. 203 (1), pp: 117788 [Consulta: 20 de agosto 2020]. Disponible en: https://doi.org/10.1016/j.energy.2020.117788

KOOIJMAN, Harry y TAYLOR, Ross. ChemSep Modeling Separation Processes [blog]. 2020. [Consulta: 2020-06-01]. Disponible en: http://www.chemsep.com/program/index.html

CHEN, Hao; et al. "Applying artificial neural network to predict the viscosity of microalgae slurry in hydrothermal hydrolysis process". Journal of Energy and AI [en línea], 2021, (China), vol. 4 (1), pp: 100053 [Consulta: 27 de febrero 2020]. Disponible en: https://doi.org/10.1016/j.egyai.2021.100053

LÉVY, Jean. Las redes neuronales artificiales: Fundamentos teóricos y aplicaciones prácticas [en línea], La Coruña-España: NETBIBLIO S. L., 2008. [Consulta: 28 de septiembre 2020]. Disponible en: https://books.google.com.ec/books?id=X0uLwi1Ap4QC&printsec

LIN, K., TSAI, M. y CHIEN, I. "Energy-efficient separation design of diisopropylether/isopropanol/water system having three distillation regions and liquid-liquid envelope". Journal of Separation and Purification Technology [en línea], 2020, (Taiwan), vol. 251

(1), pp: 117292. [Consulta: 27 de septiembre 2020]. Disponible en: https://doi.org/10.1016/j.seppur.2020.117292

LLADOSA, Estela; et al. "Separation of di-n-propyl ether and n-propyl alcohol by extractive distillation and pressure-swing distillation: Computer simulation and economic optimization". Journal of Chemical Engineering and Processing: Process Intensification [en línea], 2011, (España), vol. 50 (11-12), pp: 1266-1274. [Consulta: 30 de noviembre 2020]. Disponible en: https://doi.org/10.1016/j.cep.2011.07.010

LUYBEN, William. "Comparison of extractive distillation and pressure-swing distillation for acetone/chloroform separation". Journal of Computers & Chemical Engineering [en línea], 2013, (United States of America), vol. 50 (1), pp: 1-7. [Consulta: 29 de agosto 2020]. Disponible en: https://doi.org/10.1016/j.compchemeng.2012.10.014

LUYBEN, William. "Design and Control of a Fully Heat-Integrated Pressure-Swing Azeotropic Distillation System". Journal of Industrial & Engineering Chemistry Research [en línea], 2008, (United States of America), vol. 47 (8), pp: 2681-2695. [Consulta: 02 de septiembre 2020]. Disponible en: https://doi.org/10.1021/ie0713660

MACHINE LEARNING MASTERY PTY. What is Deep Learning? [blog]. 2020. [Consulta: 20 de diciembre 2020]. Disponible en: https://machinelearningmastery.com/what-is-deep-learning/

MANZANARES, Albert. Detector de baches con deep learning [en línea], Barcelona-España: Treball de Fi de Grau, 2018. [Consulta: 29 de septiembre 2020]. Disponible en: https://repositori.upf.edu/bitstream/handle/10230/42402/Manzanares_2019.pdf

McCLARREN, Ryan. Computational Nuclear Engineering and Radiological Science Using Python [en línea]. Notre Dame-USA: ELSEVIER, 2018 [Consulta: 03 de enero 2021]. Disponible en: https://doi.org/10.1016/C2016-0-03507-6

MEDEIROS, Daniel. DWSIM - Open Source Process Simulator Web Site [blog]. 2020. [Consulta: 29 de agosto 2020]. Disponible en: http://DWSIM.inforside.com.br/wiki/index.php?title=DWSIM

MINISTERIO DE TELECOMUNICACIONES Y DE LA SOCIEDAD DE LA INFORMACIÓN. Software libre y Software Público [blog]. 2020. [Consulta: 16 de septiembre 2020]. Disponible en: https://www.gobiernoelectronico.gob.ec/software-libre-y-software-publico-2/

MULIA, Jorge y FLORES, Antonio. "Modeling, simulation and control of an internally heat integrated pressure-swing distillation process for bioethanol separation". Journal of Computers & Chemical Engineering [en línea], 2011, (México), vol. 35 (1), pp: 1532-1546. [Consulta: 29 de agosto 2020]. Disponible en: https://doi.org/10.1016/j.compchemeng.2011.03.011

NHU, Viet; et al. "Effectiveness assessment of Keras based deep learning with different robust T optimization algorithms for shallow landslide susceptibility mapping at tropical area". Journal of Catena [en línea], 2020, (Viet Nam), vol. 188 (1), pp: 104458 [Consulta: 22 de diciembre 2020]. Disponible en: DOI: 10.1016/j.catena.2020.104458

NumFOCUS. *About us* [blog]. 2021. [Consulta: 24 de noviembre 2020]. Disponible en: https://pandas.pydata.org/

OSOULALE, Funmilayo; et al. "Energy efficiency optimisation for distillation column using artificial neural network models". Journal of Energy [en línea], 2016, (United Kingdom), vol. 106 (1), pp: 562-578. [Consulta: 25 de septiembre 2020]. Disponible en: https://doi.org/10.1016/j.energy.2016.03.051

PANJAPAKKUL, Warissara. Techno-economic analysis of alternative pathways for isopropanol production. [En línea]. (Trabajo de titulación). (Maestría). A&M University. Texas-Estados Unidos. 2018. pp:1-94. [Consulta: 21 de enero 2021]. Disponible en: https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/173590/PANJAPAKKUL-THESIS-2018.pdf?sequence=1

PROJECT JUPYTER. *About us* [blog]. 2021. [Consulta: 24 de enero 2020]. Disponible en: https://jupyter.org/about

PYTHON SOFTWARE FOUNDATION. Python Web Site [blog]. 2020. [Consulta: 01 de septiembre 2020]. Disponible en: https://www.python.org/

RIVAS, Wilmer y MAZÓN, Bertha. Redes neuronales artificiales aplicadas al reconocimiento de patrones [en línea], Machala-Ecuador: UTMACH, 2017. [Consulta: 28 de septiembre 2020]. Disponible en: http://repositorio.utmachala.edu.ec/bitstream/48000/14223/1/Cap.1-Generalidades%20de%20las%20redes%20neuronales%20artificiales.pdf

SÁNCHEZ, Eduardo; et al. "Artificial Neural Network to capture the Dynamics of a Dividing Wall Column". Journal of Computer Aided Chemical Engineering [en línea], 2020, (Mexico), vol. 48 (1), pp: 133-138. [Consulta: 26 de septiembre 2020]. Disponible en: https://doi.org/10.1016/B978-0-12-823377-1.50023-9

SERRANO, A., SORIA, E., y MARTÍN J. *Redes neuronales artificiales* [en línea], Valencia-España: Departamento de Ingeniería Electrónica, 2009. [Consulta: 29 de septiembre 2020]. Disponible en: http://ocw.uv.es/ingenieria-y-arquitectura/1-2/libro-ocw-libro-de-redes.pdf

SHIN, Yeonju; et al. "Development of model predictive control system using an artificial neural network: A case study with a distillation column". Journal of Cleaner Production [en línea], 2017, (Korea), vol. 277 (20), pp: 124124. [Consulta: 20 de septiembre 2020]. Disponible en: https://doi.org/10.1016/j.jclepro.2020.124124

TANGSRIWONG, Kwanchanok; et al. "Modeling of chemical processes using commercial and open-source software: A comparison between Aspen Plus and DWSIM". Journal of Earth and Environmental Science [en línea], 2020, (Thailand), vol. 463 (1), pp: 012057 [Consulta: 23 de noviembre 2020]. Disponible en: https://doi.org/10.1088/1755-1315/463/1/012057

TAQVI, Syed; et al. "Artificial Neural Network for Anomalies Detection in Distillation Column". Journal of Communications in Computer and Information Science [en línea], 2017, (Singapore), vol. 751, pp: 302-311. [Consulta: 20 de septiembre 2020]. Disponible en: https://doi.org/10.1007/978-981-10-6463-0 26

TSAI, Jen; et al. "Emissions from a generator fueled by blends of diesel, biodiesel, acetone, and isopropyl alcohol: Analyses of emitted PM, particulate carbon, and PAHs". Journal of Science of the Total Environment [en línea], 2014, (Taiwan), vol. 466-467 (1), pp: 195-202 [Consulta: 22 de agosto 2020]. Disponible en: https://doi.org/10.1016/j.scitotenv.2013.07.025

UYUMAZ, Ahmet; et al. "The effects of diisopropyl ether on combustion, performance, emissions and operating range in a HCCI engine". Journal of Fuel[en línea], 2020, (Turkey), vol. 265 (1), pp: 116919 [Consulta: 22 de septiembre 2020]. Disponible en: https://doi.org/10.1016/j.fuel.2019.116919

VISUS, Andrés. ¿Para qué sirve Python? Razones para utilizar este lenguaje de programación [blog]. 2021. [Consulta: 23 de diciembre 2020]. Disponible en: https://www.esic.edu/rethink/tecnologia/para-que-sirve-python

YEGULALP, Serdar. What is TensorFlow? The machine learning library explained [blog]. 2020. [Consulta: 23 de diciembre 2020]. Disponible en: https://www.infoworld.com/article/3278008/what-is-tensorflow-the-machine-learning-library-explained.html

YILDIRIM, Ö., KISS, A., y KENIG, E. "Dividing wall columns in chemical process industry: A review on current activities". Journal of Separation and Purification Technology [en línea], 2011, (Germany), vol. 80 (1), pp: 403-417 [Consulta: 20 de agosto 2020]. Disponible en: https://doi.org/10.1016/j.seppur.2011.05.009

ANEXOS ANEXO A. Base de datos recopilados para RNA

T-in	IPA	DIPE	P-C1	P-C2	P-C3	FM-B1	IPA	DIPE	DIPE	
(K)	in	in	(atm)	(atm)	(atm)	(kmol/	B1	D1	B2	DIPE D3
(IX)	111	111	(atili)	(atili)	(atili)	h)	D1	D1	DZ	DS
340.59	0.65	0.281	1.00	5.00	1.00	342.56	0.963	0.595	0.917	0.532
350.00	0.60	0.30	0.50	5.00	1.00	348.94	0.905	0.709	0.999	0.665
320.00	0.65	0.30	3.00	3.00	0.50	333.26	0.742	0.533	0.450	0.596
340.00	0.66	0.28	3.00	6.00	1.00	342.56	0.762	0.467	0.430	0.509
350.00	0.64	0.26	0.50	3.00	1.50	362.20	0.938	0.618	0.967	0.548
360.00	0.65	0.25	0.80	5.50	1.20	390.83	0.848	0.594	0.934	0.524
310.00	0.55	0.15	1.10	6.40	1.00	493.09	0.657	0.510	0.691	0.487
325.00	0.55	0.10	1.05	5.30	0.60	550.00	0.609	0.476	0.497	0.502
340.00	0.62	0.03	1.06	5.31	0.61	595.96	0.628	0.393	0.159	0.498
345.00	0.55	0.10	0.97	4.80	0.76	550.00	0.605	0.481	0.498	0.510
400.00	0.55	0.34	0.99	4.00	1.00	342.56	0.880	0.672	0.999	0.612
352.00	0.58	0.32	0.98	5.20	1.00	342.57	0.880	0.672	0.999	0.612
358.00	0.51	0.16	0.93	4.87	0.78	503.72	0.618	0.536	0.736	0.509
400.00	0.50	0.30	0.56	5.12	1.04	383.39	0.731	0.703	0.999	0.656
335.46	0.48	0.30	0.64	4.78	1.00	390.83	0.697	0.696	0.999	0.646
300.00	0.48	0.30	0.50	2.50	0.50	390.83	0.697	0.709	0.999	0.665
300.00	0.74	0.21	0.50	2.50	0.50	362.20	0.997	0.582	0.767	0.562
350.00	0.55	0.41	0.89	5.33	0.61	299.18	0.872	0.963	0.999	0.995
300.00	0.56	0.17	0.92	4.18	1.12	467.84	0.693	0.553	0.772	0.521
307.00	0.80	0.11	0.92	4.18	1.12	414.37	0.949	0.476	0.445	0.520
350.00	0.66	0.22	0.50	5.23	1.00	383.39	0.910	0.561	0.854	0.505
390.00	0.59	0.22	0.57	6.04	0.77	383.39	0.908	0.551	0.847	0.493
343.00	0.56	0.26	0.61	6.04	0.81	390.83	0.818	0.594	0.997	0.503
375.00	0.45	0.30	0.86	5.68	0.81	402.36	0.648	0.679	0.999	0.623
340.00	0.43	0.21	0.86	4.95	0.79	493.09	0.574	0.591	0.970	0.509
350.00	0.65	0.30	0.69	5.23	0.96	387.08	0.893	0.560	0.853	0.504
300.00	0.71	0.22	0.69	5.23	0.96	365.62	0.983	0.551	0.817	0.503
100.00	0.71	0.22	0.69	5.23	0.96	365.62	0.982	0.551	0.816	0.503
364.00	0.68	0.24	0.69	4.67	0.87	362.20	0.968	0.574	0.886	0.513
532.00	0.72	0.21	1.06	4.67	0.87	369.08	0.966	0.530	0.698	0.513
570.00	0.61	0.12	1.06	5.21	0.97	493.09	0.704	0.489	0.552	0.504
450.00	0.58	0.12	0.96	4.26	0.97	509.21	0.665	0.503	0.564	0.519
320.00	0.54	0.26	0.93	3.62	0.84	509.21	0.664	0.513	0.564	0.532
410.00	0.51	0.22	0.93	4.10	0.78	444.43	0.693	0.593	0.937	0.522

399.00	0.73	0.13	0.95	5.05	0.87	426.89	0.882	0.488	0.539	0.505
250.00	0.65	0.16	0.76	5.05	0.99	435.54	0.808	0.519	0.472	0.505
326.00	0.56	0.16	0.76	5.05	0.90	477.71	0.684	0.530	0.718	0.505
461.00	0.68	0.14	0.69	5.69	0.90	439.95	0.824	0.493	0.593	0.495
368.00	0.73	0.13	0.88	5.69	0.74	426.89	0.885	0.480	0.538	0.495
435.00	0.56	0.10	0.88	4.69	0.74	543.88	0.617	0.481	0.493	0.511
520.00	0.74	0.10	0.50	4.90	0.50	449.98	0.855	0.463	0.432	0.503
460.00	0.55	0.15	0.58	4.90	0.97	493.09	0.658	0.524	0.689	0.508
340.00	0.65	0.21	0.58	4.90	0.97	394.62	0.877	0.555	0.815	0.509
420.00	0.31	0.21	0.78	3.80	0.97	562.57	0.407	0.685	0.999	0.630
365.00	0.40	0.25	0.81	6.25	1.00	467.84	0.551	0.683	0.999	0.627
555.00	0.43	0.36	0.81	6.25	1.11	365.62	0.638	0.683	0.999	0.627
260.00	0.56	0.30	0.96	5.01	0.96	362.20	0.834	0.673	0.999	0.614
390.00	0.56	0.30	0.68	6.00	0.90	362.20	0.834	0.692	0.999	0.641
250.00	0.65	0.24	0.68	6.00	0.90	372.59	0.923	0.566	0.908	0.494
480.00	0.74	0.11	0.63	5.60	0.90	439.95	0.865	0.462	0.462	0.495
395.00	0.68	0.21	1.00	5.60	0.90	383.39	0.923	0.545	0.806	0.498
450.00	0.64	0.25	0.98	5.30	0.86	369.08	0.922	0.579	0.936	0.503
327.00	0.48	0.36	0.98	4.60	0.86	348.94	0.724	0.672	0.999	0.612
237.00	0.52	0.33	0.88	4.60	0.96	355.49	0.779	0.678	0.999	0.621
427.00	0.59	0.24	0.78	5.62	0.96	394.62	0.833	0.577	0.941	0.499
541.00	0.49	0.35	0.78	4.30	0.99	352.2	0.736	0.685	0.999	0.630
385.00	0.62	0.25	0.62	4.30	0.76	352.2	0.736	0.698	0.999	0.648
525.00	0.59	0.38	0.62	6.10	0.76	426.89	0.867	0.485	0.581	0.489
413.00	0.64	0.28	0.84	6.10	0.96	348.94	0.969	0.590	0.997	0.498
520.00	0.78	0.10	0.97	4.90	0.96	431.18	0.921	0.460	0.416	0.507
510.00	0.63	0.23	0.50	3.64	0.59	387.08	0.879	0.591	0.894	0.533
322.00	0.54	0.40	0.86	5.06	0.86	307.26	0.851	0.939	0.999	0.985
420.00	0.58	0.23	0.93	4.12	0.76	406.31	0.805	0.589	0.920	0.522
342.00	0.58	0.11	0.93	6.98	0.76	520.39	0.650	0.465	0.530	0.477
790.00	0.46	0.35	0.83	6.98	0.46	362.20	0.685	0.681	0.999	0.625
525.00	0.75	0.10	0.96	6.98	0.46	402.36	0.864	0.530	0.795	0.480
365.00	0.64	0.30	0.96	6.98	0.78	336.32	0.977	0.582	0.996	0.487
467.00	0.74	0.12	0.90	7.11	0.96	431.18	0.887	0.457	0.501	0.475
410.00	0.53	0.24	0.90	3.95	0.96	418.49	0.750	0.605	0.980	0.525
250.00	0.67	0.16	0.67	3.95	0.79	426.89	0.835	0.530	0.662	0.524
637.00	0.65	0.24	0.67	3.95	0.99	372.59	0.922	0.587	0.903	0.528
235.00	0.64	0.21	0.78	3.95	0.99	398.46	0.863	0.569	0.828	0.522
328.00	0.58	0.32	0.78	5.32	0.99	342.56	0.880	0.685	0.999	0.630

453.00	0.71	0.21	0.53	5.32	0.57	372.59	0.971	0.547	0.801	0.502
246.00	0.56	0.11	0.86	6.32	0.67	531.94	0.626	0.473	0.536	0.486
534.00	0.74	0.19	0.86	6.32	0.77	376.14	0.984	0.517	0.717	0.487
375.00	0.62	0.24	0.77	4.67	0.77	383.39	0.878	0.582	0.921	0.513
427.00	0.59	0.22	0.77	4.67	0.82	410.31	0.805	0.574	0.886	0.512
378.00	0.62	0.18	0.77	5.89	0.82	431.18	0.793	0.529	0.752	0.493
532.00	0.70	0.17	0.58	3.46	0.94	406.31	0.891	0.541	0.679	0.534
533.00	0.71	0.18	0.59	3.47	0.95	402.36	0.892	0.549	0.715	0.534
634.00	0.68	0.22	0.59	6.53	0.95	376.14	0.939	0.546	0.844	0.486
572.00	0.57	0.23	0.59	6.53	0.56	410.31	0.790	0.566	0.926	0.488
474.00	0.74	0.16	0.64	6.53	0.56	410.31	0.796	0.566	0.927	0.488
576.00	0.68	0.22	0.64	5.89	0.59	376.14	0.937	0.549	0.834	0.494
487.00	0.67	0.23	0.97	5.89	0.88	372.59	0.938	0.557	0.866	0.495
384.00	0.62	0.23	0.97	5.89	0.99	390.83	0.863	0.564	0.895	0.495
536.00	0.61	0.19	0.97	6.47	0.90	426.89	0.792	0.532	0.787	0.486
457.00	0.64	0.15	0.69	6.47	0.90	448.98	0.782	0.497	0.644	0.484
356.00	0.76	0.18	0.69	5.89	0.90	376.14	0.994	0.509	0.668	0.492
278.00	0.59	0.22	0.69	5.89	0.77	410.31	0.805	0.563	0.89	0.495
572.00	0.62	0.20	0.58	5.89	0.77	414.37	0.810	0.544	0.813	0.494
483.00	0.64	0.21	0.58	4.92	0.77	398.46	0.862	0.557	0.827	0.509
567.00	0.70	0.20	0.58	4.92	0.92	383.39	0.937	0.543	0.768	0.508
642.00	0.55	0.31	0.58	6.03	0.92	358.82	0.821	0.701	0.999	0.653
634.00	0.74	0.16	0.83	5.02	0.90	398.46	0.939	0.509	0.631	0.506
368.00	0.69	0.11	0.83	5.02	0.69	463.02	0.801	0.474	0.482	0.505
476.00	0.62	0.17	0.78	5.74	0.78	439.95	0.779	0.523	0.720	0.495
387.00	0.59	0.19	0.62	5.74	0.78	435.54	0.764	0.541	0.798	0.496
697.00	0.63	0.22	0.62	5.74	0.84	349.62	0.863	0.557	0.862	0.497
250.00	0.55	0.26	0.88	5.10	0.85	394.62	0.797	0.678	0.999	0.621
400.00	0.55	0.26	0.75	5.10	0.85	394.62	0.797	0.687	0.999	0.633
400.00	0.55	0.26	0.75	6.20	0.85	394.62	0.797	0.687	0.999	0.633
375.00	0.48	0.32	0.97	6.20	0.85	376.14	0.706	0.673	0.999	0.613
375.00	0.50	0.25	0.97	4.52	0.85	422.66	0.709	0.673	0.999	0.613
461.00	0.78	0.10	0.97	4.52	0.85	431.18	0.886	0.536	0.715	0.515
461.00	0.78	0.10	1.10	5.94	1.50	431.18	0.922	0.449	0.415	0.491
410.00	0.71	0.22	0.80	6.21	1.50	365.62	0.983	0.541	0.817	0.490
310.00	0.71	0.22	0.80	6.21	0.97	365.62	0.982	0.541	0.815	0.490
310.00	0.68	0.22	0.89	4.52	0.97	376.14	0.938	0.563	0.833	0.515
361.00	0.61	0.24	0.89	4.60	0.97	387.08	0.862	0.574	0.930	0.498
500.00	0.71	0.21	0.89	4.60	1.11	372.59	0.968	0.540	0.790	0.497

340.00	0.65	0.25	1.00	4.60	1.11	365.62	0.949	0.572	0.924	0.498
240.00	0.68	0.20	1.00	5.10	0.98	390.83	0.908	0.544	0.777	0.506
320.00	0.58	0.30	0.80	5.10	0.98	390.83	0.908	0.543	0.778	0.505
550.00	0.61	0.16	0.96	4.10	1.00	453.59	0.754	0.536	0.691	0.523
410.00	0.59	0.34	0.76	4.10	0.89	453.59	0.751	0.535	0.692	0.522
300.00	0.61	0.16	0.95	5.20	0.89	453.59	0.752	0.522	0.692	0.504
316.00	0.71	0.21	0.95	5.10	1.10	372.59	0.967	0.546	0.787	0.506
490.00	0.62	0.24	0.86	4.20	0.98	383.39	0.877	0.588	0.922	0.520
320.00	0.69	0.12	1.20	4.20	0.89	453.59	0.817	0.494	0.518	0.522
420.00	0.64	0.19	0.98	6.10	0.94	414.37	0.834	0.532	0.772	0.491
300.00	0.67	0.16	1.00	5.10	1.00	426.89	0.837	0.517	0.662	0.505
362.00	0.59	0.26	0.89	5.10	1.00	379.74	0.860	0.594	0.988	0.507
351.00	0.71	0.16	0.96	5.10	1.20	410.31	0.895	0.512	0.644	0.364
362.00	0.65	0.16	1.00	3.59	1.20	435.54	0.811	0.539	0.671	0.533
412.00	0.56	0.10	1.00	5.32	0.96	543.88	0.613	0.474	0.496	0.501
326.00	0.75	0.10	1.16	5.32	1.96	444.37	0.879	0.458	0.424	0.361
239.00	0.71	0.14	0.83	2.45	1.96	426.89	0.862	0.536	0.580	0.560
565.00	0.61	0.24	0.93	6.50	0.96	387.08	0.862	0.569	0.94	0.488
341.25	0.62	0.21	0.98	4.63	1.00	406.31	0.834	0.564	0.840	0.513
265.00	0.59	0.31	0.89	4.63	1.50	345.73	0.892	0.677	0.999	0.620
298.00	0.68	0.23	0.89	4.89	1.00	369.08	0.951	0.565	0.860	0.509
298.00	0.59	0.23	0.89	4.89	1.00	406.31	0.805	0.579	0.915	0.509
298.00	0.54	0.31	0.89	4.89	1.00	362.20	0.805	0.677	0.999	0.620
560.00	0.54	0.31	0.89	3.20	1.00	362.20	0.804	0.677	0.999	0.620
520.00	0.52	0.33	0.93	3.20	1.00	355.49	0.779	0.675	0.999	0.616
410.00	0.62	0.22	0.86	3.20	0.95	398.46	0.846	0.589	0.867	0.540
365.00	0.58	0.32	0.81	6.30	0.98	342.56	0.880	0.683	0.999	0.627
268.00	0.68	0.26	0.71	6.30	0.78	348.94	0.989	0.565	0.916	0.490
410.00	0.67	0.25	0.71	4.30	0.98	358.82	0.968	0.586	0.918	0.519
395.00	0.70	0.15	0.71	5.30	0.98	422.66	0.866	0.503	0.617	0.501
395.00	0.70	0.15	0.91	4.30	0.88	422.66	0.868	0.515	0.616	0.519
496.00	0.55	0.33	0.91	4.30	0.88	345.73	0.832	0.676	0.999	0.618
356.00	0.55	0.33	0.95	3.30	0.88	345.73	0.832	0.674	0.999	0.615
356.00	0.51	0.33	0.95	3.30	0.88	358.82	0.762	0.674	0.999	0.615
523.00	0.51	0.12	0.99	3.30	0.88	550.00	0.567	0.526	0.598	0.540
523.00	0.61	0.12	0.99	2.30	0.88	493.09	0.706	0.533	0.549	0.566
306.00	0.61	0.12	0.99	2.30	0.88	493.09	0.702	0.534	0.551	0.566
306.00	0.61	0.12	1.00	2.30	1.00	493.09	0.702	0.534	0.551	0.566

ANEXO B. Librerías utilizadas para el diseño, entrenamiento y validación de la RNA.

	Dis	eño, Entrenamiento y Validación					
Librería	Variable	Descripción					
Numpy	np	Utilizada para crear vectores y matrices grandes					
		multidimensionales, funciones matemáticas de alto nivel.					
Pandas	pd	Utilizado ampliamente para la ciencia de datos / análisis de					
		datos y tareas de aprendizaje automático.					
Sklearn		Proporciona varios algoritmos de aprendizaje supervisados					
		y no supervisados.					
Preprocessing		Proporciona transformadores para cambiar los vectores de					
		características sin procesar en una representación que sea					
		más adecuada para los estimadores posteriores.					
Train_test_split		Es una función para dividir matrices de datos en dos					
		subconjuntos: para entrenar datos y para probar datos.					
Matplotlib		Puede generar gráficos, histogramas, espectros de potencia,					
		gráficos de barras, gráficos de error, gráficos de dispersión,					
		etc., con solo unas pocas líneas de código.					
Keras		Biblioteca de Redes Neuronales de Código Abierto escrita					
		en Python.					
Model		Proporciona algunos métodos para obtener la información					
		del modelo, como capas, datos de entrada y datos de salida.					
Load_model		Se utiliza para cargar el modelo					
Input		Entrada					
Dense		Es la capa más común y de uso frecuente.					
Flatten		Una operación de aplanar en un tensor cambia la forma del					
		tensor para que tenga una forma que sea igual al número de					
		elementos contenidos en el tensor sin incluir la dimensión					
		del lote.					

ANEXO C. Variables utilizadas para el diseño, entrenamiento y validación de la RNA.

Diseño, Entrenamiento y Validación						
Variable	Descripción					
DATOS.xlsx	Nombre del documento en excel					
datos_DWSIM	Nombre de la hoja que pertenece al documento de excel					
n,m	Tamaño de datos					
n_ent	Número de entradas					
n_sal	Número de salidas					
X_train	Entrada del set de entrenamiento					
Y_train	Salida del set de entrenamiento					
EliModelo1	Nombre del modelo creado					
EliModelo1_1	Nombre del modelo en el que se guardaron los pesos sinápticos					

ANEXO D. Notebook del programa ejecutado en Jupyter.

Importar librerias

Lib 1

```
In [1]: import numpy as np
   import pandas as pd
   import sklearn
   from sklearn import preprocessing
   from sklearn.model_selection import train_test_split
```

Lib 2

Lectura de datos de Excel

```
In [3]: # Leer los datos de .xlsx usando la libreria de pandas
Extraer=pd.read_excel('DATOS.xlsx', sheet_name='datos_DWsim', header=None)
```

Mostrar datos de Excel

[4]:	#Mo	strar	los datos										
	Ext	raer											
:		0	1	2	3	4	5	6	7	8	9	10	11
	0	NaN	ENTRADA (6)	NaN	NaN	NaN	NaN	NaN	SALIDA (5)	NaN	NaN	NaN	NaN
	1	NaN	T-in (K)	IPA- in	DIPE- in	P-C1 (atm)	P-C2 (atm)	P-C3 (atm)	DFM-B1 (kmol/h)	IPA- B1	DIPE- D1	DIPE- B2	DIPE- D3
	2	1.0	340.59	0.658	0.281	1.00	5.00	1.00	342.56	0.963	0.595	0.917	0.532
	3	2.0	350.00	0.60	0.3	0.50	5.00	1.00	348.94	0.905	0.709	0.999	0.665
	4	3.0	320.00	0.65	0.3	3.00	3.00	0.50	333.26	0.742	0.533	0.450	0.596
	147	146.0	356.00	0.51	0.33	0.95	3.30	0.88	358.82	0.762	0.674	0.999	0.615
	148	147.0	523.00	0.51	0.12	0.99	3.30	0.88	550.00	0.567	0.526	0.598	0.540
	149	148.0	523.00	0.61	0.12	0.99	2.30	0.88	493.09	0.706	0.533	0.549	0.566
	150	149.0	306.00	0.61	0.12	0.99	2.30	0.88	493.09	0.702	0.534	0.551	0.566
	151	150.0	306.00	0.61	0.12	1.00	2.30	1.00	493.09	0.702	0.534	0.551	0.566

152 rows × 12 columns

Tabla filtrada (muestra solo los valores)

```
In [5]: # clear data
Datos=np.array(Extraer)[2:,1:14]
Datos=np.array(Datos,float)
n,m=Datos.shape # tamaño de datos
n_ent=6 # número de entradas
n_sal=5 # número de salidas

# mostrar datos despues de limpiar
pd.DataFrame(Datos)
```

Out[5]:		0	1	2	3	4	5	6	7	8	9	10
	0	340.59	0.658	0.281	1.00	5.0	1.00	342.56	0.963	0.595	0.917	0.532
	1	350.00	0.600	0.300	0.50	5.0	1.00	348.94	0.905	0.709	0.999	0.665
	2	320.00	0.650	0.300	3.00	3.0	0.50	333.26	0.742	0.533	0.450	0.596
	3	340.00	0.660	0.280	3.00	6.0	1.00	342.56	0.762	0.467	0.430	0.509
	4	350.00	0.640	0.260	0.50	3.0	1.50	362.20	0.938	0.618	0.967	0.548
	145	356.00	0.510	0.330	0.95	3.3	0.88	358.82	0.762	0.674	0.999	0.615
	146	523.00	0.510	0.120	0.99	3.3	0.88	550.00	0.567	0.526	0.598	0.540
	147	523.00	0.610	0.120	0.99	2.3	0.88	493.09	0.706	0.533	0.549	0.566
	148	306.00	0.610	0.120	0.99	2.3	0.88	493.09	0.702	0.534	0.551	0.566
	149	306.00	0.610	0.120	1.00	2.3	1.00	493.09	0.702	0.534	0.551	0.566

150 rows × 11 columns

Normalización de datos

Rescaling (min-max normalization)

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

Datos de la entrada normalizados

```
In [6]: # Normalizar datos de entrada
entradas=Datos[:,0:n_ent]
ent_norm=np.zeros((n,n_ent,1)) # size = n*n_ent*1
for i in range(n_ent):
    i_Norm=preprocessing.MinMaxScaler().fit_transform(entradas[:,i].reshape(-1,1))
    ent_norm[:,i,0]=i_Norm.reshape(-1)
# Mostrar datos de entrada normalizados
pd.DataFrame(ent_norm[:,:,0])
```

Datos de la salida normalizados

```
In [7]: # Normalizar datos de salida
    salidas=Datos[:,n_ent:]
    sal_norm=np.zeros((n,n_sal))
    sal_min_max=np.zeros((n_sal,2))
    for i in range(n_sal):
        i_Norm=preprocessing.MinMaxScaler().fit_transform(salidas[:,i].reshape(-1,1))
        sal_norm[:,i]=i_Norm.reshape(-1)
        sal_min_max[i,0]=salidas[:,i].min()
        sal_min_max[i,1]=salidas[:,i].max()
    # Mostrar datos de salida normalizados
    pd.DataFrame(sal_norm)
```

Datos de entrenamiento

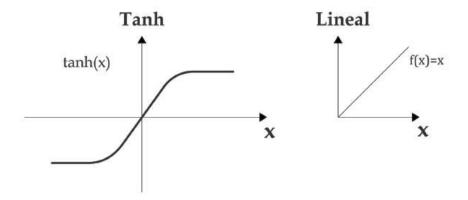
```
In [8]:
```

```
X_train = ent_norm # entrada del set de entrenamiento
Y_train = sal_norm # salida del set de entrenamiento
```

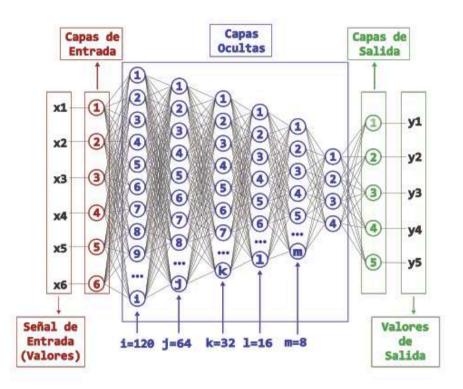
Configuración para el Entrenamiento, Prueba y Validación

```
In [9]: # Configuración para la división de datos en el Entrenamiento (70%) and Prueba (30%)
x_train, x_test, y_train, y_test = train_test_split(X_train, Y_train, test_size=0.3,
# Configuración para la división de datos en la configuración de Prueba para Prueba
x_test, x_valid, y_test, y_valid = train_test_split(x_test, y_test, test_size=0.5, r
```

Mostrar valores que se consideran para Entrenamiento


```
In [10]: print ("número de datos para entrenamiento = " + str(x_train.shape[0]))
            print ("número de datos para prueba = " + str(x_test.shape[0]))
            print ("número de datos para validación = " + str(y_valid.shape[0]))
print('')
            print(
            print ("x_test shape: " + str(x_train.shape))
print ("x_test shape: " + str(x_test.shape))
print ("x_valid shape: " + str(x_valid.shape))
print('')
            print ("x_train shape: " + str(x_train.shape))
            print( 'y_train shape: " + str(y_train.shape))
print ("y_test shape: " + str(y_test.shape))
            print ("y_valid shape: " + str(y_valid.shape))
           número de datos para entrenamiento = 105
           número de datos para prueba = 22
           número de datos para validación = 23
           x_train shape: (105, 6, 1)
           x_test shape: (22, 6, 1)
           _valid shape: (23, 6, 1)
           y_train shape: (105, 5)
           y_test shape: (22, 5)
           y_valid shape: (23, 5)
```

Creación del modelo


In [11]:

```
# Creación del modelo
hiddenLayerSize = 128
def EliModelo1(input_shape):
   Argumentos:
   input shape -- forma del conjunto de datos
   Retornos:
   model -- una instancia de Model () en Keras
   # Defina el marcador de posición de entrada como un tensor con forma input shape.
   X_input = Input(input_shape)
   X=Flatten()(X input) # Entrada flatten. No afecta el tamaño del lote.
   # FC -> Tanh Block applied to X
   X = Dense(hiddenLayerSize, activation = 'tanh')(X) # La primera capa oculta: capa compl
                                                       # número de unidad =hiddenLayerSize
   X = Dense(hiddenLayerSize//2,activation = 'tanh')(X) # La segunda capa oculta: capa comp
                                                    # número de unidad =hiddenLayerSize//2
   X = Dense(hiddenLayerSize//4, activation = 'tanh')(X) # La tercera capa oculta: capa ca
                                                   # número de unidad =hiddenLayerSize//4
   X = Dense(hiddenLayerSize//8, activation = 'tanh')(X) # La cuarta capa oculta: capa com
                                                    # número de unidad =hiddenLayerSize//8
   X = Dense(hiddenLayerSize//16, activation = 'tanh')(X) # La quinta capa oculta: capa ca
                                                   # número de unidad =hiddenLayerSize//16
   X = Dense(hiddenLayerSize//32, activation = 'tanh')(X) # La quinta capa oculta: capa ca
                                                   # número de unidad =hiddenLayerSize//32
   X = Dense(n_sal,activation = 'linear')(X) # La capa de salida : número de unidad = n_sa
                                              # y la activación es lineal
   # Crea un modelo. Esto crea la instancia de modelo de Keras, se usará esta instancia pa
   model = Model(inputs = [X_input], outputs = [X], name='EliModelo1')
   return model
```

Funciones Tangencial y Lineal

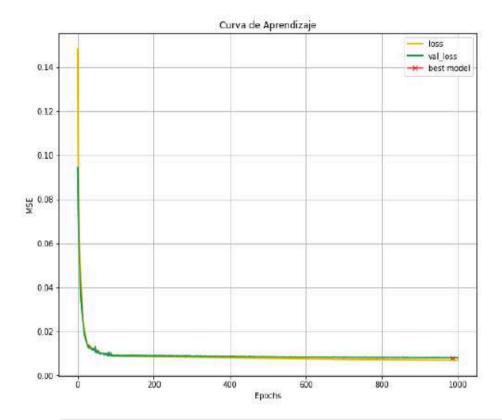
Modelo de RNA

In [12]:

```
mod=EliModelo1((n_ent,1))
Optimizador:
    Adam : combina SGD y RMSprop
            SGD : Stochastic gradient descent (Descenso de gradiente estocástico)
            RMSprop : Similar al descenso de gradiente con impulso
# Configuración del modelo para Entrenamiento.
mod.compile(optimizer =Adam(lr=0.0001), loss = "mean_squared_error", metrics = ["accuracy"]
# EarlyStopping : El entrenamiento se detiene cuando una cantidad monitoreada haya dejado d
                # de epoch =patience.
# ReduceLROnPlateau : Reducir la tasa de aprendizaje cuando una métrica ha dejado de mejora
                    # de epoch = patience.
# ModelCheckpoint : Guarde el modelo después de cada epoch.
callbacks = [EarlyStopping(patience=500, verbose=1),
    ReduceLROnPlateau(factor=0.01, patience=10, min_lr=0.00001, verbose=1),
    ModelCheckpoint('EliModelo1_1.h5', verbose=1, save_best_only=True, save_weights_only=Tr
1
# batch_size : Número de muestras por actualización de gradiente.
# epochs : Un epoch es una iteración sobre todos los datos `x` e` y` proporcionados.
# validation_data : Datos sobre los que se evalua el loss (pérdida) y cualquier métrica del
                #
                   El modelo no será entrenado en estos datos.
# Entrena el modelo para un numero fijo de epochs (iteración en la base de datos).
results=mod.fit(x = x_train, y = y_train, epochs = 1000, batch_size =1,callbacks=callbacks, validation_data=(x_valid,y_valid))
```

```
Epoch 1/1000
52/105 [======>....] - ETA: 0s - loss: 0.1790 - accura
cy: 0.2500
Epoch 00001: val loss improved from inf to 0.09442, saving model to EliMod
elo1 1.h5
curacy: 0.2857 - val_loss: 0.0944 - val_accuracy: 0.2609
Epoch 2/1000
49/105 [======>.....] - ETA: 0s - loss: 0.1098 - accura
cy: 0.4082
Epoch 00002: val_loss improved from 0.09442 to 0.07644, saving model to El
iModelo1 1.h5
105/105 [============ ] - 0s 1ms/step - loss: 0.1031 - ac
curacy: 0.3810 - val_loss: 0.0764 - val_accuracy: 0.3043
Epoch 3/1000
50/105 [======>....] - ETA: 0s - loss: 0.0960 - accura
cy: 0.3600
Epoch 00003: val_loss improved from 0.07644 to 0.06805, saving model to El
```

Resumen del Entrenamiento


In [13]:

```
mod.summary()
Model: "EliModelo1"
Layer (type)
                              Output Shape
                                                         Param #
input_1 (InputLayer)
                              [(None, 6, 1)]
                                                         0
flatten (Flatten)
                              (None, 6)
dense (Dense)
                              (None, 128)
                                                         896
dense_1 (Dense)
                              (None, 64)
                                                         8256
dense_2 (Dense)
                              (None, 32)
                                                         2080
dense_3 (Dense)
                              (None, 16)
                                                         528
dense_4 (Dense)
                              (None, 8)
                                                         136
dense_5 (Dense)
                              (None, 4)
                                                         36
```

Gráfico del Aprendizaje

```
In [14]:

plt.figure(figsize=(10, 8))
plt.title("Curva de Aprendizaje")
plt.plot(results.history["loss"], label="loss", lw=2, color='#f4b400')
plt.plot(results.history["val_loss"], label="val_loss", lw=2, color='#0f9d58')
plt.plot( np.argmin(results.history["val_loss"]), np.min(results.history["val_loss"]),marke
plt.xlabel("Epochs")
plt.ylabel("MSE")
plt.legend();
plt.grid()
```



```
In [22]: print(np.argmin(results.history["val_loss"]), np.min(results.history["val_loss"]))
986 0.007957193069159985
```

Cargar Modelo Entrenado

```
In [23]: # si desea utilizar el modelo antiguo entrenado, ENTONCES use_trained_model = True

use_trained_model=False
if use_trained_model:
    n_ent=6
    mod=EliModelo1((n_ent,1))
    mod.compile(optimizer =Adam(lr=0.0001), loss = "mean_squared_error", metrics = [
    mod.load_weights('EliModelo1_1.h5')
```

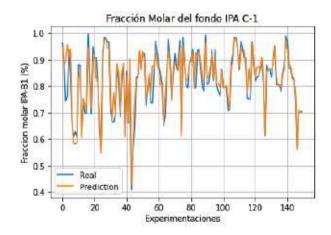
Evaluación del Entrenamiento

Evaluación de la Prueba

Evaluación de la Validación

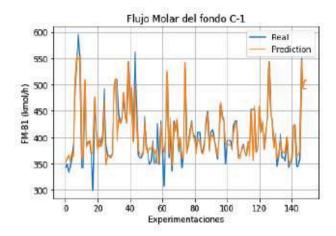
```
In [26]: print(' loss , accuracy')
mod.evaluate(x_valid, y_valid, verbose=0)

loss , accuracy


Out[26]: [0.008051177486777306, 0.95652174949646]
```

Predecir salidas de las entradas

Gráfico Flujo Molar C-1


```
index=0
plt.figure(index+1);
plt.plot(Real[:,index],label='Real')
plt.plot(Prediction[:,index],label='Prediction')
plt.grid()
plt.legend()
plt.legend()
plt.xlabel('Experimentaciones')
plt.ylabel('FM-B1 (kmol/h)')
plt.title('Flujo Molar del fondo C-1')
```

Out[30]: Text(0.5, 1.0, 'Flujo Molar del fondo C-1')

Gráfico Fracción Molar del destilado DIPE C-1

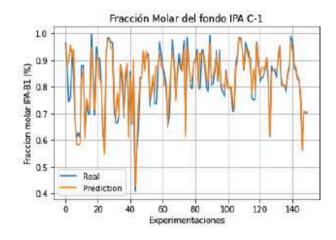

```
In [32]: index=2
    plt.figure(index+1);
    plt.plot(Real[:,index],label='Real')
    plt.plot(Prediction[:,index],label='Prediction')
    plt.grid()
    plt.legend()
    plt.xlabel('Experimentaciones')
    plt.ylabel('Fraccion molar DIPE-D1 (%)')
    plt.title('Fraccion Molar del destilado DIPE C-1 ')
```


Gráfico Fracción Molar del fondo IPA C-1

```
index=1
plt.figure(index+1);
plt.plot(Real[:,index],label='Real')
plt.plot(Prediction[:,index],label='Prediction')
plt.grid()
plt.legend()
plt.xlabel('Experimentaciones')
plt.ylabel('Fraccion molar IPA-B1 (%)')
plt.title('Fraccion Molar del fondo IPA C-1')
```

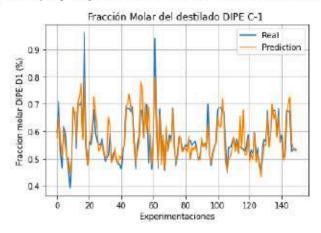

Out[31]: Text(0.5, 1.0, 'Fracción Molar del fondo IPA C-1')

Gráfico Fracción Molar del destilado DIPE C-1

```
In [32]: index=2
plt.figure(index+1);
plt.plot(Real[:,index],label='Real')
plt.plot(Prediction[:,index],label='Prediction')
plt.grid()
plt.legend()
plt.xlabel('Experimentaciones')
plt.ylabel('Fraccion molar DIPE-D1 (%)')
plt.title('Fraccion Molar del destilado DIPE C-1 ')
```

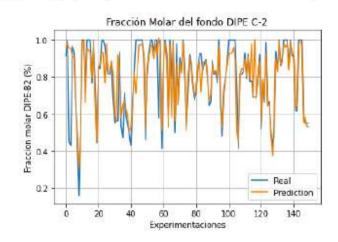

Out[32]: Text(0.5, 1.0, 'Fracción Molar del destilado DIPE C-1 ')

Gráfico Fracción Molar del fondo DIPE C-2

```
index=3
plt.figure(index+1);
plt.plot(Real[:,index],label='Real')
plt.plot(Prediction[:,index],label='Prediction')
plt.grid()
plt.legend()
plt.xlabel('Experimentaciones')
plt.ylabel('Fraccion molar DIPE-B2 (%)')
plt.title('Fracción Molar del fondo DIPE C-2')
```

Out[33]: Text(0.5, 1.0, 'Fracción Molar del fondo DIPE C-2')

Gráfico Fracción Molar del destilado DIPE C-3

```
In [34]: index=4
              plt.figure(index+1);
              plt.plot(Real[:,index],label='Real')
plt.plot(Prediction[:,index],label='Prediction')
              plt.grid()
             plt.grad()
plt.legend()
plt.xlabel('Experimentaciones')
plt.ylabel('Fraccion molar DIPE-D3 (%)')
plt.title('Fracción Molar del destilado DIPE C-3')
Out[34]: Text(0.5, 1.0, 'Fracción Molar del destilado DIPE C-3')
                               Fracción Molar del destilado DIPE C-3
                1.0
                                                                          Prediction
             0.4
                                                                     120
                              20
                                      40
                                              60
                                                      80
                                                             100
                                                                             140
                                            Experimentaciones
In [36]:
              import scipy as sp
              a=np.diag(np.random.randint((5,5)))
              P,L,U=sp.linalg.lu(a)
In [37]:
```

ANEXO E. Valores reales vs valores predichos en el tope de C1 para DIPE

	Ι	DIPE-D1	
	Valor Real	Valor Predicho	% Error
1	0,5950	0,6005	0,0092
2	0,7090	0,6342	0,1055
3	0,5330	0,6776	0,2714
4	0,4670	0,6132	0,3131
5	0,6180	0,6017	0,0265
6	0,5940	0,5700	0,0403
7	0,5100	0,5189	0,0175
8	0,4760	0,5214	0,0954
9	0,3930	0,4309	0,0965
10	0,4810	0,5179	0,0767
11	0,6720	0,6915	0,0290
12	0,6720	0,6620	0,0149
13	0,5360	0,5836	0,0887
14	0,7030	0,6733	0,0423
15	0,6960	0,6934	0,0037
16	0,7090	0,7221	0,0185
17	0,5820	0,5592	0,0392
18	0,9630	0,7609	0,2099
19	0,5530	0,5614	0,0152
20	0,4760	0,4526	0,0493
21	0,5610	0,5494	0,0207
22	0,5510	0,5713	0,0368
23	0,5940	0,6206	0,0448
24	0,6790	0,6998	0,0306
25	0,5910	0,6442	0,0900
26	0,5600	0,6114	0,0918
27	0,5510	0,5414	0,0174
28	0,5510	0,5453	0,0103
29	0,5740	0,5671	0,0120
30	0,5300	0,5378	0,0148
31	0,4890	0,5030	0,0286
32	0,5030	0,5214	0,0366
33	0,5130	0,6556	0,2779
34	0,5930	0,6288	0,0603
35	0,4880	0,4804	0,0155
36	0,5190	0,5014	0,0339
37	0,5300	0,5474	0,0329

38	0,4930	0,4835	0,0192
39	0,4800	0,4760	0,0084
40	0,4810	0,5212	0,0836
41	0,4630	0,4777	0,0317
42	0,5240	0,5401	0,0308
43	0,5550	0,5501	0,0089
44	0,6850	0,6630	0,0321
45	0,6830	0,6644	0,0272
46	0,6830	0,7106	0,0404
47	0,6730	0,6716	0,0021
48	0,6920	0,6458	0,0667
49	0,5660	0,5702	0,0075
50	0,4620	0,4562	0,0125
51	0,5450	0,5399	0,0094
52	0,5790	0,5786	0,0007
53	0,6720	0,7486	0,1140
54	0,6780	0,7209	0,0633
55	0,5770	0,5852	0,0141
56	0,6850	0,6973	0,0179
57	0,6980	0,6002	0,1402
58	0,4850	0,6691	0,3796
59	0,5900	0,5909	0,0015
60	0,4600	0,4630	0,0065
61	0,5910	0,5848	0,0105
62	0,9390	0,7527	0,1984
63	0,5890	0,6064	0,0295
64	0,4650	0,4738	0,0190
65	0,6810	0,6758	0,0076
66	0,5300	0,4676	0,1178
67	0,5820	0,6108	0,0495
68	0,4570	0,4478	0,0201
69	0,6050	0,6303	0,0418
70	0,5300	0,5209	0,0171
71	0,5870	0,5673	0,0336
72	0,5690	0,5695	0,0008
73	0,6850	0,6631	0,0320
74	0,5470	0,5366	0,0190
75	0,4730	0,4873	0,0302
76	0,5170	0,5121	0,0095
77	0,5820	0,5918	0,0168
78	0,5740	0,5860	0,0209
79	0,5290	0,5302	0,0024

		F	F
80	0,5410	0,5258	0,0281
81	0,5490	0,5294	0,0358
82	0,5460	0,5252	0,0381
83	0,5660	0,5776	0,0204
84	0,5660	0,4958	0,1240
85	0,5490	0,5402	0,0161
86	0,5570	0,5495	0,0135
87	0,5640	0,5663	0,0041
88	0,5320	0,5330	0,0018
89	0,4970	0,4888	0,0164
90	0,5090	0,4998	0,0181
91	0,5630	0,5796	0,0295
92	0,5440	0,5414	0,0049
93	0,5570	0,5544	0,0048
94	0,5430	0,5275	0,0285
95	0,7010	0,6221	0,1125
96	0,5090	0,5047	0,0084
97	0,4740	0,4753	0,0028
98	0,5230	0,5278	0,0092
99	0,5410	0,5514	0,0193
100	0,5570	0,5448	0,0220
101	0,6780	0,6448	0,0489
102	0,6870	0,6284	0,0853
103	0,6870	0,6176	0,1011
104	0,6730	0,7034	0,0451
105	0,6730	0,6503	0,0337
106	0,5360	0,4680	0,1268
107	0,4490	0,4199	0,0648
108	0,5410	0,5144	0,0492
109	0,5410	0,5325	0,0158
110	0,5630	0,5572	0,0103
111	0,5740	0,5931	0,0333
112	0,5400	0,5347	0,0099
113	0,5720	0,5836	0,0203
114	0,5440	0,5362	0,0144
115	0,5430	0,6507	0,1983
116	0,5360	0,5402	0,0079
117	0,5350	0,6713	0,2548
118	0,5220	0,5253	0,0062
119	0,5460	0,5334	0,0231
120	0,5880	0,5843	0,0064
121	0,4940	0,4876	0,0130
	· · · · · · · · · · · · · · · · · · ·		

122	0,5320	0,5275	0,0084
123	0,5170	0,5024	0,0283
124	0,5940	0,6103	0,0275
125	0,5120	0,4875	0,0479
126	0,5390	0,5216	0,0322
127	0,4740	0,4937	0,0415
128	0,4580	0,3875	0,1539
129	0,5360	0,4540	0,1529
130	0,5690	0,5612	0,0137
131	0,5640	0,5672	0,0057
132	0,6770	0,6494	0,0407
133	0,5650	0,5607	0,0077
134	0,5790	0,5935	0,0250
135	0,6770	0,6829	0,0088
136	0,6770	0,6579	0,0282
137	0,6750	0,6824	0,0110
138	0,5890	0,5890	0,0000
139	0,6830	0,6514	0,0463
140	0,5650	0,5775	0,0221
141	0,5860	0,5749	0,0189
142	0,5030	0,4863	0,0332
143	0,5150	0,5068	0,0159
144	0,6760	0,6713	0,0069
145	0,6740	0,6992	0,0374
146	0,6740	0,7142	0,0597
147	0,5260	0,5731	0,0896
148	0,5330	0,5486	0,0292
149	0,5340	0,5425	0,0159
150	0,5340	0,0004	
	Error Prom	0,0463	

ANEXO F. Valores reales vs valores predichos en el tope de C1 para Flujo Molar e IPA.

	DFM-B1 (kmol/h)			IPA-B1			
	Valor Real	Valor Predicho	% Error		Valor Real	Valor Predicho	% Error
1	342,5600	364,7754	0,0649	1	0,9630	0,9240	0,0405
2	348,9400	359,9184	0,0315	2	0,9050	0,8917	0,0147
3	333,2600	371,5721	0,1150	3	0,7420	0,8290	0,1172
4	342,5600	376,1396	0,0980	4	0,7620	0,8727	0,1452
5	362,2000	365,7337	0,0098	5	0,9380	0,9094	0,0305
6	390,8300	371,8948	0,0484	6	0,8480	0,9084	0,0712
7	493,0900	505,2320	0,0246	7	0,6570	0,6529	0,0062
8	550,0000	558,7449	0,0159	8	0,6090	0,5676	0,0680
9	595,9600	585,7080	0,0172	9	0,6280	0,6264	0,0026
10	550,0000	556,8152	0,0124	10	0,6050	0,5751	0,0495
11	342,5600	359,7162	0,0501	11	0,8800	0,8293	0,0576
12	342,5700	356,0360	0,0393	12	0,8800	0,8682	0,0134
13	503,7200	512,2085	0,0169	13	0,6180	0,6019	0,0261
14	383,3900	386,2862	0,0076	14	0,7310	0,7822	0,0700
15	390,8300	392,7615	0,0049	15	0,6970	0,7509	0,0774
16	390,8300	392,6607	0,0047	16	0,6970	0,6986	0,0023
17	362,2000	386,4352	0,0669	17	0,9970	0,9468	0,0504
18	299,1800	307,4671	0,0277	18	0,8720	0,8402	0,0365
19	467,8400	471,3888	0,0076	19	0,6930	0,7108	0,0256
20	414,3700	426,4346	0,0291	20	0,9490	0,9472	0,0019
21	383,3900	382,6235	0,0020	21	0,9100	0,9016	0,0092
22	383,3900	403,2993	0,0519	22	0,9080	0,8194	0,0975
23	390,8300	387,5933	0,0083	23	0,8180	0,8225	0,0054
24	402,3600	409,8752	0,0187	24	0,6480	0,7164	0,1056
25	493,0900	503,2360	0,0206	25	0,5740	0,5887	0,0255
26	387,0800	358,1530	0,0747	26	0,8930	0,9326	0,0443
27	365,6200	374,7861	0,0251	27	0,9830	0,9365	0,0473
28	365,6200	369,9587	0,0119	28	0,9820	0,9424	0,0403
29	362,2000	377,4837	0,0422	29	0,9680	0,9242	0,0453
30	369,0800	384,1309	0,0408	30	0,9660	0,9208	0,0468
31	493,0900	477,9384	0,0307	31	0,7040	0,7423	0,0544
32	509,2100	503,0126	0,0122	32	0,6650	0,6784	0,0201
33	509,2100	408,5330	0,1977	33	0,6640	0,7717	0,1621
34	444,4300	452,8099	0,0189	34	0,6930	0,6979	0,0070
35	426,8900	423,7202	0,0074	35	0,8820	0,8947	0,0144
36	435,5400	433,6033	0,0044	36	0,8080	0,8381	0,0372
37	477,7100	477,1964	0,0011	37	0,6840	0,6960	0,0175

20	120.0500	420,0000	0.0240	20	0.9240	0.9550	0.0270
38	439,9500	429,0000	0,0249	38	0,8240	0,8552	0,0379
39	426,8900	423,3887	0,0082	39	0,8850	0,8886	0,0040
40	543,8800	538,6205	0,0097	40	0,6170	0,6073	0,0157
41	449,9800	430,6023	0,0431	41	0,8550	0,8874	0,0379
42	493,0900	477,4464	0,0317	42	0,6580	0,6759	0,0272
43	394,6200	391,2460	0,0085	43	0,8770	0,8833	0,0072
44	562,5700	533,2439	0,0521	44	0,4070	0,4850	0,1916
45	467,8400	473,4118	0,0119	45	0,5510	0,6170	0,1198
46	365,6200	386,3322	0,0566	46	0,6380	0,7441	0,1663
47	362,2000	362,6865	0,0013	47	0,8340	0,8362	0,0026
48	362,2000	368,4262	0,0172	48	0,8340	0,8487	0,0177
49	372,5900	372,0348	0,0015	49	0,9230	0,9014	0,0234
50	439,9500	433,4199	0,0148	50	0,8650	0,8988	0,0391
51	383,3900	387,2715	0,0101	51	0,9230	0,8950	0,0303
52	369,0800	383,6655	0,0395	52	0,9220	0,8866	0,0384
53	348,9400	353,0374	0,0117	53	0,7240	0,7605	0,0504
54	355,4900	350,2111	0,0148	54	0,7790	0,7986	0,0252
55	394,6200	393,8118	0,0020	55	0,8330	0,8369	0,0047
56	352,2000	379,8390	0,0785	56	0,7360	0,7781	0,0571
57	352,2000	387,2769	0,0996	57	0,7360	0,8719	0,1846
58	426,8900	347,8344	0,1852	58	0,8670	0,9005	0,0387
59	348,9400	367,1564	0,0522	59	0,9690	0,9118	0,0591
60	431,1800	429,7816	0,0032	60	0,9210	0,9264	0,0059
61	387,0800	400,1832	0,0339	61	0,8790	0,8592	0,0225
62	307,2600	312,1393	0,0159	62	0,8510	0,8363	0,0172
63	406,3100	413,4710	0,0176	63	0,8050	0,7982	0,0085
64	520,3900	523,0226	0,0051	64	0,6500	0,6486	0,0022
65	362,2000	409,4773	0,1305	65	0,6850	0,7550	0,1022
66	402,3600	433,6166	0,0777	66	0,8640	0,8744	0,0120
67	336,3200	353,3506	0,0506	67	0,9770	0,9152	0,0633
68	431,1800	434,2630	0,0072	68	0,8870	0,8874	0,0005
69	418,4900	423,6956	0,0124	69	0,7500	0,7523	0,0030
70	426,8900	423,0052	0,0091	70	0,8350	0,8588	0,0285
71	372,5900	386,2552	0,0367	71	0,9220	0,8893	0,0355
72	398,4600	397,7772	0,0017	72	0,8630	0,8695	0,0076
73	342,5600	351,0575	0,0248	73	0,8800	0,8734	0,0075
74	372,5900	384,0486	0,0308	74	0,9710	0,9231	0,0494
75	531,9400	539,3277	0,0139	75	0,6260	0,5980	0,0447
76	376,1400	382,6818	0,0174	76	0,9840	0,9207	0,0643
77	383,3900	390,9306	0,0197	77	0,8780	0,8631	0,0170
78	410,3100	409,5092	0,0020	78	0,8050	0,8117	0,0083
79	431,1800	423,0692	0,0188	79	0,7930	0,8105	0,0220
	.21,1000	,,,,,,	5,5100		2,	5,5105	. ,

00	107 2100	401.0004	0.0100	00	0.0010	0.0024	0.0016
80	406,3100	401,8984	0,0109	80	0,8910	0,8924	0,0016
81	402,3600	395,6448	0,0167	81	0,8920	0,9066	0,0164
82	376,1400	381,5802	0,0145	82	0,9390	0,9002	0,0413
83	410,3100	409,3929	0,0022	83	0,7900	0,7958	0,0073
84	410,3100	394,5300	0,0385	84	0,7960	0,9054	0,1375
85	376,1400	388,2085	0,0321	85	0,9370	0,8990	0,0405
86	372,5900	382,3583	0,0262	86	0,9380	0,8975	0,0432
87	390,8300	391,2423	0,0011	87	0,8630	0,8568	0,0072
88	426,8900	417,2604	0,0226	88	0,7920	0,8020	0,0126
89	448,9800	437,4572	0,0257	89	0,7820	0,8108	0,0369
90	376,1400	384,3133	0,0217	90	0,9940	0,9398	0,0545
91	410,3100	404,2869	0,0147	91	0,8050	0,8186	0,0169
92	414,3700	403,7841	0,0255	92	0,8100	0,8302	0,0249
93	398,4600	397,1273	0,0033	93	0,8620	0,8633	0,0015
94	383,3900	387,5666	0,0109	94	0,9370	0,9103	0,0285
95	358,8200	383,9033	0,0699	95	0,8210	0,8465	0,0310
96	398,4600	397,0143	0,0036	96	0,9390	0,9148	0,0257
97	463,0200	454,6258	0,0181	97	0,8010	0,8360	0,0437
98	439,9500	427,5317	0,0282	98	0,7790	0,7984	0,0248
99	435,5400	425,6499	0,0227	99	0,7640	0,7849	0,0273
100	349,6200	393,2667	0,1248	100	0,8630	0,8560	0,0081
101	394,6200	393,6835	0,0024	101	0,7970	0,8007	0,0047
102	394,6200	399,3837	0,0121	102	0,7970	0,8034	0,0080
103	394,6200	395,0572	0,0011	103	0,7970	0,8080	0,0138
104	376,1400	381,4321	0,0141	104	0,7060	0,7649	0,0835
105	422,6600	433,7246	0,0262	105	0,7090	0,7234	0,0203
106	431,1800	428,7216	0,0057	106	0,8860	0,9242	0,0431
107	431,1800	448,0587	0,0391	107	0,9220	0,9187	0,0035
108	365,6200	376,0565	0,0285	108	0,9830	0,9308	0,0531
109	365,6200	374,0662	0,0231	109	0,9820	0,9284	0,0546
110	376,1400	383,1645	0,0187	110	0,9380	0,9103	0,0295
111	387,0800	391,2891	0,0109	111	0,8620	0,8547	0,0084
112	372,5900	382,2360	0,0259	112	0,9680	0,9230	0,0465
113	365,6200	376,4786	0,0297	113	0,9490	0,9021	0,0494
114	390,8300	393,6049	0,0071	114	0,9080	0,8959	0,0133
115	390,8300	362,0860	0,0735	115	0,9080	0,8638	0,0487
116	453,5900	436,8273	0,0370	116	0,7540	0,7732	0,0254
117	453,5900	354,2933	0,2189	117	0,7510	0,8742	0,1640
118	453,5900	453,6003	0,000	118	0,7520	0,7721	0,0268
119	372,5900	380,7346	0,0219	119	0,9670	0,9273	0,0410
120	383,3900	391,1919	0,0203	120	0,8770	0,8613	0,0179
121	453,5900	455,5105	0,0042	121	0,8170	0,8396	0,0277
	.22,2700	.22,2100	- , · · <u>-</u>		5,5175	5,5570	- ,- - , ,

122	414,3700	409,5904	0,0115	122	0,8340	0,8404	0,0076
123	426,8900	426,6307	0,0006	123	0,8340	0,8554	0,0076
123		,				, i	
	379,7400	384,6006	0,0128	124	0,8600	0,8508	0,0107
125	410,3100	412,9275	0,0064	125	0,8950	0,9019	0,0078
126	435,5400	432,2585	0,0075	126	0,8110	0,8356	0,0304
127	543,8800	544,7596	0,0016	127	0,6130	0,6139	0,0015
128	444,3700	468,0623	0,0533	128	0,8790	0,8807	0,0019
129	426,8900	441,6958	0,0347	129	0,8620	0,9036	0,0483
130	387,0800	389,2911	0,0057	130	0,8620	0,8498	0,0142
131	406,3100	405,5724	0,0018	131	0,8340	0,8395	0,0066
132	345,7300	347,0179	0,0037	132	0,8920	0,8885	0,0040
133	369,0800	377,3862	0,0225	133	0,9510	0,9175	0,0353
134	406,3100	401,3167	0,0123	134	0,8050	0,8271	0,0275
135	362,2000	364,7832	0,0071	135	0,8050	0,8203	0,0190
136	362,2000	387,1700	0,0689	136	0,8040	0,8058	0,0023
137	355,4900	382,6519	0,0764	137	0,7790	0,7881	0,0117
138	398,4600	401,6209	0,0079	138	0,8460	0,8393	0,0080
139	342,5600	351,3141	0,0256	139	0,8800	0,8785	0,0017
140	348,9400	358,7984	0,0283	140	0,9890	0,9329	0,0567
141	358,8200	377,8893	0,0531	141	0,9680	0,9211	0,0485
142	422,6600	417,3401	0,0126	142	0,8660	0,8852	0,0221
143	422,6600	417,8041	0,0115	143	0,8680	0,8783	0,0118
144	345,7300	374,0339	0,0819	144	0,8320	0,8294	0,0031
145	345,7300	362,7725	0,0493	145	0,8320	0,8112	0,0250
146	358,8200	373,6761	0,0414	146	0,7620	0,7664	0,0058
147	550,0000	533,9828	0,0291	147	0,5670	0,5361	0,0546
148	493,0900	477,1474	0,0323	148	0,7060	0,7051	0,0013
149	493,0900	501,9249	0,0179	149	0,7020	0,6981	0,0056
150	493,0900	502,0976	0,0183	150	0,7020	0,7053	0,0048
	Error Pron	nedio (%)	0,0297		Error Prom	edio (%)	0,0353

ANEXO G. Valores reales vs valores predichos en el fondo de C2 para DIPE.

	DIPE-B2			
	Valor Real	Valor Predicho	% Error	
1	0,9170	0,9156	0,0015	
2	0,9990	0,9474	0,0517	
3	0,4500	0,9154	1,0342	
4	0,4300	0,9636	1,2408	
5	0,9670	0,9131	0,0557	
6	0,9340	0,9024	0,0338	
7	0,6910	0,6356	0,0802	
8	0,4970	0,4592	0,0760	
9	0,1590	0,1814	0,1406	
10	0,4980	0,4254	0,1457	
11	0,9990	0,9561	0,0430	
12	0,9990	0,9620	0,0370	
13	0,7360	0,7216	0,0195	
14	0,9990	0,9873	0,0117	
15	0,9990	0,9634	0,0357	
16	0,9990	0,8752	0,1239	
17	0,7670	0,7640	0,0039	
18	0,9990	0,8518	0,1474	
19	0,7720	0,7395	0,0422	
20	0,4450	0,4513	0,0142	
21	0,8540	0,8474	0,0078	
22	0,8470	0,9078	0,0718	
23	0,9970	0,9628	0,0343	
24	0,9990	0,9388	0,0603	
25	0,9700	0,8528	0,1208	
26	0,8530	0,9081	0,0645	
27	0,8170	0,8153	0,0021	
28	0,8160	0,8166	0,0007	
29	0,8860	0,8628	0,0262	
30	0,6980	0,7878	0,1287	
31	0,5520	0,5680	0,0290	
32	0,5640	0,5320	0,0568	
33	0,5640	0,9605	0,7029	
34	0,9370	0,9279	0,0097	
35	0,5390	0,5982	0,1099	
36	0,4720	0,6924	0,4670	
37	0,7180	0,7167	0,0019	

38	0,5930	0,6374	0,0749
39	0,5380	0,6291	0,1693
40	0,4930	0,4601	0,0667
41	0,4320	0,5428	0,2565
42	0,6890	0,6655	0,0341
43	0,8150	0,8422	0,0334
44	0,9990	0,8067	0,1925
45	0,9990	0,8955	0,1036
46	0,9990	0,9709	0,0282
47	0,9990	0,9666	0,0324
48	0,9990	0,9719	0,0271
49	0,9080	0,9000	0,0088
50	0,4620	0,5247	0,1358
51	0,8060	0,8378	0,0394
52	0,9360	0,9134	0,0241
53	0,9990	0,9011	0,0980
54	0,9990	0,9347	0,0644
55	0,9410	0,9401	0,0009
56	0,9990	0,9697	0,0293
57	0,9990	0,9194	0,0797
58	0,5810	0,8959	0,5420
59	0,9970	0,9267	0,0705
60	0,4160	0,4841	0,1637
61	0,8940	0,8847	0,0104
62	0,9990	0,8836	0,1155
63	0,9200	0,9350	0,0163
64	0,5300	0,5066	0,0442
65	0,9990	0,9457	0,0533
66	0,7950	0,6237	0,2154
67	0,9960	0,9268	0,0695
68	0,5010	0,5816	0,1609
69	0,9800	0,9671	0,0131
70	0,6620	0,7067	0,0675
71	0,9030	0,8744	0,0317
72	0,8280	0,8615	0,0405
73	0,9990	0,9567	0,0424
74	0,8010	0,8016	0,0008
75	0,5360	0,4725	0,1185
76	0,7170	0,7614	0,0620
77	0,9210	0,9184	0,0028
78	0,8860	0,9129	0,0303
79	0,7520	0,8047	0,0701

80	0,6790	0,6793	0,0004
81	0,7150	0,6991	0,0223
82	0,8440	0,8197	0,0288
83	0,9260	0,9186	0,0080
84	0,9270	0,7265	0,2163
85	0,8340	0,8338	0,0003
86	0,8660	0,8675	0,0017
87	0,8950	0,9124	0,0195
88	0,7870	0,8302	0,0549
89	0,6440	0,6880	0,0683
90	0,6680	0,7129	0,0672
91	0,8900	0,9131	0,0260
92	0,8130	0,8405	0,0338
93	0,8270	0,8507	0,0287
94	0,7680	0,7639	0,0054
95	0,9990	0,9806	0,0184
96	0,6310	0,6541	0,0366
97	0,4820	0,5611	0,1641
98	0,7200	0,7755	0,0771
99	0,7980	0,8415	0,0546
100	0,8620	0,8560	0,0070
101	0,9990	0,9617	0,0373
102	0,9990	0,9703	0,0287
103	0,9990	0,9703	0,0287
104	0,9990	0,9518	0,0472
105	0,9990	0,9595	0,0395
106	0,7150	0,4918	0,3121
107	0,4150	0,4086	0,0155
108	0,8170	0,7666	0,0617
109	0,8150	0,8253	0,0126
110	0,8330	0,8472	0,0170
111	0,9300	0,9335	0,0037
112	0,7900	0,7769	0,0166
113	0,9240	0,9124	0,0125
114	0,7770	0,8171	0,0517
115	0,7780	0,9650	0,2403
116	0,6910	0,7147	0,0343
117	0,6920	0,9278	0,3408
118	0,6920	0,7293	0,0539
119	0,7870	0,7969	0,0126
120	0,9220	0,9190	0,0032
121	0,5180	0,5591	0,0794

122	0,7720	0,8185	0,0603
123	0,6620	0,6990	0,0559
124	0,9880	0,9634	0,0249
125	0,6440	0,6427	0,0020
126	0,6710	0,6636	0,0110
127	0,4960	0,4113	0,1708
128	0,4240	0,3089	0,2714
129	0,5800	0,3918	0,3245
130	0,9400	0,9191	0,0222
131	0,8400	0,8788	0,0462
132	0,9990	0,9885	0,0105
133	0,8600	0,8622	0,0026
134	0,9150	0,9339	0,0207
135	0,9990	0,9691	0,0299
136	0,9990	0,9948	0,0042
137	0,9990	0,9814	0,0176
138	0,8670	0,8977	0,0355
139	0,9990	0,9641	0,0350
140	0,9160	0,8871	0,0315
141	0,9180	0,8780	0,0436
142	0,6170	0,6444	0,0444
143	0,6160	0,6572	0,0669
144	0,9990	0,9616	0,0374
145	0,9990	0,9395	0,0596
146	0,9990	0,9346	0,0645
147	0,5980	0,5552	0,0716
148	0,5490	0,5468	0,0040
149	0,5510	0,5144	0,0665
150	0,5510	0,4917	0,1076
	Error Prom	edio (%)	0,0854

ANEXO H. Valores reales vs valores predichos en el tope de C-3 para DIPE.

	DIPE-D3				
	Valor Real	Valor Predicho	% Error		
1	0,5320	0,5640	0,0602		
2	0,6650	0,5852	0,1199		
3	0,5960	0,6226	0,0447		
4	0,5090	0,5493	0,0791		
5	0,5480	0,5631	0,0275		
6	0,5240	0,5316	0,0145		
7	0,4870	0,4583	0,0590		
8	0,5020	0,4752	0,0535		
9	0,4980	0,4640	0,0683		
10	0,5100	0,4835	0,0519		
11	0,6120	0,6297	0,0289		
12	0,6120	0,6065	0,0090		
13	0,5090	0,4865	0,0443		
14	0,6560	0,5830	0,1113		
15	0,6460	0,6022	0,0678		
16	0,6650	0,6479	0,0257		
17	0,5620	0,5616	0,0008		
18	0,9950	0,7539	0,2423		
19	0,5210	0,4948	0,0503		
20	0,5200	0,5288	0,0170		
21	0,5050	0,5212	0,0322		
22	0,4930	0,5028	0,0199		
23	0,5030	0,5435	0,0805		
24	0,6230	0,6027	0,0326		
25	0,5090	0,5107	0,0033		
26	0,5040	0,5815	0,1538		
27	0,5030	0,5319	0,0574		
28	0,5030	0,5384	0,0704		
29	0,5130	0,5406	0,0538		
30	0,5130	0,5297	0,0325		
31	0,5040	0,4887	0,0303		
32	0,5190	0,4963	0,0437		
33	0,5320	0,5619	0,0561		
34	0,5220	0,5131	0,0170		
35	0,5050	0,5061	0,0022		
36	0,5050	0,4859	0,0378		
37	0,5050	0,4824	0,0447		

38	0,4950	0,4888	0,0125
39	0,4950	0,4917	0,0066
40	0,5110	0,4900	0,0412
41	0,5030	0,5154	0,0247
42	0,5080	0,4865	0,0424
43	0,5090	0,5167	0,0151
44	0,6300	0,5127	0,1862
45	0,6270	0,5360	0,1452
46	0,6270	0,6189	0,0130
47	0,6140	0,6066	0,0121
48	0,6410	0,5788	0,0970
49	0,4940	0,5312	0,0754
50	0,4950	0,4999	0,0098
51	0,4980	0,5114	0,0268
52	0,5030	0,5283	0,0504
53	0,6120	0,6943	0,1344
54	0,6210	0,6643	0,0697
55	0,4990	0,5143	0,0307
56	0,6300	0,6143	0,0249
57	0,6480	0,5442	0,1602
58	0,4890	0,6420	0,3128
59	0,4980	0,5481	0,1006
60	0,5070	0,5248	0,0351
61	0,5330	0,5313	0,0031
62	0,9850	0,7337	0,2551
63	0,5220	0,5223	0,0005
64	0,4770	0,4423	0,0727
65	0,6250	0,5833	0,0667
66	0,4800	0,4781	0,0039
67	0,4870	0,5745	0,1796
68	0,4750	0,4725	0,0053
69	0,5250	0,5248	0,0004
70	0,5240	0,5094	0,0279
71	0,5280	0,5277	0,0006
72	0,5220	0,5254	0,0066
73	0,6300	0,6122	0,0283
74	0,5020	0,5248	0,0454
75	0,4860	0,4503	0,0734
76	0,4870	0,5121	0,0515
77	0,5130	0,5330	0,0390
78	0,5120	0,5122	0,0004
79	0,4930	0,4818	0,0227

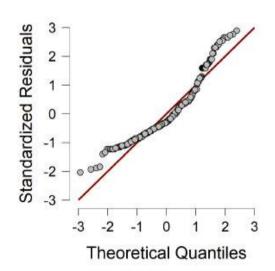
80	0,5340	0,5369	0,0054
81	0,5340	0,5398	0,0108
82	0,4860	0,5051	0,0394
83	0,4880	0,4994	0,0233
84	0,4880	0,4983	0,0210
85	0,4940	0,5131	0,0387
86	0,4950	0,5149	0,0401
87	0,4950	0,5080	0,0262
88	0,4860	0,4781	0,0163
89	0,4840	0,4683	0,0325
90	0,4920	0,5164	0,0496
91	0,4950	0,5091	0,0285
92	0,4940	0,4940	0,0001
93	0,5090	0,5126	0,0070
94	0,5080	0,5230	0,0295
95	0,6530	0,5455	0,1646
96	0,5060	0,5289	0,0453
97	0,5050	0,4888	0,0321
98	0,4950	0,4839	0,0224
99	0,4960	0,4869	0,0184
100	0,4970	0,5018	0,0096
101	0,6210	0,5619	0,0951
102	0,6330	0,5410	0,1454
103	0,6330	0,5327	0,1585
104	0,6130	0,6228	0,0159
105	0,6130	0,5380	0,1224
106	0,5150	0,5277	0,0246
107	0,4910	0,4945	0,0072
108	0,4900	0,5174	0,0559
109	0,4900	0,5188	0,0588
110	0,5150	0,5304	0,0299
111	0,4980	0,5284	0,0610
112	0,4970	0,5308	0,0681
113	0,4980	0,5394	0,0831
114	0,5060	0,5112	0,0102
115	0,5050	0,5910	0,1702
116	0,5230	0,5059	0,0326
117	0,5220	0,6276	0,2023
118	0,5040	0,4794	0,0488
119	0,5060	0,5250	0,0376
120	0,5200	0,5249	0,0094
121	0,5220	0,5020	0,0384
			•

122	0,4910	0,4858	0,0106
123	0,5050	0,4908	0,0281
124	0,5070	0,5391	0,0634
125	0,3640	0,5060	0,3902
126	0,5330	0,5148	0,0341
127	0,5010	0,4750	0,0518
128	0,3610	0,4761	0,3189
129	0,5600	0,5338	0,0467
130	0,4880	0,5005	0,0256
131	0,5130	0,5097	0,0065
132	0,6200	0,5934	0,0429
133	0,5090	0,5332	0,0475
134	0,5090	0,5197	0,0210
135	0,6200	0,6136	0,0103
136	0,6200	0,5691	0,0822
137	0,6160	0,5965	0,0317
138	0,5400	0,5277	0,0228
139	0,6270	0,5990	0,0447
140	0,4900	0,5533	0,1291
141	0,5190	0,5433	0,0468
142	0,5010	0,4996	0,0028
143	0,5190	0,5151	0,0075
144	0,6180	0,6018	0,0262
145	0,6150	0,6379	0,0373
146	0,6150	0,6422	0,0442
147	0,5400	0,5042	0,0663
148	0,5660	0,5348	0,0552
149	0,5660	0,5265	0,0698
150	0,5660	0,5260	0,0708
	Error Prom	edio (%)	0,0562

ANEXO I. Análisis estadístico completo de las salidas ejecutado en JASP para DFM C1

ANOVA

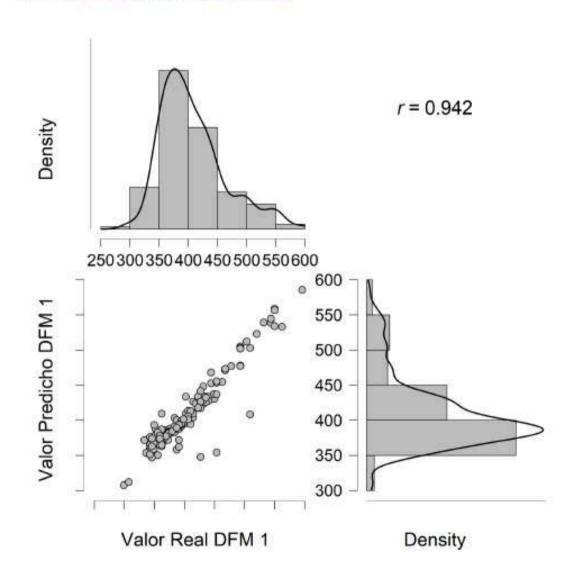
Cases	Sum of Squares	df	Mean Square	F	р
Analisis DFM 1	550.046	1	550.046	0.191	0.662
Residuals	857379.546	298	2877.113		


Note. Type III Sum of Squares

Descriptives

Descriptives - DFM 1

Analisis DFM 1	Mean	SD	N
PREDICCION	410.683	51.109	150
REAL	407.975	56.055	150



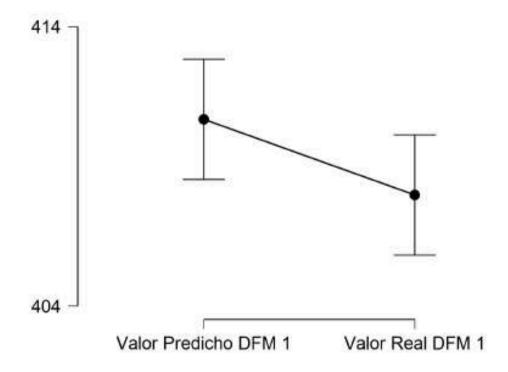
		n	Pearson's r	р
Valor Real DFM 1	 Valor Predicho DFM 1	150	0.942	< .001

Scatter plots

Valor Real DFM 1 vs. Valor Predicho DFM 1

Measure 1		Measure 2	t	df	р
Valor Predicho DFM 1	2	Valor Real DFM 1	1.759	149	0.081

Note. Student's t-test.


Descriptives

Descriptives

	N	Mean	SD	SE
Valor Predicho DFM 1	150	410.683	51.109	4.173
Valor Real DFM 1	150	407.975	56.055	4.577

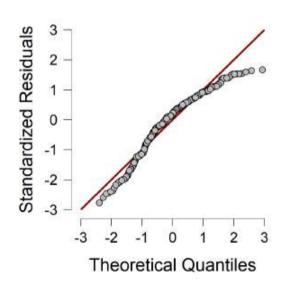
Descriptives Plots

Valor Predicho DFM 1 - Valor Real DFM 1

ANEXO J. Análisis estadístico completo de las salidas ejecutado en JASP para IPA C1

ANOVA

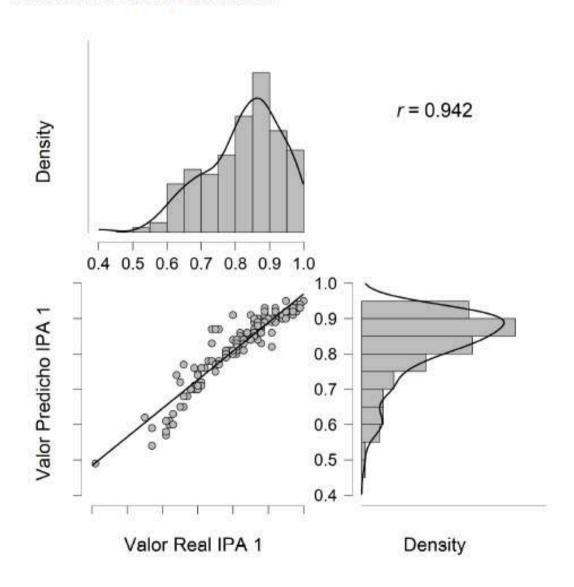
Cases	Sum of Squares	df	Mean Square	F	р
Analisis IPA 1	8.215e -4	1	8.215e -4	0.074	0.785
Residuals	3.287	298	0.011		


Note. Type III Sum of Squares

Descriptives

Descriptives - IPA 1

Analisis IPA 1	Mean	SD	N
PREDICCION	0.826	0.097	150
REAL	0.822	0.112	150



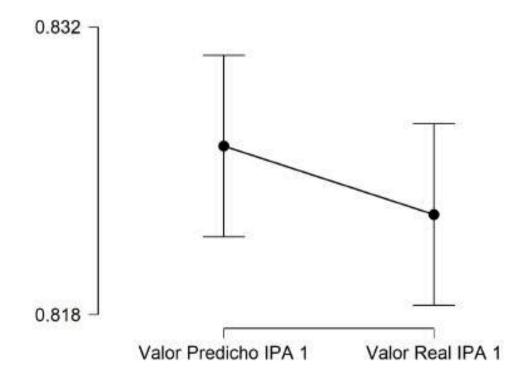
		n	Pearson's r	P
Valor Real IPA 1	 Valor Predicho IPA 1	150	0.942	< .001

Scatter plots

Valor Real IPA 1 vs. Valor Predicho IPA 1

Measure 1	Measure 2	t	df	Р
Valor Predicho IPA 1	 Valor Real IPA 1	1.054	149	0.294

Note. Student's t-test.


Descriptives

Descriptives

	N	Mean	SD	SE
Valor Predicho IPA 1	150	0.826	0.096	0.008
Valor Real IPA 1	150	0.823	0.112	0.009

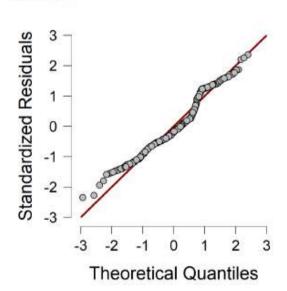
Descriptives Plots

Valor Predicho IPA 1 - Valor Real IPA 1

ANEXO K. Análisis estadístico completo de las salidas ejecutado en JASP para DIPE C1

ANOVA

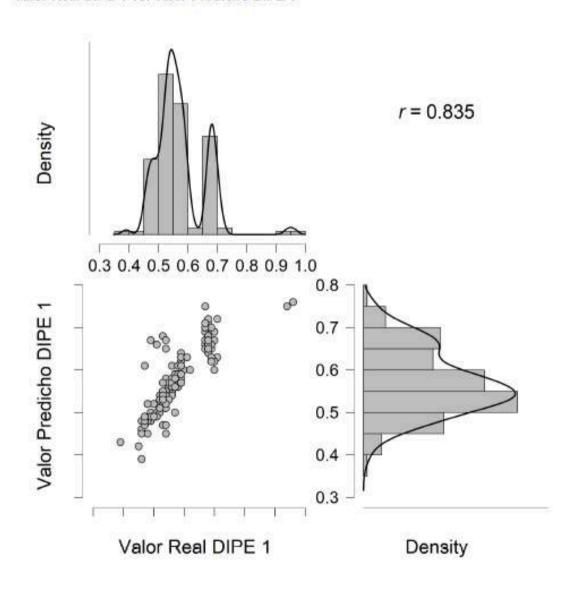
Cases	Sum of Squares	df	Mean Square	F	р
Analisis DIPE 1	9.823e -6	1	9.823e -6	0.002	0.969
Residuals	1.889	298	0.006		


Note. Type III Sum of Squares

Descriptives

Descriptives - DIPE 1

Analisis DIPE 1	Mean	SD	N
PREDICCION	0.574	0.076	150
REAL	0.573	0.083	150



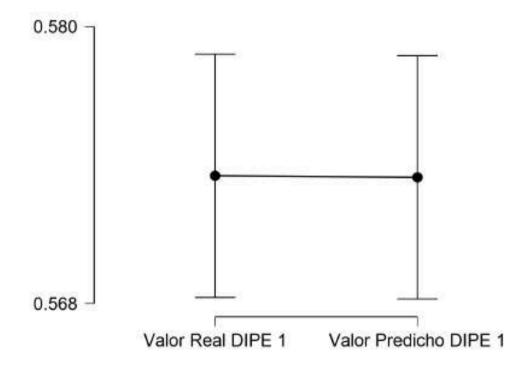
		n	Pearson's r	Р
Valor Real DIPE 1	 Valor Predicho DIPE 1	150	0.835	< 001

Scatter plots

Valor Real DIPE 1 vs. Valor Predicho DIPE 1

Measure 1		Measure 2	t	t df	
Valor Real DIPE 1	8	Valor Predicho DIPE 1	0.018	149	0.986

Note. Student's t-test.


Descriptives

Descriptives

	N	Mean	SD	SE
Valor Real DIPE 1	150	0.574	0.083	0.007
Valor Predicho DIPE 1	150	0.573	0.075	0.006

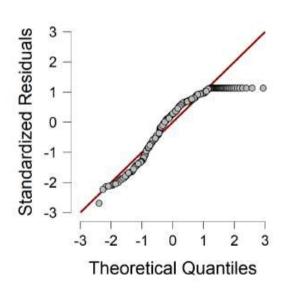
Descriptives Plots

Valor Real DIPE 1 - Valor Predicho DIPE 1

ANEXO L. Análisis estadístico completo de las salidas ejecutado en JASP para DIPE C2

ANOVA

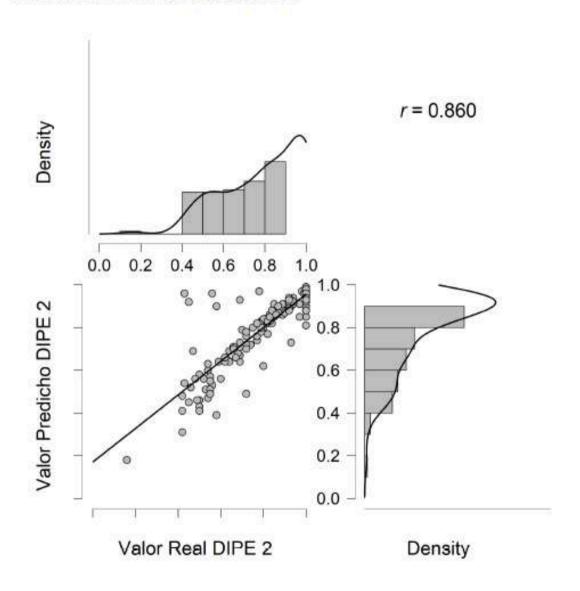
Cases	Sum of Squares	df	Mean Square	F	р
Analisis DIPE 2	5.597e -5	1	5.597e -5	0.002	0.967
Residuals	9.802	298	0.033		


Note. Type III Sum of Squares

Descriptives

Descriptives - DIPE 2

Analisis DIPE 2	Mean	SD	N
8	0.795	0.173	150
REAL	0.795	0.189	150



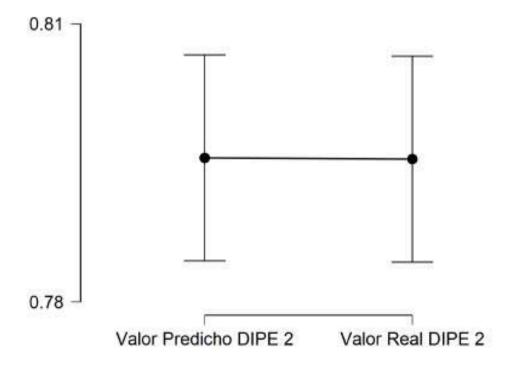
		n	Pearson's r	Р
Valor Real DIPE 2	 Valor Predicho DIPE 2	150	0.860	< .001

Scatter plots

Valor Real DIPE 2 vs. Valor Predicho DIPE 2

Measure 1	Measure 2	t	df	р
Valor Predicho DIPE 2	 Valor Real DIPE 2	0.017	149	0.987

Note. Student's t-test.


Descriptives

Descriptives

	N	Mean	SD	SE
Valor Predicho DIPE 2	150	0.796	0.173	0.014
Valor Real DIPE 2	150	0.795	0.190	0.015

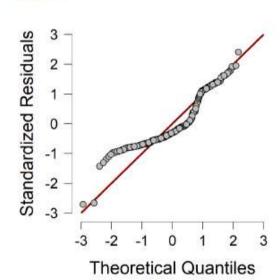
Descriptives Plots

Valor Predicho DIPE 2 - Valor Real DIPE 2

ANEXO M. Análisis estadístico completo de las salidas ejecutado en JASP para DIPE C3

ANOVA

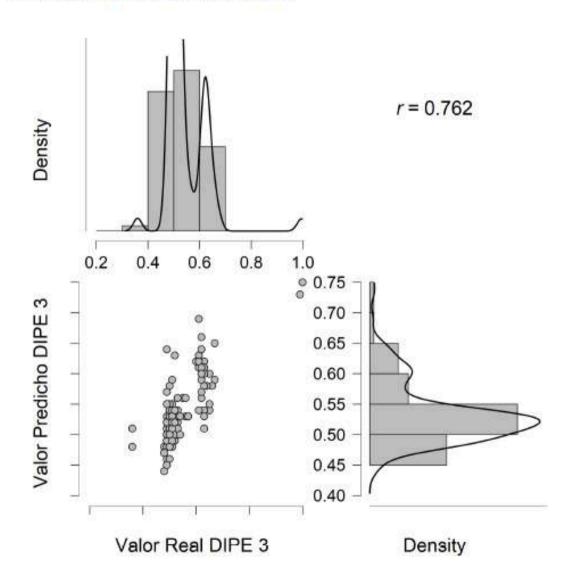
Cases	Sum of Squares	df	Mean Square	F	р
Analisis DIPE 3	6.059e -4	1	6.059e -4	0.139	0.709
Residuals	1.295	298	0.004		


Note. Type III Sum of Squares

Descriptives

Descriptives - DIPE 3

Analisis DIPE 3	Mean	SD	N
PREDICCION	0.536	0.053	150
REAL	0.539	0.077	150



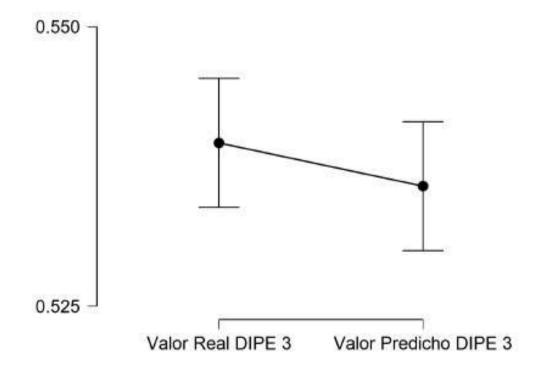
			n	Pearson's r	Р
Valor Real DIPE 3	-	Valor Predicho DIPE 3	150	0.762	< .001

Scatter plots

Valor Real DIPE 3 vs. Valor Predicho DIPE 3

Measure 1		Measure 2	t	df	р
Valor Real DIPE 3	8	Valor Predicho DIPE 3	0.937	149	0.350

Note. Student's t-test.


Descriptives

Descriptives

	N	Mean	SD	SE
Valor Real DIPE 3	150	0.540	0.077	0.006
Valor Predicho DIPE 3	150	0.536	0.052	0.004

Descriptives Plots

Valor Real DIPE 3 - Valor Predicho DIPE 3

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO

DIRECCIÓN DE BIBLIOTECAS Y RECURSOS DEL APRENDIZAJE UNIDAD DE PROCESOS TÉCNICOS Y ANÁLISIS BIBLIOGRÁFICO Y DOCUMENTAL

REVISIÓN DE NORMAS TÉCNICAS, RESUMEN Y BIBLIOGRAFÍA

Fecha de entrega: 10 / 08 / 2021

INFORMACIÓN DEL AUTOR/A (S)
Nombres – Apellidos: Rebeca Elizabeh Lascano Nuñez
INFORMACIÓN INSTITUCIONAL
Facultad: Ciencias
Carrera: Ingeniería Química
Título a optar: Ingeniera Química
f. Analista de Biblioteca responsable: Lic. Luis Caminos Vargas Mgs.

