

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE CIENCIAS CARRERA DE INGENIERÍA QUÍMICA

"DISEÑO DE UN PROCESO PARA LA OBTENCIÓN DE PULPA DE PITAHAYA (Hylocereus triangularis) EN LA ASOCIACIÓN DE PRODUCTORES Y COMERCIALIZADORES DE PITAHAYA Y OTROS PRODUCTOS "PALORA""

Trabajo de Titulación

Tipo: Proyecto Técnico

Presentado para optar al grado académico de:

INGENIERO QUÍMICO

AUTOR: JOSÉ LUIS BALCÁZAR CALLE **DIRECTORA:** ING. MABEL MARIELA PARADA RIVERA

Riobamba - Ecuador 2019

©2019, José Luis Balcázar Calle

Se autoriza la reproducción total o parcial, con fines académicos, por cualquier medio o procedimiento, incluyendo la cita bibliográfica del documento, siempre y cuando se reconozca el Derecho de Autor.

Yo, José Luis Balcázar Calle declaro que el presente trabajo de titulación es de mi autoría y que

los resultados obtenidos son originales y auténticos. Los textos constantes en el documento que

provienen de otra fuente están debidamente citados y referenciados.

Como autor, asumo la responsabilidad legal y académica de los contenidos de este trabajo de

titulación.

Riobamba, 12 de junio 2019

José Luis Balcázar Calle

160062666-5

iii

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE CIENCIAS CARRERA DE INGENIERÍA QUÍMICA

El Tribunal del Trabajo de Titulación certifica que: El trabajo técnico: "Diseño de un proceso para la obtención de pulpa de pitahaya (*Hylocereus triangularis*) en la Asociación de productores y comercializadores de pitahaya y otros productos Palora, de responsabilidad del señor José Luis Balcázar Calle, ha sido revisado por los Miembros del Tribunal de Titulación, quedando autorizada su presentación.

	FIRMA	FECHA
Ing Mobal Mariala Darada Divara		
Ing. Mabel Mariela Parada Rivera		••••••
DIRECTORA DEL TRABAJO		
DE TITULACIÓN		
Ing. Paúl Gustavo Palmay Paredes		
MIEMBRO DEL TRIBUNAL		

DEDICATORIA

A Dios, a mis padres, hermanos quienes son mi principio e hicieron posible este sueño, especialmente a mi madre quien es mi ejemplo y fortaleza para seguir adelante. A mis abuelitos y familia.

A mis amigos Erika, Verónica, Gabriela, Cristina, Maribel, Ricardo, Jorge, Mario, Juan, Terry, David, con estima y aprecio.

José

AGRADECIMIENTO

Agradezco a Dios por sostenerme en su luz y permitirme experimentar su grandeza a través de la vida. A mis padres Gladis y José por su apoyo incondicional, a mis hermanos Jaime, Sandra, Lorena, Angelina, Ximena, Cristhofer por su compañía y consejos a lo largo del camino. A mis compañeros y amigos que en el transcurso de esta etapa cumplida me han dado las energías y buenos ánimos, y agradecido por los momentos compartidos.

A la ESPOCH, al cuerpo docente que integra la Escuela de Ingeniería Química, en particular a la ingeniera Mabel Parada e ingeniero Paul Palmay por su guía y orientación en la realización de este proyecto. A la Lcda. Adriana Villena por su dedicación, aporte y autenticidad para con el estudiante.

Al abogado Washington Hidalgo encargado de la presidencia de la Asociación de productores y comercializadores de pitahaya "Palora" por su confianza, predisposición y optimismo.

Al entorno de la vida que con las facilidades y dificultades me inspiran a superarme cada día.

José

CONTENIDO

RESUN	1EN	xvi
SUMM	ARY	xvii
CAPÍT	ULO I	
1	INTRODUCCIÓN	1
1.1	Identificación del problema	1
1.2	Justificación del proyecto	2
1.3	Línea base del proyecto	3
1.3.1	Antecedentes de la empresa	3
1.3.2	Marco Conceptual	3
1.3.2.1	Pitahaya: Definición	3
1.3.2.2	Fruta de pitahaya	4
1.3.2.3	Características botánicas	4
1.3.2.4	Características físicas del fruto de pitahaya	5
1.3.2.5	Valor nutricional	5
1.3.2.6	Usos y aplicaciones de la pitahaya	6
1.3.2.7	Beneficios de la pulpa de pitahaya	7
1.3.2.8	Entorno nacional	8
1.3.2.9	Pulpa de frutas	9
1.4	Beneficiarios Directos e Indirectos	10
1.4.1	Beneficiarios Directos	10
1.4.2	Beneficiarios Indirectos	10
CAPÍT	ULO II	
2	OBJETIVOS	11
2.1	General	11
2.2	Específicos	11

CAPÍTULO III

3	ESTUDIO TÉCNICO PRELIMINAR	12
3.1	Localización del proyecto	12
3.2	Ingeniería del proyecto	13
3.2.1	Tipo de estudio	13
3.2.2	Métodos y técnicas	13
3.2.2.1	Métodos	13
3.2.2.2	Técnicas	14
3.2.3	Procedimiento a nivel de laboratorio	19
3.2.3.1	Requerimientos de materiales, equipos y reactivos	19
3.2.3.2	Descripción del proceso a nivel de laboratorio	20
3.2.3.3	Resultados de los análisis de laboratorio	24
3.2.4	Operaciones unitarias del proceso de obtención de pulpa de pitahaya	27
3.2.4.1	Despulpado	27
3.2.4.2	Homogeneizado	27
3.2.5	Variables y parámetros de proceso	27
3.2.6	Balance de masa y energía	30
3.2.6.1	Datos adicionales	30
3.2.6.2	Balance de masa	30
3.2.6.3	Cálculos de ingeniería	36
3.2.6.4	Balance de energía	52
3.2.6.5	Resultados del dimensionamiento de los equipos	57
3.3	Proceso de producción	58
3.3.1	Materia prima, aditivos e insumos	59
3.3.2	Diagrama del proceso para producción de pulpa de pitahaya	59
3.3.3	Descripción del diagrama	61
3.3.3.1	Selección y clasificación de la materia prima	61
3.3.3.2	Limpieza, lavado y desinfección	61
3.3.3.3	Escaldado	62
3.3.3.4	Corte y pelado	62
3.3.3.5	Despulpado	62
3.3.3.6	Homogenizado	62
3.3.3.7	Envasado y sellado	62
3 3 3 8	Almacenado	63

3.3.4	Validación del proceso	63	
3.3.4.1	Análisis microbiológico y físico-químico		
3.4	Distribución de la planta	64	
3.4.1	Descripción de áreas de la planta	64	
3.4.2	Capacidad de Producción	65	
3.5	Requerimientos de tecnología, equipos y maquinaria	66	
3.5.1	Equipos con los que cuenta la asociación para la producción de pulpa	66	
3.5.2	Equipos que se requiere implementar para la producción de pulpa	67	
3.5.3	Equipos y materiales requeridos para el control de la producción de		
	pulpa	68	
3.6	Costo de producción	68	
3.6.1	Costo de los equipos	68	
3.6.2	Costo de la materia prima	69	
3.6.3	Costo de mano de obra	70	
3.6.4	Costo de los análisis de laboratorio	70	
3.6.5	Costo del consumo de energía, agua y combustible	71	
3.6.6	Presupuesto de producción	72	
3.7	Cronograma	74	
ANÁLI	SIS Y DISCUSIÓN DE RESULTADOS	76	
CONCI	LUSIONES	80	
RECO	MENDACIONES	82	
BIBLIC	OGRAFIA		
ANEX(OS		

ÍNDICE DE TABLAS

Tabla 1-1:	Características botánicas.	4
Tabla 2-1:	Composición de la pitahaya (por cada 100 g)	6
Tabla 1-3:	Localización del proyecto	12
Tabla 2-3:	Técnica de muestreo para frutas frescas	15
Tabla 3-3:	Requisitos físico-químicos de la pitahaya	16
Tabla 4-3:	Determinación de los grados Brix	16
Tabla 5-3:	Determinación del pH	17
Tabla 6-3:	Determinación de la viscosidad	17
Tabla 7-3:	Determinación de la densidad	18
Tabla 8-3:	Determinación de la acidez titulable como ácido cítrico	18
Tabla 9-3	Requisitos microbiológicos para productos congelados	19
Tabla 10-3:	Materiales, equipos y reactivos	20
Tabla 11-3:	Clasificación de la pitahaya según su masa unitaria	22
Tabla 12-3:	Análisis físico-químico de la materia prima	24
Tabla 13-3:	Masa y dimensiones PRUEBA 1	24
Tabla 14-3:	Masa y dimensiones PRUEBA 2	25
Tabla 15-3:	Masa y dimensiones PRUEBA 3	25
Tabla 16-3:	Dimensiones de las semillas	26
Tabla 17-3:	Resultados del análisis físico-químico de la pulpa de pitahaya	27
Tabla 18-3:	Variables del proceso	28
Tabla 19-3:	Datos experimentales.	29
Tabla 20-3:	Datos adicionales	30
Tabla 21-3:	Terminología de mallas metálicas	42
Tabla 22-3:	Resultados del dimensionamiento del tanque de escaldado	57
Tabla 23-3:	Resultados del dimensionamiento de la despulpadora	57
Tabla 24-3:	Resultados del dimensionamiento del homogeneizador	58
Tabla 25-3:	Resultados del dimensionamiento de las mesas de trabajo	58
Tabla 26-3:	Materia prima, aditivos e insumos	59
Tabla 27-3:	Análisis microbiológico de la pulpa	63
Tabla 28-3:	Análisis físico-químico de la pulpa	64
Tabla 29-3:	Descripción de los equipos que la asociación tiene a disponibilidad	66
Tahla 30-3·	Descrinción de los equipos requeridos para el proceso	67

Tabla 31-3:	Equipos y materiales necesarios para el control del proceso	68
Tabla 32-3:	Costos de los equipos para la producción de pulpa de pitahaya	68
Tabla 33-3:	Costos de los materiales e insumos para la producción de pulpa de pitahaya	69
Tabla 34-3:	Costo de la materia prima, aditivos e insumos para producir 500 g de pulpa	69
Tabla 35-3:	Costo de la materia prima, aditivos e insumos para producir 122,74 kg de	
	pulpa	70
Tabla 36-3:	Costo de mano de obra.	70
Tabla 37-3:	Costo de los análisis de laboratorio.	70
Tabla 38-3:	Costo del consumo de energía	71
Tabla 39-3:	Costo del consumo de agua	71
Tabla 40-3:	Costo del consumo de combustible	72
Tabla 41-3:	Relación costo-beneficio para la producción de pulpa de pitahaya	72
Tabla 42-3:	Flujo de caja para la producción de pulpa de pitahaya	
Tabla 43-3:	Cronograma de realización del trabajo de titulación	75

ÍNDICE DE GRÁFICOS

Gráfico 1-1:	Diagrama de distribución del cultivo de pitahaya por provincias	9
Gráfico 1-3:	Diagrama de flujo del proceso de producción de pulpa de pitahaya	60
Gráfico 2-3:	Capacidad de producción	66

ÍNDICE DE FIGURAS

Figura 1-1:	Fruta de pitahaya5				
Figura 1-3:	Ubicación del Centro de acopio de la Asociación de productores y				
	comercializadores de pitahaya y otros productos				
	"Palora"	13			
Figura 2-3:	Tabla de color de la pitahaya amarilla	21			
Figura 3-3:	Tolva de alimentación				
Figura 4-3:	Ilustración del tanque tamiz				
Figura 5-3:	Mallas metálicas				
Figura 6-3:	Esquema del rotor y aspas				
Figura 7-3:	Altura estándar de la mesa según la correcta ergonomía de acuerdo al trabajo 5				
Figura 8-3:	Piscina para lavado de fruta en la Asociación				

ÍNDICE DE ANEXOS

Anexo A Proceso de producción de pulpa de pitahaya a nivel de laboratorio

Anexo B: Análisis físico-químico del fruto fresco de pitahaya

Anexo C: Análisis microbiológico de la pulpa de pitahaya

Anexo D: Tabla relación número de Reynolds y número de potencia

Anexo E: Asociación de productores y comercializadores de pitahaya y otros

productos "Palora"

Anexo F: Diagrama de distribución de la planta

Anexo G: Diagrama de equipos

Anexo H: NTE INEN 2337:2008. Jugos, pulpas, concentrados, néctares, bebidas de

frutas y vegetales. Requisitos.

RESUMEN

El objetivo del presente trabajo de titulación fue diseñar un proceso para obtención de pulpa de pitahaya (Hylocereus triangularis) en la asociación de productores y comercializadores de pitahaya y otros productos "Palora". La primera parte se basó en la caracterización de la fruta según la norma NTE INEN 2003:2015, el diseño se realizó en fundamento a pruebas piloto de simulación llevadas a cabo en las instalaciones del laboratorio de Procesos Industriales de la ESPOCH. Los datos obtenidos se tomaron como base para los cálculos correspondientes, a nivel industrial, de los equipos que intervienen en el proceso, el diseño de la planta se realizó contemplando las consideraciones de diseño y necesidades dispuestas por la Asociación. La validación del proceso diseñado se basó en la norma NTE INEN 2337:2008, que señala los parámetros físico-químicos y microbiológicos que debe cumplir el producto final para el consumo humano, los resultados reflejaron que el producto cumple con la norma. La planta se diseñó para 300 kg de carga verificándose un rendimiento del 41,63 % con una duración del proceso de 4 h; 16,02 min, el mismo incluye selección y clasificación de la materia prima, lavado -desinfección, escaldado, corte y pelado, despulpado, homogeneizado, envasado -sellado y almacenado. El producto será almacenado a: 21,2 °Bx; 5,14 potencial de hidrogeno; densidad 1,0861 g/ml y viscosidad 54,2 cP. Así también se diseñó el tanque de escaldado, despulpadora, homogeneizador y mesas de trabajo. Se realizó el análisis financiero concluyendo que el proyecto es económicamente rentable y la inversión para su implementación se recuperara en 1 año y un mes de trabajo.

Palabras clave: <INGENIERÍA Y TECNOLOGÍA QUÍMICA>, <ALIMENTOS>, <PULPA DE PITAHAYA)>, < PITAHAYA (*Hylocereus triangularis*) >, <TANQUE DE ESCALDADO>, <DESPULPADORA >, <HOMOGENEIZADOR>, <MESAS DE TRABAJO>.

SUMMARY

The objective of the present titration work was a process to obtain pitahaya pulp (Hylocereus triangularis) in the associations of producers and marketers of pitahaya and other "Palora" products. The first part is based on the characterization of the fruit according to the NTE INEN 2003: 2015 standard, the design was made in a pilot fund simulation tests carried out in the facilities of the Industrial Processes Laboratory of the ESPOCH. The data is included as a basis for the corresponding calculations, an industrial level, the teams involved in the process, the design of the plant is made the contemplation of the design and the needs of the association. The validation of the process was based on the NTE INEN 2337: 2008 standard, it indicates the physical-chemical and microbiological parameters that the final product must fulfill for human consumption, the results reflected that the product complies with the standard. The plant was designed for 300 kg of load, verifying a yield of 41,63% with a duration of the process of 4 h; 16,02 min, it includes selection and classification of the raw material, washing-disinfection, blanching, cutting and peeling, pulping, homogelling, packaging-sealing and storage. The product will be stored at: 21,2 ° Bx; 5,14 hydrogen potential; density 1,0861 g / ml and viscosity 54,2 cP. The scalding tank, pulper, homogenizer and work tables were also designed. The financial analysis is carried out and it is concluded that the project is economically profitable and the investment for its implementation is recovered in 1 year and month of work.

Key words: <CHEMICAL ENGINEERING AND TECHNOLOGY>, <FOOD>, <PITAHAYA PULP>, <PITAHAYA (*Hylocereus triangularis*)>, <CLIMBING TANK>, <DUMPING>, <HOMOGENIZING>, <LOW PAPER TABLES>.

CAPÍTULO I

1 INTRODUCCIÓN

1.1 Identificación del problema

Se ha evidenciado un crecimiento importante en la producción de pitahaya (*Hylocereus triangularis*) en el cantón Palora, cuyo fruto forma parte de las frutas exóticas más apetecidas por sus características únicas como sabor, textura, propiedades nutricionales y digestivas (Gobierno Autónomo Descentralizado Municipal del Cantón Palora, 2015). Según datos reportados por el Ministerio de Agricultura y Ganadería el rendimiento mínimo de pitahaya en el cantón es de 10 toneladas métricas por hectárea año, y el censo agrario sistematizado registra en su matriz en febrero del presente año un total de 1528 hectáreas establecidas, de las cuales indica 672 hectáreas en producción dirigido tanto para consumo en el país como para el mercado internacional (MAG, 2019).

La producción de pitahaya durante el año varía entre alta, baja y media, principalmente en función de los factores ambientales, ciclos de floración y manejo del cultivo. Los meses de mayor cosecha son los comprendidos entre febrero-marzo y noviembre-diciembre, y un nivel medio de producción en mayo-julio (Difilo, 2017). Varias instituciones están dedicadas al acopio y comercio mayorista del fruto fresco, tal es el caso de la Asociación de productores y comercializadores de pitahaya y otros productos "Palora", que con la finalidad de evitar pérdidas en postcosecha y mejorar sus transacciones, requiere de la implementación de un proceso de producción que permita generar un valor agregado y, de esta manera, dinamizar la economía de la zona.

De acuerdo con los antecedentes mencionados, la presente investigación se centra en el diseño de un proceso para la obtención de pulpa de pitahaya, solicitado por la Asociación para balancear la oferta que tiene este fruto, por otra parte, la asociación contaría con un nuevo producto con valor agregado.

1.2 Justificación del proyecto

En el Ecuador, el cultivo de pitahaya amarilla con fines comerciales tiene gran importancia económica y social, originando fuentes de empleo directos que dinamizan la economía del país (MAG, 2016). La pitahaya es una fruta rica en antioxidantes como vitamina C, vitaminas del complejo B, varios minerales como calcio, hierro, fósforo, además de su alto contenido de agua, proteína y fibra, que contribuyen a beneficiar la salud del hombre (Santarrosa, 2013).

La Asociación de productores y comercializadores de pitahaya y otros productos "Palora" es la propietaria de un centro de acopio denominado actualmente como microempresa, que en razón a la disposición de materia prima ha manifestado la necesidad de la creación de un proceso para producción de pulpa de pitahaya con el fin de expandir su mercado, generar nuevas fuentes de empleo y mejorar sus ingresos económicos, con lo cual se justifica la realización de este proyecto como un aporte al desarrollo y crecimiento de la organización.

El proyecto se basa en la búsqueda de nuevas alternativas de desarrollo, explotando productos propios del sector, en este caso la pitahaya oriunda del cantón Palora, para convertirlos en un producto rentable que beneficie tanto a la Asociación como a los pequeños productores.

La pitahaya tiene gran aceptación en el mercado por sus aportes a la salud, en la actualidad se expenden productos de pitahaya como fruta disecada, licor, entre otros, el presente proyecto permitirá una alternativa para el aprovechamiento de la fruta que además de expandir las líneas de producción, entregándole más variedad al consumidor, aportará con beneficios económicos para la Asociación.

Línea base del proyecto 1.3

1.3.1 Antecedentes de la empresa

La Asociación de productores y comercializadores de pitahaya y otros productos "Palora" es una

empresa ubicada en la provincia de Morona Santiago, cantón Palora, cuenta con 13 años de

fundación y en la actualidad se encuentra integrada por 138 socios, dicha asociación está

fundamentada en bases de equidad social y económica, donde su principal objetivo es fortalecer

los procesos organizativos y productivos del cantón, durante estos años de creación se ha

consolidado como una asociación sólida con visión comercial.

La asociación se encarga de los procesos de producción de pitahaya del cantón Palora, para esto

cuenta con una extensión de 400 hectáreas de sembradío y desde el 2017 se encarga del proceso

de sembrado hasta el empaquetado del fruto de pitahaya. A partir del 2013, los productores del

cantón Palora iniciaron procesos de exportación a Colombia, Perú, Venezuela, países de Asia y

Europa.

El afán de fortalecimiento empresarial de la asociación ha dado paso a generar nuevos

emprendimientos de orden comercial como la creación de nuevas líneas de procesamiento de la

pitahaya como son: mermeladas, pulpas, néctar, crema de pitahaya, vino, cáscara en almíbar y té,

1.3.2 Marco Conceptual

1.3.2.1 Pitahaya: Definición

La pitahaya es una planta oriunda de México, Centro América y Sudamérica, esta se conoce desde

la época prehispánica por sus propiedades medicinales, sabor dulce y refrescante, hoy en día es

muy apetecida en países europeos y Japón por sus atributos gourmet. La pitahaya es miembro de

la familia de las cactáceas, plantas propias del desierto es decir pueden sobrevivir a ambientes de

escases de agua (Andrade y Ricalde, 2009, pp.1-2).

La pitahaya es una planta trepadora, alcanzando hasta 15 cm de profundidad del suelo. El

crecimiento de las raíces es paralelo a la superficie del suelo. Además, posee raíces adventicias a

partir de los tallos, las que le permiten adherirse, trepar y mantener la planta erecta. (Andrade M.,

2015, p.28).

3

Los tallos alcanzan de 6 m o más de longitud según las condiciones del cultivo y de 3 - 6 cm de ancho, se presentan como péndulos ramificados, trepadores, verdes, de secciones triangulares, carnosas y suculentas. Presentan 3 costillas de 1,6 - 2,6 cm de longitud. Las aréolas están a 2 - 4 cm entre sí; con 3 espinas de 2 - 4 mm de largo. Axilares a las espinas se ubican las yemas que pueden dar origen a nuevos tallos o flores (Andrade M., 2015, p.29).

1.3.2.2 Fruta de pitahaya

La palabra pitahaya significa "fruta escamosa", se trata de un fruto globoso exótico de distintas formas; ovoide, redondeado, alargado, es de cáscara gruesa y brácteas de consistencia carnosa y aspecto ceroso, su pulpa blanca con pequeñas semillas. (Andrade y Ricalde, 2009, p. 3).

Según (Falconí, 2018, p. 2) existen dos clases de fruto de pitahaya:

Clase 1: La amarilla que crece en zonas tropicales de Centro América y Sudamérica.

Clase 2: La roja que crece en México, Nicaragua y Vietnam.

1.3.2.3 Características botánicas

Las características de la especia amarilla denominada *Hylocereus triangularis* se presentan a continuación:

Tabla 1-1: Características botánicas

Reino	Vegetal
División	Espermalofitos
Clase	Angiospermae
Subclase	Dycotyledoneae
Orden	Opuntiales
Familia	Cactaceae
Género	Selenicereus, Hylocereus
Especie	Triangulari

Fuente: FALCONI, 2018.



Figura 1-1: Fruta de pitahaya

Fuente: FALCONI, Pitahaya de Palora, 2018.

1.3.2.4 Características físicas del fruto de pitahaya

Las características de la especie amarilla *Hylocereus triangularis* son: La especie amarilla mide aproximadamente 90 milímetros de largo y entre 65 a 70 milímetros de diámetro en su madurez, se caracteriza por poseer una corteza con espinas, su pulpa es de color blanco transparente y muy aromática además está impregnada de semillas negras muy finas, el sabor de la pulpa es exquisito fino y delicado como agua azucarada (Mendoza y Medina, 2011, pp.14-17).

Los frutos de pitahaya cosechados en madurez media y completa mantienen mejores características del color de la cáscara y en el nivel de sólidos solubles totales durante 12 días de almacenamiento (20 ± 2 °C), que los frutos cosechados en madurez inicial (Fonseca, María; et al; Rodríguez, 2015, pp. 4-5).

Los frutos de pitahaya son ricos en betalaínas pigmentos que sustituirán a los artificiales y además que poseen propiedades antioxidantes para la prevención del cáncer. Por todos esos motivos y por su elevado contenido de solidos solubles tiene un gran potencial a nivel industria, la pulpa de pitahaya se puede someter a procesos como: deshidratación, congelamiento, concentración, fermentación, procesamiento térmico y preservación química, así también se puede extraer pectina y colorantes de la cáscara y pepas de la pitahaya. (Fonseca, María; et al; Rodríguez, 2015, pp. 6-7).

1.3.2.5 Valor nutricional.

La pitahaya es un alimento de alto valor nutritivo con propiedades hidratantes, además del aporte de una gran cantidad de azúcares naturales, fibra soluble y vitamina C. Los valores de azúcares

oscilan entre 9 y 15 g por cada 100 g se absorben lentamente debido a la presencia de la fibra soluble que aporta el fruto, lo que genera que sea un alimento apropiado para la diabetes (Andrade M., 2015, pp.30-31).

La fibra soluble del fruto es el mucílago que es una sustancia vegetal viscosa que le otorga la textura gelatinosa a la pulpa. Esta fruta tiene grandes propiedades beneficiosas para la salud; ayuda a bajar el nivel de colesterol en la sangre, contribuye a regular el tránsito intestinal y evitar el estreñimiento por lo que es recomendado para una dieta sana y equilibrada. La fruta de pitahaya contiene además minerales como el calcio, fosforo, hierro y zinc que equilibran los electrolitos del cuerpo, especialmente después de hacer deporte (Andrade M., 2015, pp.30-31).

Tabla 2-1: Composición de la pitahaya (por cada 100 g)

Nutriente	Unidad	Cantidad
Calorías	Kcal	35,0
Agua	g	89,4
Proteína	g	0,5
Grasa	g	0,1
Carbohidratos	g	9,2
Fibra	g	0,3
Ceniza	g	0,5
Calcio	mg	6
Fosforo	mg	19
Hierro	mg	0,4
Zinc	mg	0,35
Tiamina	mg	0,01
Riboflavina	mg	0,03
Vitamina C	mg	25

Fuente: (Jordán, D.; Vásconez, J. y Veliz, C. Producción y Exportación de la Pitahaya hacia el mercado europeo, 2009)

1.3.2.6 Usos y aplicaciones de la pitahaya

Según (Andrade M., 2015, p. 31) la pitahaya tiene los siguientes usos o aplicaciones:

- Se utiliza en la elaboración de mermeladas a partir de la pulpa rica en azucares.
- Las hojas de pitahaya se usan para la elaboración de té.
- Se usa para la elaboración de néctar, pulpas, dulces y otros confetis con su fruta.

- También mediante un proceso de fermentación se obtiene vino de pitahaya.
- En farmacología se utiliza para la elaboración de cremas, jarabes, tónicos para regular la presión arterial y laxante para problemas digestivos.
- De la corteza se elabora sorbetes es muy usado en la industria alimenticia.
- Además de la corteza se extrae un látex que limpia, humecta y previene el envejecimiento de la piel.
- Se utiliza para arreglos decorativos, florales y de frutas exóticas, además en la preparación de platos gourmet, postres y ensaladas.
- Gracias al contenido de antocianinas y flavonoides de la cascara de pitahaya puede ser usado como colorante natural en la industria alimenticia, farmacéutica y cosmetológica.

1.3.2.7 Beneficios de la pulpa de pitahaya

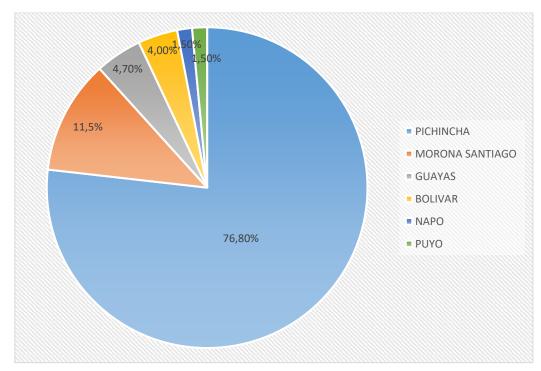
La pitahaya brinda un sin número de beneficios para la salud: esta disminuye el riesgo de padecer enfermedades cardiovasculares e hipertensión, además tiene gran influencia en la rigidez aórtica en personas que padecen diabetes lo que provoca que este fruto sea ideal para la dieta de personas con esta enfermedad (De la Rosa y Reyes, 2016, p. 33).

Esta fruta exótica es considerada una fuente rica en antioxidantes y grasas del tipo Omega 3 que ayudan a prevenir la aparición de enfermedades graves, tumores cancerígenos, y ciertos tipos de cáncer de carácter hormonal como el de mama, útero, colon y próstata (De la Rosa y Reyes, 2016, p. 33).

La pitahaya contiene propiedades laxantes, estas se encuentran principalmente en sus semillas, por lo que es muy recomendada para aquellas personas que llevan una dieta estricta, además para aquellas que tienen problemas de estreñimiento (Andrade M., 2015, pp.30-31).

El fruto de pitahaya contiene mucílagos que ayudan a la disminución del colesterol en la sangre, por lo tanto, regula la presión arterial además favorece a la formación de glóbulos rojos y plaquetas (De la Rosa y Reyes, 2016, p. 33).

La pitahaya gracias a su contenido rico en nutrientes fortalece al sistema inmunológico, en consecuencia, previene la aparición de ciertas enfermedades como la anemia y gripe, además es muy recomendada por su alto contenido de calcio, para el fortalecimiento del sistema óseo para los adultos (Andrade M., 2015, pp.30-31).


1.3.2.8 Entorno nacional

En el Ecuador existe las condiciones óptimas para la producción de la pitahaya amarilla, este tipo de sembrío tiene apertura en el noreste de Pichicha. Gracias a las condiciones climatológicas de la amazonia, presenta condiciones ideales para el buen desarrollo de la pitahaya, es decir, en sectores subtrópicos se produce un fruto con mayor cantidad de pulpa, peso y grados Brix (Andrade M., 2015, pp.30-31).

Uno de los sectores de mayor producción en el país es en el cantón de Palora donde se producen 12 millones de kilos de pitahaya, de esta cantidad se calcula que cerca del 80% se exporta a mercados norteamericanos, europeos y asiáticos; en Hong Kong una unidad puede venderse hasta en 9 dólares. Gran parte de la economía de Palora se centra en la producción de pitahaya, generando cerca de 30 millones de dólares (Falconí, 2018, p. 3).

Otro sector es en la península de santa Elena la cual por sus condiciones adecuadas el cultivo de pitahaya se sigue incrementando. De acuerdo a los últimos datos del censo Agropecuario realizado por INEC en el año 2000; la superficie total sembrada exclusivamente con Pitahaya fue de 16,515 hectáreas, pero la superficie cosechada es 110 hectáreas (Mendoza y Medina, 2011, pp.14-17).

A continuación, se muestra la distribución del cultivo en el 2006 de pitahaya amarilla en el país.

Gráfico 1-1: Diagrama de distribución del cultivo de pitahaya por provincias. **Fuente:** INEC, Censo Agropecuario, 2006.

1.3.2.9 Pulpa de frutas

La pulpa de fruta es un producto pulposo sin fermentar, destinado para el consumo directo, que se prepara con la parte comestible del fruto, la cual debe ser triturada y tamizada o debe ser sometida a un proceso de homogenización. Para que la fruta sea sometida al proceso debe pasar por un proceso de selección; debe estas en un grado óptimo de maduración, libre de golpes, magulladura y roturas de sus cáscaras (Díaz, 2015, p. 11).

Las pulpas congeladas son productos naturales con gran aceptación en el mercado, este producto tiene variedad de aplicaciones, puede ser usado para la preparación de jugos, néctares, mermeladas, licores, etc. (Díaz, 2015, p. 15).

Las pulpas de frutas se deben de congelar inmediatamente para evitar la pérdida de ninguna de sus características organolépticas, es decir; el color, sabor, textura que deben ser los mismos que una fruta recién cosechada de ahí la importancia del congelado para obtener un producto de calidad. Cuando las pulpas son sometidas a un proceso térmico aumentan su tiempo de vida útil, porque mediante el incremento de la temperatura se busca eliminar todo tipo de microorganismo que proliferó durante el procesamiento de la fruta fresca (Chacón, 2006, p. 28).

1.4 Beneficiarios Directos e Indirectos

1.4.1 Beneficiarios Directos

La Asociación de productores y comercializadores de pitahaya y otros productos "Palora" es la beneficiaria principal debido a que avala el proyecto por la creciente producción agraria y necesidad viabilizar parte de ella a generación de pulpa de pitahaya.

1.4.2 Beneficiarios Indirectos

Los beneficiarios indirectos mediante la ejecución del proyecto serán:

- El sector agrícola de la ciudad de Palora y sectores colindantes mejorando la calidad de vida de sus habitantes ya que generará nuevas fuentes de empleo.
- Los sectores de consumo que se verán beneficiados por el aporte nutricional y por la variabilidad de productos.

CAPÍTULO II

2 OBJETIVOS

2.1 General

 Diseñar un proceso para la obtención de pulpa de pitahaya (Hylocereus triangularis) en la Asociación de productores y comercializadores de pitahaya y otros productos "Palora".

2.2 Específicos

- Realizar la caracterización físico-química de la fruta fresca de pitahaya (*Hylocereus triangularis*) conforme a la Norma Técnica Ecuatoriana NTE INEN 2003: 2015. Frutas frescas. Pitahaya. Requisitos.
- Identificar las variables de proceso, operaciones y parámetros óptimos para la obtención de pulpa a partir de pitahaya (*Hylocereus triangularis*).
- Realizar los cálculos de ingeniería para el desarrollo del proceso para obtención de pulpa de pitahaya.
- Validar el diseño del proceso para la elaboración de pulpa de pitahaya mediante el análisis del producto final de acuerdo con la Norma Técnica Ecuatoriana NTE INEN 2337: 2008.
 Jugos, pulpas, concentrados, néctares, bebidas de frutas y vegetales. Requisitos.

CAPÍTULO III

3 ESTUDIO TÉCNICO PRELIMINAR

3.1 Localización del proyecto

El presente trabajo tuvo lugar en la Asociación de productores y comercializadores de pitahaya y otros productos "Palora", ubicada en la provincia de Morona Santiago, cantón Palora, cuyo Centro de acopio está a una altitud de 898 metros sobre el nivel del mar, en el kilómetro 1 en la avenida de entrada - salida de la ciudad de Palora y los análisis de laboratorio se realizó en el Laboratorio de Procesos Industriales de la Facultad de Ciencias de la Escuela Superior Politécnica de Chimborazo ESPOCH, ubicada en la provincia de Chimborazo, cantón Riobamba en la Panamericana sur km 1^{1/2} con coordenadas 1°39'13.4"S 78°40'34.2"W.

Tabla 1-3: Localización del proyecto

Ubicación	Cantón Palora, Provincia de Morona Santiago – Ecuador	
Latitud	-1.7212317	
Longitud	-77.9623643	
Altitud	898 m. s. n. m.	
Clima	Temperatura máxima: 29 ° C	
	Temperatura mínima: 18 ° C	
	Temperatura promedio mensual: 21,70 ° C	
	Precipitación media mensual: 4065 mm	
	Humedad relativa: 85 %	

Fuente: GeoDatos, 2018

Realizado por: José Balcázar, 2018.

Figura 1-3: Ubicación del Centro de acopio de la Asociación de productores y comercializadores de pitahaya y otros productos "Palora"

Fuente: (Maps, 2018)

3.2 Ingeniería del proyecto

3.2.1 Tipo de estudio

El presente proyecto es considerado de Tipo Técnico, es decir tiene la intervención de varias operaciones unitarias, que de la mano con estudios preliminares de carácter teórico y práctico determina la viabilidad del proyecto. Se cuenta con un estudio analítico, descriptivo y experimental, ya que se parte de la recolección de datos, identificaciones de variables, realización de ensayos, análisis de resultados, con el fin de detectar un método estándar para la elaboración de pulpa de pitahaya.

3.2.2 Métodos y técnicas

3.2.2.1 Métodos

Para el desarrollo del presente proyecto Técnico, se tomó como referencia los métodos Inductivo, Deductivo y Experimental, esto posibilitó el análisis de los datos obtenidos y viabilizó las condiciones operacionales de diseño, despejando todas las interrogantes durante el proceso.

Método Deductivo: Por medio de este método se dio lugar a varios ensayos y pruebas piloto a nivel de laboratorio para la obtención de la pulpa de pitahaya, para conseguir distintos parámetros, elementos y especificaciones que facilitó la realización de los balances de masa, energía y el dimensionamiento de los equipos.

Método Inductivo: Mediante este método, se agilizó la toma de datos de la caracterización de la Pitahaya y de esta manera cotejar con la normativa vigente en el país, para dar por aprobada la utilización de esta fruta como materia prima para la obtención de un nuevo producto, al distinguir todos los elementos iniciales del proceso se procedió a desarrollar los cálculos de ingeniería para el dimensionamiento de la planta.

Método Experimental: Este método se fundamentó en la aplicación de equipos e instrumentos adecuados para constatar la certeza de los datos obtenidos, esto se desarrolló mediante la obtención del producto final por medio de una prueba piloto en el laboratorio y evidenciando que la producción cumple con la Norma Técnica Ecuatoriana NTE INEN 2337: 2008. Jugos, pulpas, concentrados, néctares, bebidas de frutas y vegetales. Requisitos.

3.2.2.2 Técnicas

Inicialmente para el desarrollo del proceso se tomó en cuenta las técnicas de selección detalladas en la norma NTE INEN 1750. Hortalizas y Frutas frescas. Muestreo, con estos detalles se realizó un correcto muestreo para el análisis posterior de la muestra.

Muestreo

Tabla 2-3: Técnica de muestreo para frutas frescas

Fundamento	Norma	Materiales	Técnica
Se establece los procedimientos para la	NTE INEN 1750	Mesa de recepción	La identificación del lote para el muestreo se realizó tomando en cuenta las siguientes
toma de muestras de frutas frescas, se	NTE INEN 2003	Canasta plástica	especificaciones:
requiere de especial atención de que de		Cuchillo	1. Mediante una inspección visual y manual, se aceptará las frutas del "Grado 1" es decir
esta primera selección dependerán los		Guantes	las que cumplan los siguientes requisitos:
esta primera selección dependerán los resultados de producción.		Mascarilla	las que cumplan los siguientes requisitos: ✓ Estar enteras y exentas de daños mecánicos; ✓ Deben excluirse los frutos afectados por podredumbre o deterioro causados por altas y bajas temperaturas que haga que no sean aptos para el consumo; ✓ Estar limpias (sin espinas) y exentas de cualquier materia extraña visible principalmente en el orificio apical; ✓ Estar exentas de plagas y daños que afecten al aspecto general del producto; ✓ Estar exentas de humedad externa anormal; ✓ Estar exentas de cualquier olor y/o sabor extraño. Para cada fruta se admiten los defectos que se indican a continuación: ✓ Deformaciones del fruto, como alargamiento poco pronunciado del ápice; ✓ Rozaduras cicatrizadas, que no excedan 1 cm² con respecto al área total del fruto. 2. Toma de muestras elementales: Las muestras elementales se toman al azar, de diferentes puntos y a diferentes niveles del lote. 3. Una vez obtenida las muestras elementales se procede a realizar el proceso de producción de pulpa.
			4. La identificación de dichas muestras se realizará una vez por semana.

Fuente: (NTE INEN 1750. HORTALIZAS Y FRUTAS FRESCAS. MUESTREO & NTE INEN 2003. FRUTAS FRESCAS. PITAHAYA. REQUISITOS.)

Realizado por: José Balcázar, 2019.

La caracterización del fruto fresco se realizó en base a la norma NTE INEN 2003:2015.
 FRUTAS FRESCAS. PITAHAYA. REQUISITOS, donde se especifica los componentes que debe tener el fruto para ser aceptada como materia prima óptima para el proceso de producción.

Tabla 3-3: Requisitos físico-químicos de la pitahaya

REQUISITOS	UNIDAD	0	1	2	MÉTODO DE
REQUISITOS	UNIDAD	(verde)	(pintón)	(maduro)	ENSAYO
Sólidos solubles (S)	% (fracción másica)	16 < S < 18	18 < S < 21	S > 21	NTE INEN ISO 2173
Acidez titulable expresada como ácido cítrico (A)	% (fracción másica)	A > 6	$5 \le A \le 6$	A < 5	NTE INEN ISO 750
Porcentaje del contenido de pulpa (CP)	% (fracción másica)	CP < 30	$30 \le \mathrm{CP} \le 50$	CP > 50	$\% = \frac{m \ de \ pulpa(g)}{m \ de \ fruta(g)} 100$
Relación masa (M) pulpa (P)	Masa (kg) Pulpa (%) (fracción másica)	m < 0,15 P < 30	$0.15 \le m \le 0.20$ $30 \le P \le 50$	m > 0,20 P > 50	
Materia seca (MS)	% (fracción másica)	MS > 20	$18 \le MS \le 20$	MS < 18	

Fuente: NTE INEN 2003:2015. FRUTAS FRESCAS. PITAHAYA. REQUISITOS.

A continuación, se detalla las técnicas usadas para la caracterización de la materia prima y del producto final (pulpa).

Tabla 4-3: Determinación de los grados Brix

Fundamento	Materiales	Técnica	
Los grados Brix equivalen al	Refractómetro	1. Encender el refractómetro y calibrar el	
porcentaje en masa de la	Vaso de precipitación de	equipo.	
sacarosa contenida en una	100 ml	2. Colocar 1-2 gotas de muestra en el	
solución acuosa, es decir, miden	Espátula	refractómetro.	
la concentración de azúcar		3. Esperar unos minutos mientras se expande	
presente en los alimentos.		totalmente la muestra.	
		4. Leer el valor de los °Bx.	

Fuente: NTE INEN – ISO 2173: 2013. PRODUCTOS VEGETALES Y DE FRUTAS – DETERMINACIÓN DE SÓLIDOS SOLUBLES - METODO REFRACTOMÉTRICO.

Realizado por: José Balcázar, 2019.

Tabla 5-3: Determinación del pH

Fundamento	Materiales	Técnica
El pH es un parámetro que me	Potenciómetro	1. Encender el potenciómetro y
permite determinar el grado de	Vaso de precipitación 150 ml	comprobar su correcto
acidez o alcalinidad de un producto	Varilla de agitación	funcionamiento.
o sustancia, el pH de la fruta	Piseta	2. Realizar la limpieza de los
determina la calidad de esta, es	Agua destilada	electrodos con agua destilada.
decir, el valor de pH determinará la		3. Colocar en el vaso de
etapa de maduración en la que se		precipitación aproximadamente 120
encuentre, si el pH de la pulpa es alto		ml de muestra.
a medida que madura el pH cae.		4. Agitar la muestra con una varilla
		de agitación para homogenizar la
		muestra.
		5. Determinar el pH introduciendo
		los electrodos del potenciómetro en
		el vaso de precipitación con la
		muestra, cuidando que éstos no
		toquen las paredes del recipiente.
		6. Anotar los valores.
		7. Enjuagar el electrodo con agua
		destilada y secar con un paño limpio.

Fuente: Laboratorio de Procesos Industriales. Facultad de Ciencias. TÉCNICA DEL POTENCIÓMETRO. ESPOCH. Realizado por: José Balcázar, 2019.

Tabla 6-3: Determinación de la viscosidad

Fundamento	Materiales	Técnica	
La viscosidad se refiere a la	Viscosímetro de Brookfield	Calibrar el viscosímetro.	
resistencia que poseen los fluidos al	Vaso de precipitación 150 ml	2. Sumergir la muestra a baño maría	
movimiento relativo de sus	Reverbero	hasta que alcance una temperatura	
moléculas.	Termómetro	de 20° C sin dejar de agitar para	
	Varilla de agitación	tener una muestra homogénea.	
		3. Identificar la aguja	
		correspondiente en el equipo y las	
		rpm a usar, la medición se realizó	
		con la aguja número 1 a 98,5 rpm.	
		5. Introducir cuidadosamente la	
		sustancia a analizar.	
		6. Anotar los valores	
		correspondientes.	

Fuente: Laboratorio de Procesos Industriales. Facultad de Ciencias. VISCOSIMETRO. ESPOCH.

Realizado por: José Balcázar, 2019.

Tabla 7-3: Determinación de la densidad

Fundamento	Materiales	Técnica	Cálculo
La densidad es aquella	Picnómetro	1. Pesar el picnómetro	
propiedad que permite	Agua destilada	completamente limpio y seco.	$d = \frac{M1 - M}{M}$
determinar la ligereza o	Vaso de precipitación	2. Llenar con la muestra de	$a = {V_p}$
pesadez de una sustancia, y	150 ml.	pulpa el picnómetro, evitando	Donde:
se define como el coeficiente	Reverbero	la formación de burbujas de	M1 = Masa de
entre la masa de un cuerpo y	Varilla de agitación	aire y colocar el tapón.	picnómetro con la
el volumen que ocupa.	Balanza analítica	3. Pesarlo cuidadosamente.	muestra (g)
			M = Masa del
			picnómetro vacío (g)
			$V_p = Volumen del$
			picnómetro (ml)

Fuente: Laboratorio de Procesos Industriales. Facultad de Ciencias. PICNOMETRIA. ESPOCH. Realizado por: José Balcázar, 2019.

Tabla 8-3: Determinación de la acidez titulable como ácido cítrico

Fundamento	Materiales	Técnica	Cálculo
La acidez titulable	Balanza analítica	1. Llevar la muestra a una	
es un indicador de	Matraz Erlenmeyer	temperatura de 20°C y mezclarla con	
buena calidad	Matraz Aforado	cuidado hasta homogenizarla.	A
higiénica-sanitaria,	Mortero	2. Lavar cuidadosamente y secar el	$= 0.090 \frac{V * N}{m_1 - m} * 100$
expresa el contenido	Pipeta	matraz Erlenmeyer en la estufa a	$m_1 - m$
de ácidos libres en	Bureta	103° durante 30 min, dejar enfriar en	
una matriz, en el	Estufa	el desecador y pesar.	Donde:
caso de los frutos	Desecador	4. Transferir al matraz	A = Acidez titulable de
ácido cítrico.		Erlenmeyer la muestra y pesar	la pulpa, en porcentaje
	REACTIVOS	aproximadamente 20 g de muestra.	en masa de ácido cítrico.
	Solución 0,1 N de	5. Diluir el contenido del matraz con	V = Volumen de la
	NaOH	un volumen dos veces mayor de	solución de hidróxido de
	Fenolftaleína	agua destilada, y agregar 2 gotas de	sodio empleado en la
	Agua destilada	solución indicadora de fenolftaleína.	titulación, en cm ³ .
		6. Agregar, lentamente y con	N = Normalidad de la
		agitación, la solución 0,1 N de	solución de hidróxido de
		hidróxido de sodio, justamente hasta	sodio.
		conseguir un color rosado	m = Masa del matraz
		persistente.	Erlenmeyer vacío, en g.
		7. Continuar agregando la solución	$m_1 = \text{Masa del matraz}$
		hasta que el color rosado persista	Erlenmeyer con la
		durante 30 s.	pulpa, en g.
		8. Leer en la bureta el volumen de	
		solución empleada.	

Fuente: NTE INEN-ISO 750: 2013. PRODUCTOS VEGETALES Y DE FRUTAS – DETERMINACION DE LA ACIDEZ

TITULABLE.

Realizado por: José Balcázar, 2019

Para finalizar se realizó la caracterización del producto final (pulpa), guiándonos en lo
especificado en la norma NTE INEN 2337: 2008. JUGOS, PULPAS, CONCENTRADOS,
NÉCTARES, BEBIDAS DE FRUTAS Y VEGETALES. REQUISITOS, donde muestra los
requisitos microbiológicos que debe poseer la pulpa al final de proceso de producción.

Tabla 9-3: Requisitos microbiológicos para productos congelados

Requisito	n	m	M	c	Método de ensayo
Coliformes NMP/cm ³	3	<3		0	NTE INEN 1529-6
Coliformes fecales	3	<3		0	NTE INEN 1529-8
NMP/cm ³					
Recuento estándar en	3	1x10 ²	$1x10^{3}$	1	NTE INEN 1529-5
placa REP UFC/cm ³					
Recuento de mohos y	3	1x10 ²	$1x10^{3}$	1	NTE INEN 1529-10
levaduras UP/cm ³					

Fuente: NTE INEN 2337:2008. JUGOS, PULPAS, CONCENTRADOS, NÉCTARES, BEBIDAS DE FRUTAS Y VEGETALES. REQUISITOS.

Donde:

n = Número de muestras a examinar.

m = nivel aceptación.

M = nivel de rechazo.

c = Número de muestras permitidas con resultados entre m y M.

3.2.3 Procedimiento a nivel de laboratorio

3.2.3.1 Requerimientos de materiales, equipos y reactivos

Para diseñar el proceso se realizó previamente ensayos a nivel de laboratorio basados en información bibliográfica, para dichos ensayos utilizamos diversos materiales, equipos y reactivos enlistados a continuación:

Tabla 10-3: Materiales, equipos y reactivos

EQUIPOS	MATERIALES	REACTIVOS
Balanza digital y analítica.	Mesa de acero inoxidable (Mesa de	Muestras de pitahaya
Viscosímetro	trabajo)	Pulpa
Potenciómetro	Recipientes metálicos	Sorbato de potasio y azúcar
Refractómetro	Cronómetro y temporizador	Agua destilada
Despulpadora	Picnómetro, termómetro, vasos de	Hipoclorito de sodio
Marmita de acero inoxidable	precipitados, varilla de agitación,	
Congelador de laboratorio de baja	piseta.	
temperatura	Reverbero, malla metálica	
	Calibre y flexómetro	
	Malla tamiz sólido-líquido de acero	
	inoxidable, cuchillo	
	Fundas resellables, papel aluminio	
	Mandil, cofia, mascarilla y guantes	
P. H. J. (P. L.) 2010	de manejo.	

Realizado por: José Balcázar, 2019.

3.2.3.2 Descripción del proceso a nivel de laboratorio

Se trabajó con una muestra de 5 kg debido a la capacidad de equipo disponibles en el laboratorio de Procesos Industriales.

Selección y clasificación de la materia prima

Para la recolección del fruto se realizó un muestreo aleatorio simple según lo especificado en la Tabla 2-3 Muestreo de la materia prima. La fruta ya seleccionada debe estar en buen estado de maduración, sin magulladuras y golpes.

Para determinar el buen estado de maduración de la pitahaya se usó lo fijado en la norma NTE INEN 2003: 2015, donde se considera lo siguiente:


Clasificación según la calidad física del fruto

Independientemente del calibre y del color, los frutos de la pitahaya amarilla se clasifican en tres Categorías según en cumplimiento de los requisitos definidos en el apartado 5.1 de la norma e indicados en la Tabla 2-3 del presente proyecto.

- a) Grado "extra": Los frutos clasificados en este grado deben cumplir todos los requisitos y estar exentos de todo defecto; solamente se aceptan ligeras alteraciones superficiales de la cáscara, siempre y cuando no afecten la apariencia general del producto.
- b) Grado 1. Los frutos clasificados en este grado deben cumplir todos los requisitos para cada fruta se admiten los defectos que se indican a continuación: Deformaciones del fruto, como alargamiento poco pronunciado del ápice; Rozaduras cicatrizadas, que no excedan 1 cm² con respecto al área total del fruto;
- c) Grado 2. Este grado comprende los frutos que no pueden clasificarse en las categorías anteriores, se admiten los defectos que se indican a continuación: Manchas superficiales y/o raspaduras cicatrizadas que no excedan a 2 cm² con respecto al área total del fruto; Pérdida de la forma ovoidal del fruto, tomando en cuenta que esta pérdida en la forma no sea debida a que se trata de una variedad diferente.

Según la disponibilidad de fruta de la Asociación se consideró para el proceso de producción la fruta de Grado 1, ya que las frutas de Grado "extra" son destinadas a exportación.

Requisitos de madurez

Figura 2-3. Tabla de color de la pitahaya amarilla **Fuente:** NTE INEN 2003, 2015. FRUTAS FRESCAS PITAHAYA. REQUISITOS

Donde:

De izquierda a derecha. Color 0, color 1, color 2.

En dicha figura se evidencia los cambios de color en las distintas etapas de maduración de la pitahaya:

❖ COLOR 0 (verde): Fruto de color verde con visos amarillos que van del 5 al 20 % en toda la superficie.

- ❖ COLOR 1 (pintón): Fruto de color verde-amarillo, que van del 21 al 40%. Inicia el llenado de las mamilas y la separación entre ellas.
- ❖ COLOR 2 (maduro): Fruto de color amarillo, que van del 41 al 80%, con la punta de las mamilas de color verde y aumenta la separación entre las mismas.

Para el desarrollo del proceso se requiere que la pulpa de pitahaya tenga un contenido alto de solidos solubles > 21 %, por dicha razón se seleccionó las frutas del COLOR 2, porque a mayor grado de madurez más contenido de solidos solubles.

Clasificación según el rango de masa

Otro signo de calidad es la masa del fruto, para eso se verificó lo señalado en la norma NTE INEN 2003: 2015.

Tabla 11-3: Clasificación de la pitahaya según su masa unitaria

Masa unitaria (g)	Grado (°)
m>361	8
261≤m<361	9
201≤m<261	12
151≤m<201	14
111≤m<151	16
m<111	20

Fuente: NTE INEN 2003:2015. FRUTAS FRESCAS. PITAHAYA. REQUISITOS.

Para este proceso se aceptó frutos del Grado 9 y 12. Además se debe medir los diámetros del fruto y la semilla para los cálculos posteriores.

Limpieza, lavado y desinfección

Una vez seleccionada la fruta, se procede a lavar cada una de las frutas con abundante agua y restregando con un cepillo para eliminar todas las partículas de suciedad provenientes de su recolección, posteriormente se efectuó una desinfección usando una solución de agua con hipoclorito de sodio 50 mg NaClO/L, esto garantiza la eliminación total de los contaminantes.

> Escaldado

Posteriormente se realizó un tratamiento térmico; que consiste en la exposición de la fruta a una temperatura de entre 65 y 70°C por un tiempo de 5 minutos, esto se ejecutó con el propósito inactivar enzimas, fijar el color, sacar el aire ocluido en la fruta y remover aromas indeseables.

> Corte y pelado

Luego del escaldado del fruto se procede al retiro de la cáscara, evitando realizar demasiados cortes para garantizar la calidad de pulpa, todo esto se debe realizar en condiciones de higiene adecuadas y buenas prácticas de manufactura.

Despulpado

En esta etapa se separó las semillas y residuos de la parte comestible del fruto, para esto se utilizó un tamiz con luz de malla de 1 mm, es decir, inferior a las dimensiones de la semilla, y de esta manera obtener un elemento fácilmente manejable en los procesos posteriores.

Homogeneizado

Después de la etapa de despulpado se procedió a la adición de azúcar, este proceso se justifica para regular los grados Brix indicado en la norma NTE INEN 2003:2015 para fruto maduro, además en esta fase se adicionó sorbato de potasio 0,5 g C6H7KO2/1000 g pulpa, que contribuyó a la conservación.

> Envasado y sellado

El envasado se llevará a cabo manualmente en fundas de polietileno de baja densidad ya etiquetadas pesando un total de 500 g, posteriormente se procederá al sellado hermético.

Almacenado

El almacenamiento tendrá lugar en un cuarto frio a temperatura de -10°C, esta técnica de conservación es muy utilizada en la industria alimenticia ya que permite conservar por más tiempo sin que esta pierda las propiedades organolépticas y su calidad nutricional. Por consiguiente, se realizaron las pruebas físico-químicas de la pulpa, es decir los análisis de pH, °Bx, densidad y viscosidad, mediante la caracterización del producto final pudimos determinar que si cumple con la normativa NTE INEN 2337:2008.

3.2.3.3 Resultados de los análisis de laboratorio

La caracterización de la materia se realizó en el laboratorio acreditado LACONAL ubicado en la Universidad Técnica de Ambato los resultados arrojaron que el fruto usado para el proceso cumple con los requisitos, se tomó en consideración que se caracterizó el fruto maduro.

Tabla 12-3: Análisis físico-químico de la materia prima (Ver ANEXO B)

REQUISITOS	UNIDAD	RESULTADO	LÍMITE DE NORMA (fruto maduro)
Sólidos solubles (S).	% (fracción másica)	17,54	S > 21
Acidez titulable expresada como ácido cítrico (A).	% (fracción másica)	1,19 x10 ⁻⁴	A < 5
Contenido de pulpa (CP)	% (fracción másica)	CP = 52,36	CP > 50
Relación masa (M) pulpa (P)	Masa (kg) Pulpa (%) (fracción másica)	M = 0.28 P = 52.36	m > 0,20 P > 50
Materia seca (MS)	% (fracción másica)	MS = 19,5	MS < 18

Fuente: Laboratorio de Control y Análisis de Alimentos (LACONAL)

Como se puede apreciar el contenido de sólidos solubles no cumple con la norma establecida que señala que una pitahaya en estado maduro debe tener un contenido de solidos solubles S>21, de este hecho se justifica que en la etapa de homogeneización se adicione azúcar para estandarizar los sólidos solubles y se cumpla con la normativa.

Tabla 13-3: Masa y dimensiones PRUEBA 1

MASA (g)	DIAMETRO ECUATORIAL (mm)	DIAMETRO POLAR (mm)
271	71,70	82,34
254	70,98	75,52
270	73,00	73,72
259	67,76	73,91
266	72,60	74,14
249	69,06	73,64
242	70,99	72,6
253	68,84	72,8
243	65,90	76,7
248	71,80	70,7
245	73,34	77,38

	277	75,40	75,78
	242	71,28	72,56
	241	67,60	82,3
	256	70,80	81,86
	251	72,10	71,26
	242	69,20	74,38
	243	68,98	79,8
	246	72,56	74,1
	254	68,16	67,28
TOTAL	5052	1412,05	1502,77
PROMEDIO	252,6	70,60	75,14

Fuente: Laboratorio de Operaciones Unitarias. ESPOCH.

Realizado por: José Balcázar, 2018.

Tabla 14-3: Masa y dimensiones PRUEBA 2

MASA ((g)	DIAMETRO ECUATORIAL (mm)	DIAMETRO POLAR (mm)
	296	74,28	89
	307	77,24	87,6
	308	80,5	94,32
	256	72,74	82,36
	249	73,62	77,9
	277	74,82	86,48
	290	77,18	80,44
	271	76,18	85,74
	290	76,14	83,6
	271	76,18	81,1
	274	75,58	78,7
	281	74,1	78,82
	250	71,78	82,34
	269	73,72	78,84
	298	75,26	89,72
	294	79,7	86,46
	230	71,38	74
	240	70,84	74,76
	225	73,68	70,62
TOTAL	5176	1424,92	1562,8
PROMEDIO	272,42	75,00	82,25

Fuente: Laboratorio de Operaciones Unitarias. ESPOCH.

Realizado por: José Balcázar, 2018.

Tabla 15-3: Masa y dimensiones PRUEBA 3

MASA (g)	DIAMETRO ECUATORIAL (mm)	DIAMETRO POLAR (mm)
260	72,94	80,56
274	76,54	81,8

PROMEDIO	265,05	74,43	81,41
TOTAL	5036	1414,12	1546,7
	324	77,24	90,58
233		71	80,32
	236	72,24	77,56
	265	76,22	85,64
	259	74	79,5
	249	72,96	79,1
	238	71,34	81,62
	248	72,6	79
	235	71,78	75,34
	262	77,74	79,68
	274	73,9	86,02
	239	74	80,26
	259	74,1	78,64
	349	78,9	91,44
	310	79,4	85,34
	264	74,34	76,62
	258	72,88	77,68

Fuente: Laboratorio de Operaciones Unitarias. ESPOCH.

Realizado por: José Balcázar, 2018.

Como se puede evidenciar en las Tablas 13-3,14-3 y 15-3 Las masas de los frutos se encuentran dentro de los grados 9 y 12 lo que quiere decir que se encuentran dentro de los límites aceptables de las características físicas.

Tabla 16-3: Dimensiones de las semillas

PRUEBA	. 1	PRUEBA 2	PRUEBA 3
Diámetro (n	nm)	Diámetro (mm)	Diámetro (mm)
	1,74	2	1,6
	1,78	1,56	2,04
	1,48	1,8	1,64
	1,88	1,58	1,64
	2,00		1,9
	1,44	1,64	1,52
	1,64	1,78	1,34
	1,56	1,56	1,48
	1,32	1,38	1,58
	1,86	1,74	1,56
PROMEDIO	1,67	1,66	1,63

Fuente: Laboratorio de Operaciones Unitarias. ESPOCH.

Realizado por: José Balcázar, 2018.

Tabla 17-3: Resultados del análisis físico-químico de la pulpa de pitahaya

SIMULACIÓN	°Bx	pН	Densidad (g/ml)	Viscosidad (cP)
PRUEBA 1	21,22	5,12	1,0858	52,5
PRUEBA 2	21,02	5,16	1,0860	55,2
PRUEBA 3	21,36	5,13	1,0865	54,9
PROMEDIO	21,2	5,14	1,0861	54,2

Fuente: Laboratorio de Operaciones Unitarias. ESPOCH.

Realizado por: José Balcázar, 2018.

3.2.4 Operaciones unitarias del proceso de obtención de pulpa de pitahaya

Las operaciones de acondicionamiento selección, lavado, escaldado, corte y pelado, envasado y sellado, y almacenado acompañan a las operaciones unitarias que se van a usar para la transformación de la materia prima en pulpa de pitahaya las cuales son las siguientes:

3.2.4.1 Despulpado

El despulpado es una operación de filtración donde se separa el componente sólido insoluble de la mezcla sólido-líquido, en este caso por medio de un cilindro tamiz de acero inoxidable con luz de malla que retiene las semillas y el bagazo del fruto para solo obtener la parte liquida y comestible que es la pulpa.

3.2.4.2 Homogeneizado

El mezclado es una operación unitaria muy importante que permite combinar dos o más elementos y homogenizar diversas sustancias miscibles o no miscibles para obtener un producto. En el proceso de elaboración de pulpa se procede a añadir aditivos como conservante y en ocasiones pectina donde se requiere de una agitación constante.

3.2.5 Variables y parámetros de proceso para obtención de pulpa de pitahaya

Tabla 18-3: Variables del proceso

OPERACIÓN	VARIABLE	VARIABLE	PARÁMETRO	MÉTODO	EFECTO O FUNCIÓN EN
	INDEPENDIENTE	DEPENDIENTE	EXPERIMENTAL (e)	DE MEDICIÓN	EL PROCESO
Selección y clasificación de	Unidad (fruto)	Masa (m) Calidad física	$201 \le m \le 360 \ g$ $Rozaduras \ cicatrizadas \le 1 \frac{cm^2}{fruto}$	Balanza Inspección manual-visual	Calidad del producto
la materia prima	Estado de maduración	Grados Brix (°Bx)	(°Bx > 21) ≈ maduro	Tabla de color, refractómetro	Cantidad de solidos solubles
		Volumen (H ₂ O), masa (NaClO)	$50 \; \frac{mg \; NaClO}{L \; H_2O}$	Medición volumétrica	Cantidad de microorganismos
Lavado, limpieza y desinfección	Masa de pitahaya seleccionada (S_1)	Tiempo (t_2)	$k_{flujo\ de\ lavado} = rac{3,77\ min.\ persona}{5kg}$	Balanza, cronómetro	$t_2 = k_{flujo \ de \ lavado} \frac{S_1}{n_T}$ $n_T = 5$ $n_T = n. \ de \ trabajadores$ $Flujo \ m\'asico = m_{E2} = \frac{S_1}{t_2}$
Escaldado	Temperatura (T)	Tiempo (t_3)	$65 \le T \le 70 \text{ °C}; \ t_3 = 5 \ min$	Termómetro, temporizador	Fijar el color
Corte y pelado	Masa de pitahaya escaldada (S_3)	Tiempo (t_4)	$k_{flujo\ de\ pelado} = rac{7,92\ min.\ persona}{5,109\ kg}$	Balanza, cronómetro	Retiro de cáscara $t_4=1,55\frac{min}{kg}*{\left(\frac{S_3}{n_T}\right)}$ Flujo másico = $m_{E4}=\frac{S_3}{t_4}$
Despulpado	Flujo másico Dimensiones de semilla	Luz de malla (<i>Lz</i>)	Lz = 1 mm	Balanza, cronómetro, malla tamiz solido-liquido	Obtención de pulpa
Homogeneizado	Masa pulpa de pitahaya (S_5)	masa $(C_6H_7KO_2)$, edulcorante Tiempo (t_6)	$0.5 \frac{g C_6 H_7 K O_2}{kg pulpa}$ $t_6 = 10 min$	Balanza Temporizador	Vida útil
Envasado - sellado	Peso neto	Envases	Peso $neto = 500 g$	Balanza	Unidades de producto a la venta
Almacenado	Temperatura (T)	Tiempo (t_8)	<i>T</i> = −10 °C	Termómetro	Conservación de producto final

Realizado por: José Balcázar, 2019.

Tabla 19-3: Datos experimentales

OPERACIÓN :	PRUEBA 1	PRUEBA 2	PRUEBA 3	PROMEDIO
OI EXACION	VARI	ABLE DEPENDIENTE E INDEPEN	DIENTE	1 KOWIEDIO
Selección y clasificación de la fruta	$E = 5,052 \text{ kg}$ $^{\circ}Bx = 17,27$ $S_1 = 5,00 \text{ kg}$	$E = 5, 176 \text{ kg}$ $^{\circ}Bx = 17,58$ $S_1 = 5,00 \text{ kg}$	$E = 5,036 \text{ kg}$ $^{\circ}\text{Bx} = 17,76$ $S_1 = 5,00 \text{ kg}$	$E = 5,088 \text{ kg}$ $^{\circ}Bx = 17,54$ $S_1 = 5,00 \text{ kg}$
Lavado, limpieza y desinfección	$S_2 = 5,092 \text{ kg}$ 50 mg/L NaClO $V_{H2O} = 7,5 \text{ L}$ $V_{NaClO \text{ al } 5\%} = 7,5 \text{ ml}$ $Tiempo \text{ de lavado} = t_2 3,77 \text{min}$	$S_2 = 5,197 \text{ kg}$ 50 mg/L NaClO $V_{\text{H2O}} = 8,4 \text{ L}$ $V_{\text{NaClO al 5\%}} = 8,4 \text{ ml}$ Tiempo de lavado = 3,77 min	$S_2 = 5,085 \text{ kg}$ 50 mg/L NaClO $V_{\text{H2O}} = 7,5 \text{ L}$ $V_{\text{NaClO al }5\%} = 7,5 \text{ ml}$ $Tiempo \text{ de lavado} = 3,77 \text{ min}$	$S_2 = 5,125 \text{ kg}$ 50 mg/L NaClO $V_{\text{H2O}} = 7,8 \text{ L}$ $V_{\text{NaClO al } 5\%} = 7,8 \text{ ml}$ $Tiempo \text{ de lavado} = 3,77 \text{ min}$
Escaldado	S ₃ = 5,079 kg Temperatura = 65-70 °C Tiempo = 5 min	S ₃ = 5,193 kg Temperatura = 65-70 °C Tiempo = 5 min	S ₃ = 5,055 kg Temperatura = 65-70 °C Tiempo = 5 min	S ₃ = 5,109 kg Temperatura = 65-70 °C Tiempo = 5 min
Corte y pelado	$S_4 = 3,422 \text{ kg}$ $Tiempo = 7,85 \text{ min}$	$S_4 = 3,437 \text{ kg}$ $Tiempo = 8,54 \text{ min}$	$S_4 = 3,377 \text{ kg}$ Tiempo = 7,36 min	$S_4 = 3,412 \text{ kg}$ $Tiempo = 7,92 \text{ min}$
Despulpado	$S_5 = 2,025 \text{ kg}$ Luz de malla = 1 mm Tiempo = 1,58 min	$S_5 = 1,988 \text{ kg}$ Luz de malla =1 mm Tiempo = 1,90 min	$S_5 = 1,954 \text{ kg}$ Luz de malla = 1 mm Tiempo = 1,78 min	$S_5 = 1,989 \text{ kg}$ Luz de malla = 1 mm Tiempo = 1,75 min
Homogeneizado	$0.5 \text{ g C}_6\text{H}_7\text{O}_2\text{K} / 1000 \text{ g pulpa}$ 88,9993 g de edulcorante $S_6 = 2,115 \text{ kg}$	$0.5~g~C_6H_7O_2K~/1000~g~pulpa$ $87,4922~g~de~edulcorante$ $S_6=2,076~kg$	$0.5 \text{ g C}_6\text{H}_7\text{O}_2\text{K} / 1000 \text{ g pulpa}$ 98,8240 g de edulcorante $S_6 = 2,053 \text{ kg}$	$0.5 \text{ g C}_6\text{H}_7\text{O}_2\text{K}/1000 \text{ g pulpa}$ 91,77 g de edulcorante $S_6 = 2,08 \text{ kg}$
Envasado y sellado	°Bx = 21,22 a 20 °C pH = 5,12 Densidad = 1,0858 g/ml Viscosidad = 52,5 cP	°Bx = 21,02 a 20°C pH = 5,16 Densidad = 1,0860 g/ml Viscosidad = 55,2 cP	°Bx = 21,36 a 20 °C pH = 5,13 Densidad = 1,0865 g/ml Viscosidad = 54,9 cP	°Bx = 21,2 a 20 °C pH = 5,14 Densidad = 1,0861 g/ml Viscosidad = 54,2 cP
Almacenado	Temperatura = -10 °C	Temperatura = -10 °C	Temperatura = -10 °C	Temperatura = -10 °C Peso neto = 500 g

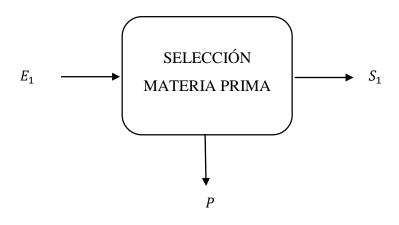
Realizado por: José Balcázar, 2018.

3.2.6 Balance de masa y energía

Se realizó el balance de masa y energía usando 300 kg como base de cálculo, ya que esa cantidad es la que desea procesar la empresa por lote. Por tanto, los datos mostrados a continuación son valores escalados.

3.2.6.1 Datos adicionales

Tabla 20-3: Datos adicionales


Parámetro	Descripción	Valor
g	Gravedad, (m s ⁻²)	9,8
k acero	Conductividad térmica del acero, (W m ⁻² °C ⁻¹)	16,3
F_e	Fuerza de empuje, (N)	23
ρ_{fruta}	Densidad de la pitahaya, (kg m ⁻³)	1177,19
$ ho_{pulpa}$	Densidad de la pulpa, (kg m ⁻³)	1086,1
μ_{pulpa}	Viscosidad de la pulpa, (kg m ⁻¹ s ⁻¹)	0,0542
Cp_{H2O}	Capacidad calorífica del agua, (kJ/kg K)	4,18

Realizado por: José Balcázar, 2019.

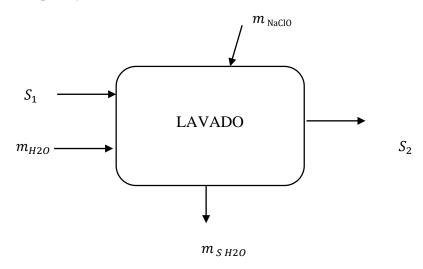
3.2.6.2 Balance de masa

Etapa 1: Operaciones de acondicionamiento preliminar

• Recepción y selección de materia prima

$$E_1 = S_1 + P$$

Donde:


 E_1 : Masa de pitahaya

 S_1 : Masa de pitahaya seleccionada

P: Masa de desperdicio

$$S_1 = E_1 - P$$

 $S_1 = 300 \, kg - 5{,}19 \, kg$
 $S_1 = 294{,}81 \, kg$

• Lavado, limpieza y desinfección

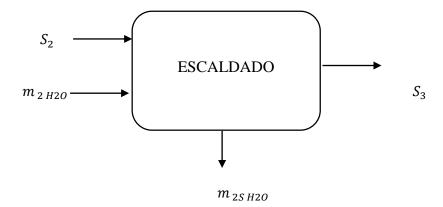
$$S_1 + m_{H2O} + m_{NaClO} = S_2 + m_{SH2O}$$

Donde:

 S_1 : Masa de pitahaya seleccionada

 m_{H2O} : Masa de agua

 m_{NaClO} : Masa de hipoclorito de sodio


 S_2 : Masa de pitahaya lavada y desinfectada

 m_{SH2O} : Masa de agua de salida

$$S_2 = S_1 + m_{H2O} + m_{NaClO} - m_{SH2O}$$

 $S_2 = 294,81 \ kg + 460 \ kg + 0,023 \ kg - 452,67 \ kg$
 $S_2 = 754,83 \ kg - 452,67 \ kg$
 $S_2 = 302,16 \ kg$

Experimentalmente se comprobó que durante el proceso de lavado la masa de la pitahaya aumenta en un pequeño porcentaje.

• Escaldado

$$S_2 + m_{2H2O} = S_3 + m_{2SH2O}$$

Donde:

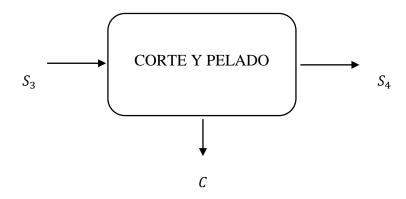
 S_2 : Masa de pitahaya lavada y desinfectada

 m_{2H20} : Masa de agua para escaldado

 S_3 : Masa de pitahaya escaldada

 $m_{\,2S\,H2O}:$ Masa de agua de salida del escaldado

$$S_3 = S_2 + m_{2H2O} - m_{2SH2O}$$


$$S_3 = 302,16 kg + 460 kg - 460,93 kg$$

$$S_3 = 762,16 kg - 460,93 kg$$

$$S_3 = 301,23 kg$$

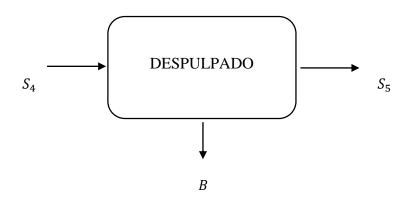
En esta etapa se pierde parte del agua ganada en el lavado mediante el proceso de evaporación.

• Corte y pelado

$$S_3 = S_4 + C$$

Donde:

 S_3 : Masa de pitahaya escaldada


S₄: Masa de pitahaya pelada

C: Masa de la cáscara

$$S_4 = S_3 - C$$

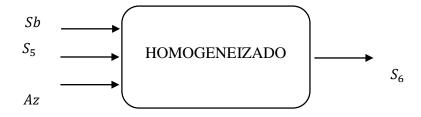
 $S_4 = 301,23 kg - 100,06 kg$
 $S_4 = 201,17 kg$

Etapa 2: Operaciones unitarias

• Despulpado

$$S_4 = S_5 + B$$

Donde:


 S_4 : Masa de pitahaya pelada

 S_5 : Masa pulpa de pitahaya

B: Masa de bagazo y pepa

$$S_5 = S_4 - B$$

 $S_5 = 201,17 kg - 83,9 kg$
 $S_5 = 117,27 kg$

• Homogeneizado

$$S_5 + Sb + Az = S_6$$

Donde:

 S_5 : Masa pulpa de pitahaya

 S_6 : Masa final pulpa de pitahaya

Sb: Masa de Sorbato de potasio C₆H₇O₂K

Az: Masa de edulcorante (azúcar)

$$S_6 = S_5 + Sb + Az$$

$$S_6 = 117,27 kg + 0,059 kg + 5,41 kg$$

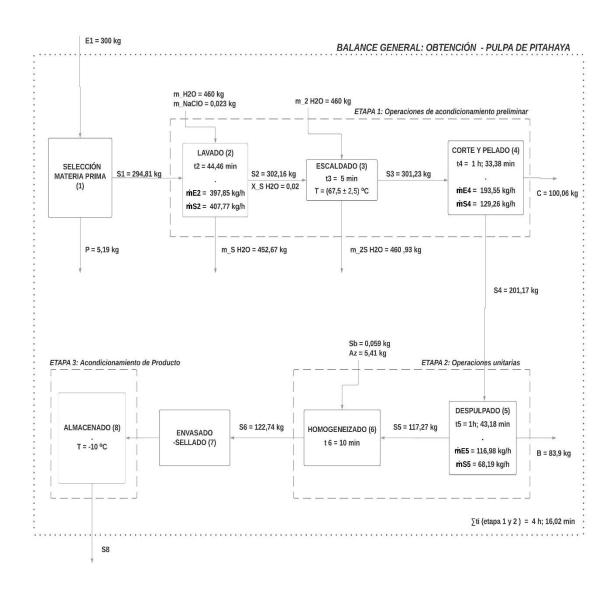
$$S_6 = 122,74 kg$$

Rendimiento del proceso considerando las Operaciones unitarias

$$Rendimiento = \frac{kg\ final\ pulpa\ de\ pitahaya}{kg\ materia\ prima}*100$$

$$Rendimiento = \frac{122,74 \ kg}{201,17 \ kg} * 100$$

Rendimiento = 61,01%


Rendimiento del proceso total

$$Rendimiento\ total\ = rac{kg\ final\ pulpa\ de\ pitahaya}{kg\ materia\ prima}*100$$

$$Rendimiento\ total\ =\ \frac{122,74\ kg}{294,81\ kg}*100$$

Rendimiento total = 41,63 %

Balance de masa general

3.2.6.3 Cálculos de ingeniería

Volumen de la fruta

El volumen de pitahaya que ingresa al tanque de escaldado se calcula teniendo como referencia la cantidad de pitahaya y su radio promedio.

$$V_{total} = V_{unidad} x Cant. pitahaya$$

$$V_{unidad} = \frac{2}{3} (\pi r_1^2 \times 2r_2)$$

Donde:

 r_1 : Radio ecuatorial de la pitahaya

 r_2 : Radio polar de la pitahaya

Tomando en cuenta los datos experimentales de las Tablas 13-3, Tabla 14-3 y Tabla 15-3, se obtiene que el promedio del diámetro ecuatorial: 73,34 mm, un promedio de diámetro polar: 79,6 mm y el promedio de la masa individual: 263,69 g

$$r_1 = \frac{D}{2}$$

$$r_1 = \frac{73,34 \text{ mm}}{2}$$

$$r_1 = 36,67 \text{ mm} = 0,03667 \text{ m}$$

$$r_2 = \frac{79,6 \text{ } mm}{2}$$

$$r_2 = 39,8 \text{ } mm = 0,0398 \text{ } m$$

$$V_{unidad} = \frac{4}{3}\pi r_1^2 r_2$$

$$V_{unidad} = \frac{4}{3}\pi (0,03667m)^2 (0,0398m)$$

$$V_{unidad} = 2,24x10^{-4} \, m^3$$

$$Cant.\,pitahaya = \frac{Peso\ total\ de\ fruta\ que\ ingresa}{peso\ individual\ promedio}$$

$$Cant. pitahaya = \frac{294,81 \, kg}{0,26369 \, kg}$$

Cant. pitahaya = 1118,02 = 1119 pitahayas

$$V_{total} = V_{unidad} \ x \ Cant. \ pitahaya$$

$$V_{total} = 2,24x10^{-4}m^3 \ x \ 1119$$

$$V_{total} = 0,25 \ m^3 = 250 \ L$$

Diseño del tanque de escaldado

• Volumen del tanque

$$V_e = (V_{total} + V_{H2O}) \times fs$$

Donde:

 V_e : Volumen del tanque de escaldado, m^3

 V_{total} : Volumen total de pitahaya, L

 V_{H2O} : Volumen de agua requerido, L

fs: Factor de seguridad

$$V_e = \left[250 + \left(294,81 \ kg \times \frac{7,8}{5 \ kg}\right)\right] L \times 1,20$$

$$V_e = 851,88 \ L$$

$$V_e = 0,85 \ m^3$$

• Altura del tanque

Se considera que el tanque de escaldado sea cilíndrico para evitar la acumulación de residuos en las esquinas, de acuerdo a la disponibilidad de espacio de la asociación se asumirá un diámetro de $D_e = 1.1 m$.

$$V_e = h_e \pi r_e^2$$

Donde:

 h_e : Altura del tanque de escaldado

 r_e : Radio del tanque de escaldado

$$r_e = \frac{D_e}{2}$$

$$r_e = \frac{1.1 m}{2}$$

$$r_e = 0.55 m$$

$$h_e = \frac{V_e}{\pi r_e^2}$$

$$h_e = \frac{0.85 \, m^3}{\pi (0.55 \, m)^2}$$

$$h_e = 0.89 \, m$$

• Cálculo cámara de vapor

En recipientes enchaquetados el espacio entre camisa y tanque es igual a un décimo del diámetro total.

$$e_{ch} = 0.10 x D_e$$

Donde:

 e_{ch} : Espacio entre el tanque y la chaqueta

D_e: Diámetro total del tanque de escaldado

$$e_{ch} = 0.10 \ x \ 1.1 \ m$$

 $e_{ch} = 0.11 \ m$

• Calculo de las dimensiones de la canastilla

Para favorecer el transporte de la fruta se diseña una castilla cilíndrica de acero inoxidable con perforaciones que mantendrá las frutas dentro del tanque de escaldado con el agua caliente.

$$D_{canastilla} = D_e - (0.05 \times D_e)$$

 $D_{canastilla} = 1.1 m - (0.05 \times 1.1 m)$
 $D_{canastilla} = 1.05 m$

$$h_{canastilla} = h_e - (0.05 \times h_e)$$

$$h_{canastilla} = 0.89 \ m - (0.05 \times 0.89) \ m$$

$$38$$

$$h_{canastilla} = 0.85 m$$

El diámetro de los agujeros de la canastilla se establecerá de acuerdo a la siguiente relación:

$$D_{perforaciones} = \frac{1}{16} r_{canastilla}$$

$$D_{perforaciones} = \frac{1}{16} (0,525 m)$$

$$D_{perforaciones} = 0,03 m$$

Diseño de la despulpadora

• Volumen de la tolva de alimentación

La despulpadora de pitahaya requiere una tolva de alimentación que conforme a la cantidad de pitahaya a procesas para dicha operación se considera una tolva de tipo polígono trapezoidal con un ángulo de 60° para evitar un atascamiento al momento de la alimentación.

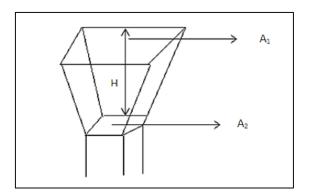


Figura 3-3: Tolva de alimentación

En el proceso de simulación como se señala en la Tabla 19-3 para 3,412 kg de fruta pelada se utiliza 1,75 min para despulpado.

$$\dot{m}_{E5} = \frac{3,412 \ kg \ pitahaya}{1,75 \ min} \ x \ \frac{60 \ min}{1h} = 116,98 \frac{kg}{h} \ pitahaya$$

$$\dot{m}_{S5} = \frac{1,989 \ kg \ pulpa}{1,75 \ min} \ x \ \frac{60 \ min}{1h} = 68,19 \frac{kg}{h} \ pulpa$$

Para el diseño se desea obtener 122,74 kg de pulpa de pitahaya es decir se requerirá un tiempo de:

$$x = \frac{201,17 \ kg \ pitahaya \ x \ 1,75 \ min}{3,412 \ kg \ pitahaya}$$

$$x = 103,18 min$$

$$x = 1,72 h$$

$$V_{tolva} = \frac{S_4}{\rho_{aparente}}$$

Donde:

 V_{tolva} : Volumen de la tolva de alimentación, m^3

 S_4 : Masa de pitahaya que ingresa a la despulpadora, kg

 $ho_{aparente}$: Densidad aparente de la fruta, $\frac{kg}{m^3}$

$$V_{tolva} = \frac{201,17 \, kg}{1086,1 \, \frac{kg}{m^3}}$$

$$V_{tolva} = 0.19 \, m^3$$

$$V_{tolva} = 0,19 \frac{m^3}{h} * 1,2$$

$$V_{tolva} = 0,22 m^3$$

• Dimensiones de la tolva de alimentación

Una vez calculado el volumen necesario para la tolva de alimentación se determina las dimensiones mediante interpolación.

$$V_{tolva} = \frac{H}{3}(A_1 + A_2) + \sqrt{A_1 \times A_2}$$

Donde:

H: Altura de la tolva, m

 A_1 : Ancho de la boca externa de la tolva, m

 A_2 : Ancho de la boca interna de la tolva, m^2

$$0,22 m^3 = \frac{0.2 m}{3} (0.25m + 0.15m) + \sqrt{0.25m \times 0.15m}$$

$$0,22 m^3 = 0,22 m^3$$

• Diseño de la cámara despulpadora

Se diseña en función al volumen de pitahaya que ingresa a la tolva de alimentación

$$V_{tolva} = \pi r_D^2 H_D$$

Donde:

 r_D : Radio del tanque de la despulpadora, m

 H_D : Longitud del tanque de la despulpadora, m

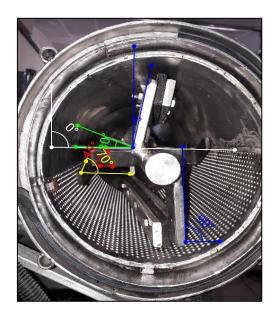


Figura 4-3: Ilustración del tanque tamiz

Fuente: José Balcázar, 2019.

Se asume una longitud del tanque de 0,8 m esto en función a la disposición de espacio en la planta procesadora, dicho valor encaja en el requerimiento para el volumen a procesar

$$r_D = \sqrt{\frac{V_{tolva}}{\pi H_D}}$$

$$r_D = \sqrt{\frac{0.22 \, m^3}{\pi \, (0.8 \, m)}}$$

$$r_D = 0.30 \ m$$

• Diámetro de agujeros del tamiz

Para esto es necesario medir el diámetro de las semillas de la pitahaya estos datos se encuentran en la Tabla 16-3, teniendo así un diámetro promedio de 1,65 mm.

Tabla 21-3: Terminología de mallas metálicas

Luz de malla (mm)	Ø Tolerancia (mm)
4	± 0,20
3	± 0,10
2	± 0,05
1	± 0,025

Fuente: Telas metálicas ISO 9044 malla cuadrada, 2008

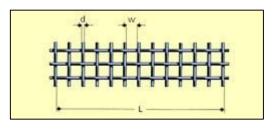


Figura 5-3: Mallas metálicas

Fuente: Telas metálicas ISO 9044 malla cuadrada, 2008

Donde:

W: Luz de malla

d: Diámetro del alambre

De acuerdo al diámetro de las semillas se escoge una luz de malla de 1 mm para el proceso de despulpado.

• Dimensiones del tanque tamiz

En el interior de la despulpadora se encuentran aspas metálicas que trituran la fruta para pasar la pulpa atreves del tamiz, este tanque tamiz es la parte desmontable del equipo que posee el tamiz con la luz de malla apropiada para el fruto en la etapa de despulpado misma que separa las semillas y el bagazo. Para el diseño del tanque tamiz se toma como referencia una longitud 3% menor y un diámetro 30 % menor que la cámara despulpadora (Gómez, 2010, p.75).

$$H_T = H_D - (0.03 \times H_D)$$

Donde:

 H_T : Longitud del tanque tamiz, m

 H_D : Longitud despulpadora, m

$$H_T = 0.8 m - (0.03 x 0.8 m)$$

 $H_T = 0.78 m$

$$D_T = D_D - (0.30 \times D_D)$$

Donde:

 D_T : Diámetro del tanque tamiz, m

 D_D : Diámetro de la despulpadora, m

$$D_T = 0.6 m - (0.30 \times 0.6 m)$$

 $D_T = 0.42 m$

Cálculo del radio del rotor

El rotor es un componente giratorio donde se encuentran soldadas las aspas, para este caso se considera 8 cuchillas rectangulares que rotan 180° separadas por una distancia de 7,334 cm que corresponde al diámetro de cada pitahaya.



Figura 6-3: Esquema del rotor y aspas

Fuente: Gómez y Velazco, 2010.

$$r_{rotor} = \frac{3}{8} x D_D$$

$$r_{rotor} = \frac{3}{8} x (0.6m)$$

$$r_{rotor} = 0.225$$

• Frecuencia de rotación

Se calcula la fuerza de rotación para determinar el número de revoluciones por minuto (rpm) que se necesitan para que la pulpa pase por los orificios del tamiz.

$$f = \sqrt{\frac{g}{4 \pi r_{rotor}}}$$

Donde:

f: Frecuencia de rotación (rpm)

g: Gravedad, $(9.8 m/s^2)$

$$f = \sqrt{\frac{9,8 \, m/s^2}{4 \, \pi \, (0,225 \, m)}}$$

$$f = 1,86 \frac{rev}{s} \times \frac{60 \text{ s}}{1 \text{ min}} = 111,6 \text{ rpm}$$

Por lo tanto, se considera una frecuencia de rotación 112 rpm.

Velocidad angular

Se calculó la velocidad angular (w) para conocer la velocidad mínima a la cual el fruto de pitahaya permanezca en la periferia interna del tamiz durante todo el recorrido.

Se determinó la fuerza de empuje (Fe) que provoca el paso de la pulpa por el tamiz, teniendo en cuenta que mientras la masa avanza por el tanque el radio de la fruta cambia, por lo que se debe calcular para condiciones críticas.

$$F_C + F_e = mg$$

$$F_C = m * a_C$$

$$a_C = -rw^2$$

Donde:

 F_C : Fuerza centrípeta

 F_e : Fuerza de empuje, 23 N (2.038 kg)

m: Masa de la pitahaya

w: Velocidad angular

r: Radio variable

$$r = r_{rotor} - r_{pitahaya}$$

$$r = 0.225 m - 0.07334 m$$

$$r = 0.152 m$$

La masa de la pitahaya varía a medida que pasa a través del tanque por lo que se asume una masa mínima correspondiente al promedio unitario de la masa de las pitahayas detalladas en las Tablas 13-3, 14-3 y 15-3 el cual es: 263,69 g ó lo que es decir 0,264 kg.

$$F_C + F_e = mg$$

$$m * a_C + F_e = mg$$

$$m * (-rw^2) + F_e = mg$$

$$w^2 = \frac{mg - F_e}{-mr}$$

$$w = \sqrt{\frac{mg - F_e}{-mr}}$$

$$w = \sqrt{\frac{\left(0.264kg * 9.8 \frac{m}{s^2}\right) - 23N}{-\left(0.264 kg * 0.152 m\right)}}$$

$$w = 22,55 \frac{rad}{s} \times \frac{1 \, rev}{2\pi \, rad} \times \frac{60 \, s}{1 \, min} = 215,34 \, rpm$$

• Velocidad angular en casos críticos

Para condiciones críticas se considera la mitad de la masa de la pitahaya y se dobla su radio suponiendo que en el peor de los casos se puede ingresar una fruta de diámetro mayor.

$$m_2 = \frac{m}{2}$$

$$m_2 = \frac{0,264 \, kg}{2}$$

$$m_2 = 0,132 \, kg$$

$$r_2 = r_{rotor} - r_{2 pitahaya}$$

 $r_2 = 0.225 m - (0.07334 m * 2)$
 $r_2 = 0.07832 m$

$$w = \sqrt{\frac{m_2 g - F_e}{-m_2 r_2}}$$

$$w = \sqrt{\frac{\left(0,132 \, kg * 9,8 \frac{m}{s^2}\right) - 23N}{-(0,132 kg * 0,07832 \, m)}}$$

$$w = 45,82 \frac{rad}{s} \times \frac{1 \, rev}{2\pi \, rad} \times \frac{60 \, s}{1 \, min} = 437,55 \, rpm$$

Por lo tanto, el equipo funcionará correctamente con 437,55 rpm hasta terminar todo el proceso de despulpado de la fruta. El motor que se puede utilizar para este sistema es del catálogo Siemens de hasta 600 rpm y una potencia de 1 Hp.

Diseño del homogeneizador

• Volumen del tanque homogeneizador

$$V_{homogenizador} = \frac{S_5}{\rho_{aparente}}$$

Donde:

 $V_{homogenizador}$: Volumen de la tolva de alimentación, m^3

 S_5 : Masa de pitahaya que ingresa al homogeneizador, kg

 $\rho_{aparente}$: Densidad aparente de la fruta, $\frac{kg}{m^3}$

$$V_{homogeneizador} = \frac{117,27 \, kg}{1086,1 \, \frac{kg}{m^3}}$$

$$V_{homogeneizador} = 0,11 m^3$$

$$V_{homogeneizador} = 0,11 m^3 * 1,2$$

$$V_{homogeneizador} = 0,132 m^3$$

• Dimensiones del homogeneizador

Se considera un homogeneizador de forma cilíndrica para ello se asume un diámetro de D_H : 0,50 m en función a la disponibilidad de espacio de la planta.

$$h_{H} = \frac{V_{homogeneizador}}{\pi r_{H}^{2}}$$

Donde:

 h_H : Altura del homogeneizador

 r_H : Radio del homogeneizador

$$r_H = \frac{D_H}{2}$$

$$r_H = \frac{0.5 m}{2}$$

$$r_H = 0.25 m$$

$$47$$

$$h_H = rac{V_{homogeneizador}}{\pi r_H{}^2}$$
 $h_H = rac{0.132 \ m^3}{\pi (0.25m)^2}$ $h_H = 0.67 \ m$

• Dimensionamiento del sistema de agitación

Se selecciona el agitador de paletas ideal para mezclas fácilmente miscibles de sólidos en suspensión, necesaria en este caso debido a la viscosidad media de la pulpa y puesto que en esta etapa se añade azúcar y conservante en cantidades bajas.

• Longitud del brazo

$$L_{brazo} = \frac{5}{8} x D_H$$

$$L_{brazo} = \frac{5}{8} x (0.5 m)$$

$$L_{brazo} = 0.31 m$$

• Espesor de paleta y brazo

$$E_p = 0.016 x L_{brazo}$$

 $E_p = 0.016 x (0.31 m)$
 $E_p = 0.005 m$

• Diámetro del agitador

$$D_a = \frac{3}{5} x D_H$$

$$D_a = \frac{3}{5} x (0.5 m)$$

$$D_a = 0.3 m$$

Distancia entre el fondo del tanque y el agitador

$$X = h_{pulpa} - L_{brazo}$$
$$X = 0.56 m - 0.31 m$$
$$48$$

$$X = 0.25 m$$

Altura de la paleta

$$A_{paleta} = \frac{2}{25} x D_a$$

$$A_{paleta} = \frac{1}{10} x (0.3 m)$$

$$A_{paleta} = 0.03 m$$

• Número de Reynolds

Para determinar la potencia del agitador nos basamos en la relación gráfica del número de Reynolds y el número de potencia dependiendo de las características del agitador. (Ver Anexo D).

Por lo que se tienen según Mc-Cabe y Smith la siguiente ecuación para determinar el número de Reynolds.

$$R_e = \frac{n * D_a^2 * \rho_{pulpa}}{\mu}$$

Donde:

R_e: Número de Reynolds

n: Velocidad de rotación, 0,89 rps

 D_a :Diametro del agitador, m

 ρ_{pulpa} : Densidad de la pulpa, $\frac{kg}{m^3}$

 μ : Viscosidad de la pulpa, $\frac{Kg}{m.s}$

$$R_e = \frac{0.89 \, rps * (0.3 \, m)^2 * 1086.1 \frac{kg}{m^3}}{0.0542 \, \frac{kg}{m. \, s}}$$

 $R_e = 1605 \ flujo \ laminar$

• Calculo de la Potencia del agitador

$$N_p = \frac{P}{\rho_{pulpa} D_a^{5}}$$

$$P = N_p * \rho * n^3 * D_a^5$$

Donde:

P: Potencia, W

 N_p : Número de potencia

 D_a :Diametro de las paletas, m

 ho_{pulpa} : Densidad de la pulpa, $rac{kg}{m^3}$

n: Número de revoluciones óptimas experimentales

Con el número de Reynolds y la relación de la curva 4 para palas planas se obtiene un $N_p=2,7$ (Ver Anexo D)

$$P = (2.7) * (1086.1 \frac{kg}{m^3}) * (0.87 \text{ rps})^3 * (0.3m)^5$$

$$P = 4,70 W$$

Se utiliza un factor de seguridad de 1,20.

$$P = 4,70 W * 1,20$$

$$P = 5,64 W * \frac{1 Hp}{746 W}$$

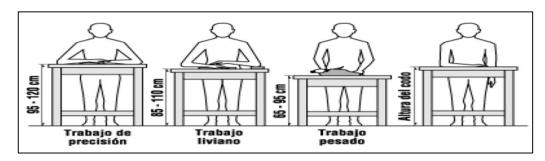
$$P = 0,008$$

Consideraciones:

Eficiencia de la bomba: 0,7

Perdidas por fricción: 35%

$$P = \frac{0,008 * 1,35}{0,7}$$


$$P=0.015\,Hp$$

Al no existir en el mercado una bomba de 0,015 Hp para el mezclado de la pulpa se escoge un motor de 0,25 Hp para el dimensionamiento.

Diseño de las mesas de trabajo

• Calculo del volumen de las mesas

Para el diseño de las mesas donde se llevará a cabo el proceso de corte y pelado de la pitahaya se sugiere 1,60 m de longitud y 0,80 m de ancho según la disponibilidad de la empresa y para la altura se toma en cuenta la ergonomía del operario para trabajo liviano valor que esta entre 0,85 m y 1,10 m de alto.

Figura 7-3: Altura estándar de mesa según la correcta ergonomía de acuerdo al trabajo **Fuente:** Santacruz & Suarez, 2007.

$$V_{ms} = L_{ms} * a_{ms} * h_{ms}$$

Donde:

 V_{ms} : Volumen de la mesa

 L_{ms} : Longitud de la mesa

 a_{ms} : Ancho de la mesa

 h_{ms} : Altura de la caja de transporte del fruto

Para evitar el aplastamiento de fruta la altura de la caja tendrá entre 0,15 a 0,20 m.

$$V_{ms} = 1,60 m * 0,80 m * 0,15 m$$

 $V_{ms} = 0,192 m^3 c/u$

• Capacidad de la mesa en kg

$$m = \delta_{fruta} * V_{ms}$$

Donde:

m: Capacidad de la mesa

 δ_{fruta} : Densidad de la pitahaya, 1177.19 $\frac{kg}{m^3}$

$$m = \left(1177.19 \frac{kg}{m^3}\right) * (0.192 m^3)$$

$$m = 226 \, kg$$

La mesa tendrá una capacidad aproximada de 226 kg lo que quiere decir que se va a requerir dos mesas para abastecer con toda la fruta escaldada.

3.2.6.4 Balance de energía

Balance de energía para el tanque de escaldado

Cálculo del Cp de la fruta

Heldman y Singh (1981) proponen la ecuación para el cálculo del calor específico, la cual depende de los componentes de los productos cuyos valores están especificados en la Tabla 2-1. referente a carbohidratos, proteínas, grasa, ceniza. Sus valores se indican reconfigurados al tanto por uno, tomando en cuenta el total de materia seca contenido en la materia prima Tabla 12-3.

$$C_p = 1424X_b + 1549X_t + 1675X_a + 837X_a + 4187X_m$$

Donde:

 C_p : Capacidad calorífica, %

X_b: Fracción de carbohidratos, %

 X_t : Fracción de proteínas, %

 X_g : Fracción de grasa, %

 X_a : Fracción de ceniza, %

 X_m : Fracción de humedad, %

$$C_p = 1424X_b + 1549X_t + 1675X_g + 837X_a + 4187X_m$$

$$C_p = 1424(0,1741) + 1549(0,0095) + 1675(0,0019) + 837(0,0095) + 4187(0,8050)$$

$$C_p = 3644,30 \frac{J}{kg \, ^{\circ}\text{C}}$$

$$C_p = 3,64 \frac{kJ}{kg \, ^{\circ}\text{C}}$$

• Calculo del flujo de calor

$$\Delta E_C + \Delta E_P + \Delta H = Q \pm W$$

$$\Delta E_C + \Delta E_P + \Delta H = Q \pm W$$

$$\Delta H = Q$$

Se trata de un estado estacionario en el que no existe acumulación por lo que:

$$\begin{aligned} Q_{ganado} &= Q_{perdido} \\ Q_{f} &= Q_{H2O} + Q_{M} \end{aligned}$$

Donde:

 Q_f : Flujo de calor necesario para calentar la fruta, kW

 Q_{H2O} : Flujo de calor suministrado por la caldera, kW

 Q_M : Flujo del calor por el metal, kW

• Calculo del área de transferencia de calor

$$A_{tQ} = \pi r_e^2 + 2\pi * r_e * h_e$$

Donde:

 A_{tO} : Área de transferencia de calor, m^2

 r_e : Radio del tanque de escaldado, m

 h_e : Altura del tanque de escaldado, m

$$r_e = 0.55 m$$
$$h_e = 0.89 m$$

$$A_{tQ} = \pi * (0,55)^2 + 2\pi * (0,55m) * (0,89m)$$

$$A_{tQ} = 4,03 m^2$$

• Calculo del flujo del calor por el metal

Se conoce que la temperatura máxima de Palora es 29 °C y la temperatura mínima es 18 °C por lo que se establece que para tener la temperatura de alimentación se realiza una media estableciendo así una temperatura de 24°C.

$$Q_M = k_{acero} * A_{tQ} * \Delta T$$

$$Q_M = k_{acero} * A_{tO} * (T_e - T_a)$$

Donde:

 k_{acero} : Coeficiente de transmisión térmica del material, W/m². °C

 A_{tO} : Área de transferencia de calor del tanque de escaldado, m²

 T_e : Temperatura de escaldado, °C

Ta: Temperatura de alimentación, °C

$$T_e = \frac{(65 + 70)^{\circ}C}{2}$$
 $T_e = 67.5^{\circ}C$

$$Q_M = 16.3 \frac{W}{m^2.°C} * 4.03 m^2 * (67.5 - 24)°C$$

$$Q_M = 2857,47 W$$

 $Q_M = 2,86 kW$

• Calor ganado por el agua o suministrado por la caldera

$$Q_{H2O} = m_{H2O} * Cp_{H2O} * (T_e - T_a)$$

Donde:

 Cp_{H2O} : Capacidad calorífica del agua, $\frac{kJ}{kg.K}$

 m_{H20} : Cantidad de agua en el área de escaldado, kg

T_e: Temperatura de escaldado, K

T_a: Temperatura de alimentación, K

$$Q_{H2O} = 460 kg * 4,18 \frac{kJ}{kg.K} * (340,5 - 297)K$$

 $Q_{H2O} = 83641,8 kJ/h$
 $Q_{H2O} = 23,23 kW$

• Flujo de calor necesario para calentar la fruta

$$Q_f = Q_{H2O} + Q_M$$

 $Q_f = (23,23 + 2,86)kW$
 $Q_f = 26,09 kW$

• Flujo de calor que gana la fruta

$$Q_{fr} = S_2 * Cp * (T_e - T_a)$$

$$Q_{fr} = 294,81 kg * 3,64 \frac{kJ}{kg.{}^{\circ}C} * (67,5 - 24){}^{\circ}C$$

$$Q_{fr} = 46680,22 kJ/h$$

$$Q_{fr} = 12,97 kW$$

• Cálculo del coeficiente global de transferencia de calor

$$Q_f = U * A_{tO} * \Delta T$$

$$U = \frac{Q_f}{A_{tO} * \Delta T}$$

$$U = \frac{26,09 \ kW}{4,03 \ m^2 * (67,5 - 24)^{\circ}C}$$

$$U = 0.15 \frac{kW}{m^2.°C}$$

Gasto energético en el área de almacenado

El calor cedido por el producto al enfriarse desde la temperatura ambiente a la temperatura de congelación de 24 °C a -2,5 °C.

$$Q_1 = S_6 * C_p total * (T_1 - T_a)$$

Donde:

 $\mathcal{C}p_{total}$: Capacidad calorífica de la fruta más azúcar, $\frac{kcal}{kg.K}$

 S_6 : Cantidad de pulpa almacenada, kg

T₁: Temperatura de congelación, °C

 T_a : Temperatura ambiente, °C

$$C_p total = C_p fruta + C_p azúcar$$

$$C_p total = 3,64 \frac{kJ}{kg °C} + 1,07 \frac{kJ}{kg °C}$$

$$C_p total = 4,71 \frac{kJ}{kg °C}$$

$$Q_1 = 122,74 \ kg * 4,71 \ \frac{kJ}{kg \ ^{\circ}\text{C}} * (-2,5-24)^{\circ}\text{C}$$

 $Q_1 = -15319,79 \ kJ$

• Calor cedido por el producto durante su solidificación

$$Q_2 = S_6 * \lambda_{sol}$$

$$Q_2 = 122,74 \ kg * 282 \ \frac{kJ}{kg}$$

$$Q_2 = -34612,69 \ kJ$$

 El calor cedido por el producto al enfriarse desde la temperatura de congelación de -2,5 °C hasta la temperatura final -10 °C

$$Q_3 = S_6 * C_p total * (T_2 - T_1)$$

Donde:

 Cp_{total} : Capacidad calorífica de la fruta más azúcar, $\frac{kcal}{kg.K}$

 S_6 : Cantidad de pulpa almacenada, kg

 T_2 : Temperatura final de almacenamiento, °C

 T_1 : Temperatura de congelación, °C

$$Q_3 = 122,74 \ kg * 1,96 \ \frac{kJ}{kg \text{ °C}} * (-10 - (-2,5)) \text{ °C}$$

 $Q_3 = -1804,28 \ kJ$

• Calor total por retirar del producto

$$\begin{aligned} Q_{producto} &= Q_1 + Q_2 + Q_3 \\ Q_{producto} &= -(15319,79 + 34612,69 + 1804,28) \, kJ \\ Q_{producto} &= 51736,76 \, kJ \\ Q_{producto} &= -\frac{51736,76 \, kJ}{12 \, h} * \frac{1 \, h}{3600s} \\ Q_{producto} &= -1,20 \, kW \end{aligned}$$

3.2.6.5 Resultados del dimensionamiento de los equipos

Tabla 22-3: Resultados del dimensionamiento del tanque de escaldado

TANQUE DE ESCALDADO				
Parámetro	Descripción	Valor	Unidad	
V_e	Volumen	0,85	m^3	
h_e	Altura	0,89	m	
D_e	Diámetro interno	1,1	m	
e_{ch}	Espacio entre el tanque y la chaqueta	0,11	m	
	CANASTILLA INTERNA			
$D_{canastilla}$	Diámetro de la canastilla	1,05	m	
$h_{canastilla}$	Altura de la canastilla	0,85	m	
$D_{perforaciones}$	Diámetro de perforación	0,03	m	

Realizado por: José Balcázar, 2019.

Tabla 23-3: Resultados del dimensionamiento de la despulpadora

TOLVA DE ALIMENTACIÓN				
Parámetro	Valor	Unidad		
V_{tolva}	Volumen	0,22	m^3/h	
Н	Altura	0,2	m	
A_1	Ancho de la boca de alimentación	0,25	m	
Ancho del ingreso a la cámara de despulpado		0,15	m	
	CÁMARA DE DESPULPADO		•	
H_D	Longitud	0,8	m	
D _D Diámetro		0,6	m	
	TANQUE TAMIZ	1	1	
H_T	Longitud	0,78	m	
D_T	Diámetro	0,42	m	

$d_{agujeros}$	Diámetro de los agujeros del tamiz	1	mm	
r_{rotor}	r _{rotor} Radio rotor			
SISTEMA DE DESPULPADO				
F_e	Frecuencia de rotación	112	rpm	
W	Velocidad angular	600	rpm	

Tabla 24-3: Resultados del dimensionamiento del homogeneizador

HOMOGENEIZADOR					
Parámetro	Parámetro Descripción				
h_H	Altura	0,67	m		
D_H	Diámetro	0,5	m		
	SISTEMA DE AGITACIÓN				
L_{brazo}	Longitud del brazo	0,31	m		
E_p	Espesor de la paleta y brazo	0,005	m		
D_a	Diámetro del agitador	0,3	m		
X	Distancia entre el fondo del tanque y el agitador	0,25	m		
A_{paleta}	Altura de la paleta	0,03	m		
P	Potencia del agitador	0,25	Нр		

Realizado por: José Balcázar, 2019.

Tabla 25-3: Resultados del dimensionamiento de las mesas de trabajo

MESAS DE TRABAJO				
Parámetro	Descripción	Valor	Unidad	
V_{ms}	Volumen	0,192	m^3	
L_{ms}	Longitud	1,60	m	
a_{ms}	Ancho	0,8	m	
h_{ms}	Altura de la caja de transporte	0,15	m	
A_s	Altura desde el piso	1,05	m	

Realizado por: José Balcázar, 2019.

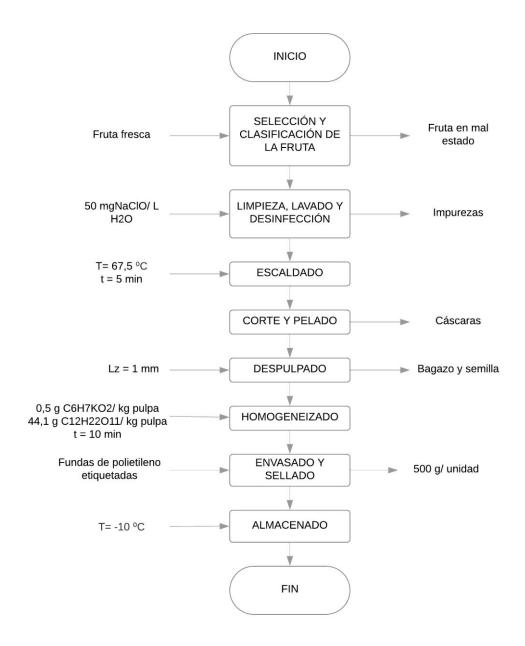
3.3 Proceso de producción

El proceso de elaboración propuesto para la Asociación de productores y comercializadores de pitahaya y otros productos "Palora" se realizó considerando los equipos preexistentes y el área de producción disponible en la fábrica, además se dimensionó los equipos que se deberán implementar en ésta cuando se ponga en marcha el proyecto.

Se propone una producción tipo Batch debido a que la materia requiere todo un proceso de transformación para convertirse en pulpa, además porque la materia prima no está disponible todos los meses del año, solo en febrero-marzo, mayo-junio y noviembre-diciembre.

3.3.1 Materia prima, aditivos e insumos

Tomando en cuenta los datos experimentales de la simulación para la producción de pulpa de pitahaya se usará los siguientes elementos:


Tabla 26-3: Materia prima, aditivos e insumos

Materia prima	Pitahaya	Se obtiene de la Asociación de productores y comercializadores de pitahaya y otros
		productos "Palora".
Aditivos	Hipoclorito de sodio NaClO	Se utilizó Hipoclorito de sodio como desinfectante para eliminar cualquier rastro de contaminación que pueda afectar a las propiedades finales de la pulpa.
	Sacarosa (Azúcar)	Se utilizó de la marca "Valdez", a una cantidad adecuada determinada mediante los ensayos en el laboratorio, esta adición se realiza con el objetivo de estandarizar el contenido de grados Brix de la pulpa.
	Sorbato de potasio C ₆ H ₇ O ₂ K	Se utilizó sorbato de potasio para aumentar el tiempo de conservación de la fruta.
Insumos	Fundas de polietileno etiquetadas	Se usará fundas de polietileno de baja densidad ya etiquetadas pesando un total de 500 g, posteriormente se procederá al sellado hermético.

Realizado por: José Balcázar, 2019.

3.3.2 Diagrama del proceso para la producción de pulpa de pitahaya

Se presenta a continuación el diagrama del proceso para la producción de pitahaya, detallando cada operación y la cantidad de materia prima que procesará la planta.

Gráfico 1-3: Diagrama de flujo del proceso de producción de pulpa de pitahaya **Realizado por:** José Balcázar 2018.

3.3.3 Descripción del diagrama

3.3.3.1 Selección y clasificación de la materia prima

La selección de la materia prima se realizará de manera manual en el área de recepción, por los trabajadores de la asociación, ellos determinarán las características organolépticas óptimas para seleccionar la fruta, dichos trabajadores deberán recibir un curso de la norma NTE INEN 2003: 2015, usada para la aprobación de la fruta. El trabajador debe tomar en cuenta el color, olor, textura adecuada sin magulladuras ni golpes, además el fruto debe ser fresco recién cosechado. Aquellas frutas que no cumplan con estas características deberían ser separadas en esta etapa, para garantizar la calidad de la pulpa.

3.3.3.2 Limpieza, lavado y desinfección

Una vez seleccionada la fruta, se procede al lavado, usando el equipo preexistente en la fábrica, por lo tanto, se considera un sistema de lavado por inmersión para la fruta de pitahaya, mediante este sistema la fruta se lava con abundante agua y restregando con un cepillo para eliminar todas las partículas de suciedad provenientes de su recolección, posteriormente se procederá a una desinfección usando una solución de agua con hipoclorito de sodio 50 mg/L NaClO, esto garantiza la eliminación total de los contaminantes (Ver ANEXO E).

Figura 8-3: Piscina para lavado de fruta en la Asociación

Realizador por: José Balcázar, 2018.

3.3.3.3 Escaldado

El sistema de escaldado consistirá en un tanque de escaldado de acero inoxidable 304 el cual contiene una canastilla donde se ubicará las frutas de pitahaya para que tengan contacto con el agua a temperatura entre 65- 70°C por 5 minutos, posteriormente se procederá a retirar la fruta usando la canastilla para facilitar el transporte y garantizar la ergonomía del trabajador.

3.3.3.4 Corte y pelado

Una vez finalizado el escaldado se colocará las frutas en la mesa de trabajo para realizar el pelado de la pitahaya tipo manual para garantizar un corte más preciso tomando en consideración las condiciones de higiene adecuadas y buenas prácticas de manufactura.

3.3.3.5 Despulpado

Se tratará de una despulpadora horizontal de acero inoxidable 304, la cual se alimenta por una tolva ubicada en un extremo del equipo, la fruta ingresa al equipo para pasar por medio del rodete giratorio que realizará el corte mediante sus 8 paletas, además impulsará la salida de la pulpa por el tamiz de malla 1 mm, la fuerza de empuje hace que la pulpa atraviese la malla, y el bagazo y semillas se expulse por el otro extremo.

3.3.3.6 Homogenizado

En esta etapa se producirá una mezcla con los aditivos adicionales que se le debe agregar a la pulpa y obtener una mezcla homogénea, el diseño de las paletas (planas) del homogeneizador se realizó considerando la densidad y viscosidad de la pulpa.

Se adicionará azúcar para estandarizar los grados Brix, además sorbato de potasio 0,5 g C6H7O2K /kg pulpa que contribuirá su conservación.

3.3.3.7 Envasado y sellado

El envasado se llevará a cabo automáticamente por una máquina, que será adquirida por la Asociación, en fundas de polietileno de baja densidad previamente etiquetadas cada una con una cantidad de 500 g, posteriormente se procederá al sellado hermético.

3.3.3.8 Almacenado

Se almacenará las fundas de pulpa en un cuarto frio de propiedad de la fábrica. El cuanto frio debe tener -10°C para garantizar la inocuidad de la pulpa y además que no pierda las propiedades organolépticas ni su calidad nutricional.

Se realizará las pruebas físico-químicas de la pulpa, es decir los análisis de pH, °Bx, densidad y viscosidad, sumadas la caracterización del producto final para determinar el cumplimiento de la norma NTE INEN 2337:2008.

3.3.4 Validación del proceso

Se realizó el proceso de obtención de pulpa en el laboratorio de Procesos Industriales de la Facultad de Ciencias de la ESPOCH, donde se obtuvo un producto final que fue sometido a caracterización para validar el proceso diseñado. La validación del proceso se realiza en base a la norma NTE INEN 2337:2008 la misma que especifica los valores óptimos microbiológicos que debe tener la pulpa para su consumo.

3.3.4.1 Análisis microbiológico y físico-químico

La caracterización del producto final se realizó en el laboratorio LACONAL ubicado en la Universidad Técnica de Ambato cuyo resultado arrojó que la pulpa final cumple con la normativa como se puede evidenciar a continuación:

Tabla 27-3: Análisis microbiológico de la pulpa (Ver Anexo C)

Parámetros	Método/Norma	Unidad	Resultado	Límites
				establecidos
Coliformes Totales,	PE01-5.4-MB AOAC	UFC/g	<10	<100
Compact Dry	R.I:110402. Ed 20, 2016			
E. çoli,	PE01-5.4-MB AOAC	UFC/g	<10	<100
Compact Dry	R.I:110402. Ed 20, 2016			
Aerobios mesófilos,	PE03-5.4-MB AOAC 990.	UFC/g	<10	<1000
Petrifilm	12. Ed 20, 2016			
Mohos,	PE02-5.4-MB AOAC	UFC/g	<10	<1000
Petrifilm	997.02. Ed 20, 2016			
Levaduras,	PE02-5.4-MB AOAC	UFC/g	<10	<1000
Petrifilm	997.02. Ed 20, 2016			

Fuente: Laboratorio de Control y Análisis de Alimentos (LACONAL)

Cabe recalcar que esta norma solo exige requisitos microbiológicos debido a que la fruta no sufre grandes cambios y solo se le extrae la pulpa por esta razón nos basamos en los requisitos físico-químicos de la materia prima.

El cumplimento de la norma evidencia que el proceso se realizó con técnicas adecuadas de manejo e higiene de los insumos y materiales, es decir, se aplicó buenas prácticas de manufactura.

Tabla 28-3: Análisis físico-químico de la pulpa (Ver Anexo B)

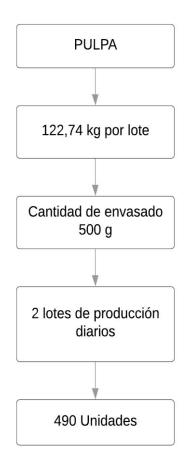
Requisitos	Método de ensayo	Unidad	Resultado	Límite establecido
Sólidos solubles	NTE INEN ISO	% (fracción	21,2	S > 21
(S).	2173	másica)	21,2	3 > 21
pН	Técnica del	_	5,14	_
pii	Potenciómetro		5,14	_
Densidad	Picnometría	g/ml	1,0861	-
Viscosidad	Técnica del	cР	54,2	_
Viscosidad	Viscosímetro	CF 54,2		-

Fuente: Laboratorio de Procesos Industriales. ESPOCH.

Realizador por: José Balcázar, 2018.

3.4 Distribución de la planta

El centro de acopio de la asociación de productores y comercializadores de pitahaya y otros productos "Palora" se compone de un área de 405 m², de la cual 68 m² disponibles para la implementación de esta nueva línea de producción, basándonos en la distribución actual de la asociación se tiene las siguientes áreas (Ver ANEXO F).


3.4.1 Descripción de áreas de la planta

- Área de recepción de materia prima: En esta área, se recepta en canastas plásticas la fruta de pitahaya recolectada de los campos productores de la asociación, se realizará una inspección rápida visual para evitar el ingreso de fruta en estado de putrefacción que puedan afectar a las otras, ya que se almacenará a temperatura ambiente.
- Área de laboratorio: Aquí se realizará el análisis físico-químico de la materia prima usada para el proceso, para garantizar la óptima calidad del producto final, además esta área contendrá balanzas analíticas para realizar el pesaje de los aditivos usados en el proceso y demás equipos propios de laboratorio.

- Área de producción: Esta área contara con todos los equipos para la transformación de la fruta en pulpa. Los equipos estarán debidamente distribuidos para facilitar la movilidad de los trabajadores, aquí se realizarán las operaciones de selección, lavado, escaldado, pelado, despulpado y homogenizado, además el control de las variables del proceso.
- Área de envasado y sellado: En esta área se encontrará la maquina envasadora que será adquirida por la asociación, la cual envasará en fundas de polietileno de baja densidad previamente etiquetadas con el logo de la asociación, el área debe constar con espacio suficiente y cómodo para los operarios, que controlarán el proceso.
- Área de almacenaje: Tiene lugar en un cuarto frio donde se colocará las fundas de pulpa para su congelación a -10°C y conservación de sus propiedades previo a la distribución en el mercado.
- Bodega: En esta área se almacenará los aditivos para la producción de pulpa de pitahaya como son hipoclorito de sodio, azúcar, sorbato de potasio y rollos de fundas etiquetadas para el envase. Además, se almacenará varias herramientas para el mantenimiento de los equipos, baldes y canastas para el manejo de la fruta.
- Oficinas: La asociación cuenta con un área administrativa y de contabilidad donde llevan un registro de las finanzas y requerimientos de la fábrica.

3.4.2 Capacidad de producción

De una cantidad de 300 kg de fruto de pitahaya se obtiene aproximadamente 122,74 kg de pulpa los cuales son envasados en fundas de polietileno en unidades de 500 g.

Gráfico 2-3: Capacidad de producción **Realizado por:** José Balcázar, 2019.

3.5 Requerimientos de tecnología, equipos y maquinaria

Se describe los equipos que la planta requiere para la transformación de la materia prima a pulpa.

3.5.1 Equipos con los que cuenta la asociación para la producción de pulpa

Tabla 29-3: Descripción de los equipos que la asociación tiene a disponibilidad

Equipo		Descripción	Característica
Equipo	de	Equipo de acero inoxidable 304 que posee la fábrica, este	Altura: 0,60 m
Lavado		cuenta con un sistema de tuberías que abastece de agua	Longitud: 5 m
		para el lavado y desfoga el agua usada. El sistema de	Ancho: 1,5 m
		lavado consiste en la inmersión del fruto en canastillas	Capacidad: 300 kg
		plásticas dentro del equipo. El equipo es amplio para	
		facilitar la comodidad del lavado y cepillado del fruto.	

Bandas	Equipo de acero inoxidable 304 que facilita en transporte	Longitud: 4 m
transportadoras	de las canastas con pitahaya para mantener la ergonomía	Ancho de la banda: 0,48 m
	de los trabajadores y aprovechar el tiempo del proceso.	Diámetro de los rodillos: 0,028 m
		Paso entre los rodillos 0,075 m
		Capacidad de carga; 100 kg
Caldera	El equipo que posee la asociación es un caldero	Longitud: 2,00 m
	horizontal que cuenta con una chimenea, este equipo	Diámetro: 0,80 m
	dota del calor necesario para que se produzca varios	Longitud de la chimenea: 1,20 m
	procesos en la planta, en este caso proveer el calor	Diámetro de la chimenea: 0,25m
	necesario para que se efectúe el escaldado de la fruta.	Combustible: diésel
		Calor generado. 50 kW
		Presión: 80-200 psi
Cuarto frio	Se trata de un área donde se conserva la fruta para su	Área: 9 m ²
	posterior comercialización.	

3.5.2 Equipos que se requiere implementar para la producción de pulpa

Tabla 30-3: Descripción de los equipos requeridos para el proceso

Equipo	Descripción	Característica
Tanque de	Recipiente fabricado de acero inoxidable 304 donde se	Volumen: 0,85 m ³
escaldado	va a escaldar la fruta, este equipo cuenta con una	Diámetro: 1,1 m
	chaqueta para el paso del vapor que va a calentar a el	Altura: 0,89 m
	agua interna, también posee una canastilla de acero	Espacio tanque-chaqueta: 0,11 m
	inoxidable 304 donde se colocara las pitahayas para	Diámetro de la canastilla: 1,05 m
	facilitar la carga y descarga de fruta del equipo.	Altura de la canastilla: 0,85 m
Despulpadora	Es un equipo fabricado de acero inoxidable 304, que	Volumen: 0,22 m ³ /h
	cuenta con una tolva de alimentación por la cual ingresa	Altura de la tolva: 0,2 m
	la fruta pelada para el proceso de despulpado, a medida	Área de la boca externa:0,25 m
	que se ingresa a fruta esta pasa al tanque tamiz donde un	Área de la boca interna: 0,15 m
	rotor giratorio tritura la fruta para obtener pulpa,	Longitud despulpadora: 0,8 m
	mediante las 8 paletas de acero la pulpa es empujada a	Diámetro despulpadora:0,6 m
	pasar por un tamiz de orificio 1 mm para evitar el paso	Diámetro agujeros del tamiz: 1 mm
	de las semilla y el bagazo, de esta manera por un lado	Altura tanque tamiz: 0,78 m
	saldría la pulpa y por el otro serán expulsadas las	Diámetro tanque tamiz: 0,42 m
	semillas.	Radio del rotor: 0,225 m
		Frecuencia de rotación: 112 rpm
		Velocidad angular: 330,41 rpm
Mesa de	Es un equipo fabricado de acero inoxidable 304, en la	Longitud: 1,60 m
trabajo	mesa se realiza la selección de la materia prima adecuada	Ancho: 0,80 m
	para el proceso adicionalmente el corte y pelado de la	Alto desde el piso: 0,90 m
	fruta.	Alto de la caja: 0,15 m

Envasadora	Equipo de acero inoxidable de 304, es un sistema	Requerimientos eléctricos: 220 V
	automático para envasar en recipientes plásticos, esta	
	cuenta con sensores de peso para envasar exactamente	
	500 g de pulpa por unidad.	

3.5.3 Equipos y materiales requeridos para el control de la producción de pulpa

Se describen los equipos usados para el control del proceso a nivel de la planta y en el laboratorio.

Tabla 31-3: Equipos y materiales necesarios para el control del proceso

Equipo	Característica
pH-metro	Equipo para medición de pH
Refractómetro	Equipo para medición de °Bx
Balanza analítica	Usada para el pesaje del hipoclorito de sodio, azúcar y sorbato de potasio
Viscosímetro	Equipo para medición de la viscosidad
Picnómetro	Equipo usado para la determinación de la densidad
Vaso de precipitación	Material usado para mediciones volumétricas
Varilla de agitación	Material para homogeneizar la muestra
Termómetro	Instrumento usado en el proceso para controlar sus variables
Espátula	Instrumento que ayuda a la toma de muestra y pesaje de insumos
Piseta	Material usado para las pruebas de laboratorio

Realizado por: José Balcázar, 2019.

3.6 Costo de producción

3.6.1 Costo de los equipos

Se presenta una aproximación de los costos de los equipos que se debe añadir a la línea de producción, además, los costos de los equipos y materiales que se usan a nivel de laboratorio para las pruebas físico-químicas, cabe recalcar que se utilizó como fuente mercado libre para estimar el precio de toda la maquinaria.

Tabla 32-3: Costos de los equipos para la producción de pulpa de pitahaya

Equipo	Cantidad	Costo (\$)
Tanque de escaldado	1	4000
Despulpadora	1	5000
Mesa de trabajo	2	600
Envasadora	1	6800
Homogeneizador	1	2500

TOTAL	18900

Tabla 33-3: Costos de los materiales e insumos para la producción de pulpa de pitahaya

Equipo	Cantidad	Costo (\$)
pH-metro digital	1	400
Refractómetro	1	450
Termómetro	1	90
Balanza analítica	2	500
Viscosímetro	1	450
Canastas plásticas	10	100
Coladores industriales	3	60
Cuchillos	4	80
Picnómetro	2	40
Vaso de precipitación	4	40
Varilla de agitación	4	20
Espátula	3	21
Piseta	2	19
TOTA	AL	2270

Realizado por: José Balcázar, 2019.

3.6.2 Costo de la materia prima

Se presenta los costos de la materia prima, aditivos e insumos para producir 500 g de pulpa de pitahaya, es decir, la unidad de venta, para conocer cuánto le costará a la Asociación producir una funda de pulpa, se recalca que los precios son presupuestados.

Tabla 34-3: Costo de la materia prima, aditivos e insumos para producir 500 g de pulpa

Materia prima	Cantidad	Unidad	Costo unitario (\$)	Costo total (\$)
Pitahaya	1,22	kg	1,25	1,53
Aditivos		1		1
Hipoclorito de sodio	0,0000935	kg	0,48	0,0000449
Sacarosa (azúcar)	0,022	kg	1,89	0,042
Sorbato de potasio	0,00024	kg 7,5		0,002
Insumos		1		
Fundas de polietileno etiquetadas	1	Unidades	0,25	0,15
	1,72			

Realizado por: José Balcázar, 2019.

Tabla 35-3: Costo de la materia prima, aditivos e insumos para producir 122,74 kg de pulpa

Materia prima	Cantidad	Unidad	Costo unitario (\$)	Costo total (\$)			
Pitahaya	300	kg	1,25	375			
Aditivos							
Hipoclorito de sodio	0,023	kg	0,48	0,011			
Sacarosa (Azúcar)	5,41	kg	1,89	10,23			
Sorbato de potasio	0,059	kg	7,5	0,443			
Insumos	Insumos						
Fundas de polietileno	245	Unidades	0,15	36,75			
	422,43						

3.6.3 Costo de mano de obra

El costo de la mano de obra se basa en la cantidad de operarios que la asociación está resuelta a poner a disposición para la nueva línea de producción, contemplando el salario que la empresa paga actualmente a sus operarios y técnicos, así también considerando que se trabajará 20 días al mes.

Tabla 36-3: Costo de la mano de obra

Personal	Cantidad	Salario unitario (\$)	Salario mensual (\$)
Técnico	1	600	600
Operario	5	386	1930
TOTAL			2530

Realizado por: José Balcázar, 2019.

3.6.4 Costo de los análisis de laboratorio

Los costos de los análisis de laboratorio se basan en una cotización de los laboratorios acreditados, se establece que se realizará 3 análisis por año en los meses que se trabajará (6 meses).

Tabla 37-3: Costo de los análisis de laboratorio

Análisis de Laboratorio	Costo unitario (\$)	Cantidad	Costo anual (\$)
Físico-químico (fruta de pitahaya)	60	3	180
Microbiológico (fruta de pitahaya)	60	3	180
Microbiológico (pulpa de pitahaya)	120	3	360
TOTAL			720

Realizado por: José Balcázar, 2019.

3.6.5 Costo del consumo de energía, agua y combustible

Se muestra el costo del consumo de energía contemplando las operaciones donde existe, es decir el escaldado donde hay una energía suministrada por la caldera de 26,09 kW, ésta producción se mantiene por 15 minutos hasta calentar el agua para el escaldado y por 5 minutos más que es el tiempo que dura el escaldado, el despulpado donde se establece que se va usar una motor de 1 Hp para el movimiento de rotor este va a trabajar por un periodo de 1,72 horas y el homogenizado donde se usará un motor de 0,25 Hp para mezclar la pulpa con aditivos por un periodo de 10 minutos, además del gasto energético en la etapa de almacenado por 24 horas.

Tabla 38-3: Costo del consumo de energía

Operación	kW	Tiempo de	kWh	Costo de	Gasto	Costo
		operación		kWh	energético	total por
		(h)			por lote (\$)	día (\$)
Escaldado	26,09	0,33	8,61	0,09	0,77	1,54
Despulpado	0,75	1,72	1,29	0,09	0,12	0,24
Homogeneizado	0,18	0,17	0,031	0,09	0,003	0,006
Almacenado	1,20	12	14,40	0,09	1,30	2,60
TOTAL					2,193	4,386

Realizado por: José Balcázar, 2019.

Se toma como referencia que la asociación paga \$ 0,625 por 1 m³. Las operaciones donde se utiliza agua son el escaldado y lavado de pitahaya, cabe recalcar que el agua será reusable en procesos de lavado de equipos.

Tabla 39-3: Costo del consumo de agua

Operación	m³ de H ₂ O	Costo por	N.º de lotes	Costo total		
		m ³	diarios	por día (\$)		
Escaldado	0,460	0,625	2	0,575		
Lavado y	0,460	0,625	2	0,575		
desinfección						
	TOTAL					

Realizado por: José Balcázar, 2019.

Se considera el diésel para la caldera, con un valor de \$ 1,037 por galón y el costo adicional de gasolina \$ 1,48 por galón para los camiones de la asociación, estos valores se obtuvieron del precio nacional de los combustibles y contemplando la cantidad de galones que usa la asociación.

Tabla 40-3: Costo del consumo de combustible

Combustible	Cantidad (Gal)	Precio nacional por Gal	Costo total por día (\$)		
Diésel	1	1,037	1,037		
Gasolina (Extra)	10	1,85	18,50		
	TOTAL				

3.6.6 Presupuesto de producción

Basándonos en los valores mencionados en la Tabla 34-3 y 36-3 donde se establece los costos de la producción de una funda de 500 g de pulpa y el precio de la mano de obra que son los costos variables del proceso, incluyendo los costos fijos que corresponde el precio del diésel, agua, luz y suministros de oficina, además contemplando un 20 % de utilidad para la asociación, trabajando 20 días al mes se obtiene el costo por unidad en un escenario de ventas optimista.

Tabla 41-3: Relación costo-beneficio para la producción de pulpa de pitahaya

Cantidad de pulpa producida por día (kg)	Cantidad de pulpa por unidad (kg)	Cantidad unidades producidas por día		Costo por unidad	Total, ingresos diarios (\$)						
245	0,5	490)	2,50	1225						
	Ingresos (\$)										
Diario	Semanal	Mensual		Mensual Anual		Anual					
12	25	6125 24500		24500	147000						
Egresos (\$)											
Diario	Semanal		Mensual		Anual						
981	1,3	4906,51 19626		4906,51		19626	117756,14				
Ganancia (\$)											
Diario	Semanal	Mensual		1		manal		emanal		Mensual	Anual
243	3,7	1218,49		4874	29243,86						

Realizado por: José Balcázar, 2019.

El proceso de producción de pulpa de pitahaya generará 245 unidades de pitahaya en cada lote, como se generará 2 lotes diarios se obtendrá 490 fundas cada una con 500 g de pulpa, el costo de cada funda arrojado estadísticamente es \$ 2,5; en un escenario optimista de ventas se ganará diariamente \$ 1225 así mismo el monto de los egresos diarios necesarios para la producción de la pulpa es \$ 981,3; que involucra la materia prima, mano de obra, mantenimiento, seguros y depreciación de los equipos para 5 años, así se tiene como valor final de ganancia diaria \$ 243,7,

todos los valores se proyectan mensual y anualmente teniendo un total de ganancia anual de \$ 29243.86.

Tabla 42-3: Flujo de caja para la producción de pulpa de pitahaya

Rubros	Inicial	1er año	2do año
	Ingresos		
Ventas netas		147000,00	152788,90
1	Egresos	•	
Materia prima (Tasa de inflación 0,0159)	-	100937,54	102542,45
Mano de obra	-	15180	15421,36
Inversión en equipos y materiales	-21170	-	-
Mueble y enseres	-500	-	-
Mantenimiento y seguros de los equipos	-	693,6	704,63
Depreciación de los equipos (a 5 años-20%)	-	945	1890
Costo del consumo de energía		547,2	555,9
Combustibles (diésel y gasolina)	-	2344,8	2382,08
Servicios Básicos agua	-	168,78	171,463602
Servicios básicos Luz	-	184,92	187,860228
Suministros de oficina	-	120	121,91
Publicidad	-	300	304,77
Análisis de laboratorio	-	720	731,45
Permisos de funcionamiento (RISE)	-	146,4	148,72776
Imprevistos	-6000	-	-
FLUJO DE CAJA	-27670	24711,76	27626,30
FLUJO ACUMULADO	-27670	-2958,24	-

Realizado por: José Balcázar, 2019.

Para poner en marcha la línea de producción de pulpa de pitahaya se necesitará una inversión de \$27670, este valor será tomado del capital con el que cuenta la asociación, como se puede apreciar en la tabla anterior esta inversión incluye los equipos, muebles y enseres e imprevistos de implementación.

El total de ingresos por un año es \$ 147000,00 este dato se obtuvo de la venta total de unidades producidas anualmente. Para determinar el total de egresos se considerará el costo de la materia prima considerando una tasa de inflación de 0,0159, mano de obra, mantenimiento y seguros de los equipos, depreciación del 20% de los equipos a 5 años, costo del consumo de energía, combustible (diésel y gasolina), servicios básicos agua y luz, suministros de oficina, publicidad, análisis de laboratorio, permisos de funcionamiento (RISE), restando los egreso de los ingresos se tiene un total de ganancias de \$ 24711,76 de este valor se concluyó que la inversión de la

asociación se recuperará en 1 año y 1 mes de trabajo, tomando en cuenta que solo se trabajará solo 6 meses al año.

Según la estadística se evidencia un valor de VAN (Valor actual neto) \$ 11027,6 el cual representa la diferencia entre los ingresos y la inversión inicial, además un TIR (Tasa interna de retorno) 79,1 % que representa la rentabilidad que tiene el proyecto, estos resultados arrojan que el proyecto es económicamente rentable y producirá beneficios económicos a la asociación una vez que se establezca.

3.7 Cronograma

Tabla 43-3: Cronograma de realización del trabajo de titulación

	1° m	nes			2° m	nes			3° m	ies			4° m	ies			5° m	ies			6° m	ies		
ACTIVIDADES	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Revisión Bibliográfica																								
Elaboración del																								
anteproyecto																								
Recolección y																								
caracterización físico-																								
química de la pitahaya																								
Obtención de pulpa de																								
pitahaya																								
Análisis del producto																								
terminado																								
Presentación y aprobación																								
de anteproyecto																								
Cálculos y propuesta del																								
diseño de ingeniería																								
Elaboración y corrección																								
de borradores																								
Tipeado del trabajo final																								
Empastado y presentación																								
del trabajo final																								
Auditoria Académica																								
Defensa del trabajo																								

ANÁLISIS Y DISCUSIÓN DE RESULTADOS

El proceso para elaboración de pulpa de pitahaya inició con el muestreo de la materia prima, éste se basó en las directrices dadas por la norma NTE INEN 1750 para la toma de muestras de hortalizas y frutas frescas, a continuación se ejecutó la caracterización de la pitahaya cosechada de los terrenos de la asociación, éstos análisis fueron realizados por el laboratorio LACONAL, en el que se determinó la acidez titulable como ácido cítrico 1,19x10⁻⁴ % y humedad 80,5 %, y en el laboratorio de Procesos Industriales se determinó sólidos solubles 17,54 %; porcentaje del contenido de pulpa 52,36 %; relación masa-pulpa 0,28 kg-52,36 % y materia seca 19,5 %, según estos resultados el únicos valor que no está dentro de los parámetros son los sólidos solubles, este aspecto es estandarizado en la etapa de homogeneizado con la adición de azúcar para ajustar al valor normal de sólidos solubles, por lo tanto se considera como materia prima óptima para la producción de pulpa según lo establecido en la norma NTE INEN 2003: 2015, FRUTAS FRESCAS. PITAHAYA. REQUISITOS.

Se experimentó con tres pruebas piloto realizadas en el laboratorio de Procesos Industriales para determinar las variables del proceso, la primera prueba catalogada como PRUEBA 1 se realizó con 5,052 kg; la PRUEBA 2 con 5,176 kg y la PRUEBA 3 con 5,036 kg, en cada prueba se aplicó el proceso propuesto, tomando en cuenta lo mencionado por Mendoza y Medina. (2011) que indica las características de una pitahaya de la especie amarilla *Hylocereus triangularis*, además de obtener los datos e identificar las variables, en otras palabras se determinó °Bx, flujo másico de hipoclorito de sodio y agua usada en la operación de lavado, temperatura y tiempo de escaldado, flujo másico de fruta sobrante después del pelado, flujo másico de pulpa obtenida en el despulpado, flujo másico de sorbato de potasio y azúcar; todos estos datos usado en el balance de masa y energía, adicionalmente se determinó la masa por unidad de pitahaya, diámetro polar y ecuatorial de la fruta, diámetro de la semilla y tiempos de cada operación, todas estas variables usadas para el dimensionamiento de los equipos.

Basándonos en los datos obtenidos se llevó el proceso a escala industrial proyectándonos para procesar 300 kg de pitahaya que es la cantidad requerida por la asociación, se propuso realizar las operaciones de: selección de la materia prima basada en la norma NTE INEN 2003: 2015, FRUTAS FRESCAS. PITAHAYA. REQUISITOS. la cual tienen lineamentos para selección, se escogió que solo se va aceptar aquellas frutas maduras (color 2) y aquellas que cumplen con los requisitos generales establecidos en el apartado 5.1 de la misma norma, de esto se obtiene una masa de 294,81 kg; el lavado de la materia prima se realizará con 460 L de agua y con 0,023 kg de Hipoclorito de Sodio obteniéndose una salida de 302,16 kg es decir un valor más alto debido

a que la fruta absorbe parte del agua de lavado; del escaldado que se realizará a 65°C por 5 minutos con una cantidad de agua de 460 L se obtienen 301,23 kg como se evidencia la masa disminuye debido a que parte del agua absorbida en el proceso de lavado se evapora; del corte y pelado se extraerá la cáscara de la pitahaya, que por naturaleza es gruesa, se obtendrá una salida de 201,17 kg de fruta pelada; el despulpado, de él se obtendrá 117,27 kg de pulpa y la diferencia será bagazo y semillas y el homogenizado en el cual se adicionará 5,41 kg de azúcar y 0,059 kg de sorbato de potasio y se obtiene una masa final de 122,74 kg de pulpa. Con todos estos datos se determina el rendimiento del proceso 41,63 %, se trata de un rendimiento aceptable tomando en cuenta; que gran parte de las pérdidas se dan en la etapa de corte y pelado por la naturaleza misma de cascará gruesa que posee la pitahaya como lo menciona Andrade y Ricalde. (2009), cabe recalcar que la cascará no será desechada, debido a sus propiedades será usada para la realización de té y obtención de colorantes que son otros proyectos que desarrollará la asociación.

Se procedió a realizar los cálculos de ingeniería, dimensionamiento de los equipos, tomando en cuenta que la asociación pone a disposición 300 kg de pitahaya que equivale aproximadamente a 1119 frutas, se diseñó las mesas de trabajo de acero inoxidable 304 considerando lo dicho por JN Aceros. (2019) el cual menciona que este tipo de material es ideal para trabajar en la industria alimenticia porque resiste la oxidación y proliferación de bacterias, las mesas de trabajo serán usadas en la etapa de corte y pelado de la fruta, éstas poseen las siguientes dimensiones: 1,60 m de largo; 0,80 m de ancho; 0,15 m de altura de la caja y 1,05 m de altura desde el piso para trabajo liviano, estas mesas tendrán una capacidad de 226 kg por lo que se propone el diseño de dos mesas de la mismas dimensiones para tener una distribución más equitativa de la fruta y sea mucho más cómodo el trabajo.

Se diseñó un tanque de escaldado de acero inoxidable 304, de menor costo de implementación según JN Aceros. (2019), el tanque de escaldado consta de dos cámaras; la de chaqueta albergara el vapor proveniente de la caldera propiedad de la asociación, la cual liberara 26,09 kW para calentar el agua de escaldado en 15 min y poder mantener la temperatura entre 65 y 70°C por 5 min, el tanque de escaldado adicionalmente tendrá una canastilla en su interior la cual será superponible, esta facilitará la carga y descarga de la fruta; las dimensiones del tanque de escaldado son: volumen 0,85 m³; altura del tanque 0,89 m; diámetro del tanque 1,1 m; espacio entre el tanque y la chaqueta 0,11 m; diámetro de la canastilla 1,05 m; altura de la canastilla 0,85 m y diámetro de las perforaciones 0,03 m.

Se diseñó la despulpadora la cual tendrá una tolva de alimentación por medio de la cual se abastecerá por una hora 201,17 kg de fruta, esta se dimensionó con respecto al requerimiento de flujo, adicionalmente se tiene el tanque tamiz en el cual se encuentra el rotor interno éste consta

de 8 aspas que van a triturar la fruta y mediante la fuerza de empuje llevara a la fruta a través del tamiz de 1 mm, este diámetro se obtuvo de la experimentación y considerando el diámetro de las semillas, una vez que la fruta sin corteza pasa el cilindro tamiz, por un lado saldrá la pulpa y por el otro lado bagazo y semillas, ésta despulpadora tiene las siguientes dimensiones: altura de la tolva 0,2 m; ancho de la boca de alimentación 0,25 m²; ancho del ingreso a la cámara de despulpado 0,15 m; volumen 0,22 m³; longitud de la despulpadora 0,8 m diámetro de la despulpadora 0,6 m; diámetro de los agujeros del tamiz 1 mm, longitud del tanque tamiz 0,78 m; diámetro del tanque tamiz 0,42 m; radio del rotor 0,225 m; frecuencia de rotación 112 rpm, velocidad angular 215,34 rpm y la velocidad angular en casos críticos 437,55 rpm.

Una vez obtenida la pulpa según las características mencionadas por Diaz. (2015) se dimensionó el Homogeneizador de acero inoxidable 304, éste cuenta de un agitador de 6 paletas ideal para la mezcla de pulpas y aditivos, en este caso azúcar y sorbato de potasio, éste último considerado como el conservante ideal para bebidas de frutas y vegetales según Diaz. (2015) este proceso tendrá un tiempo de 10 minutos, obtenido de experimentación ya que los aditivos son fácilmente miscibles en la pulpa, este equipo tiene las siguientes medidas: diámetro del homogeneizador 0,5 m; altura 0,67 m; longitud del brazo del agitador 0,31 m; espesor de paleta y brazo 0,005 m; diámetro del agitador 0,3 m; distancia entre el fondo del tanque y el agitador 0,25 m; altura de la paleta 0,03 m y potencia del motor de 0,25 Hp.

Se procedió a realizar la validación del proceso mediante los requisitos especificados en la norma NTE INEN 2337: 2008. esta norma exige parámetros microbiológicos, pero debido a que la fruta no sufre ninguna trasformación brusca, se toma en cuenta algunos análisis físico-químicos de la norma NTE INEN 2003:2015; los análisis microbiológicos del producto obtenido fueron realizados por el laboratorio acreditado LACONAL, de esto se reporta <10 UFC/g de Coliformes totales; <10 UFC/g de E. Coli; <10 UFC/g Aerobios mesófilos; <10 UFC/g Mohos y <10 UFC/g Levaduras, por lo tanto se establece que el producto final cumple con la normativa y se da por validado el proceso.

En el análisis financiero se determinó que la asociación deberá invertir \$ 27670, para poner en marcha el proyecto es decir para la adquisición de los equipos, muebles y enseres y una cantidad para los imprevistos que se presente en el proceso. Para la determinación del precio de venta del producto se recalca que se producirá 2 lotes diarios cada uno de 122,74 kg de pulpa, es decir que se generará 245 fundas de pitahaya en cada lote, por lo tanto, se obtendrá 490 fundas diarias cada una con 500 g de pulpa y se determina que el precio de venta es \$ 2,5 por unidad; considerando 20% de utilidad para la asociación. En un escenario optimista de venta se ganará diariamente \$ 1225.

Se realizó proyecciones anuales, en el primer año se tiene un total de ingresos de \$ 147000,00 este dato proviene de la venta de la unidades producidas, y un total de egresos de \$ 122288,24 que viene dado de: el costo de la materia prima considerando una tasa de inflación de 0,0159, mano de obra, mantenimiento y seguros de los equipos, depreciación del 20% de los equipos a 5 años, costo del consumo de energía, combustible (diésel y gasolina) tomando en cuenta el costo actual en el mercado ecuatoriano, servicios básicos agua y luz, suministros de oficina, publicidad, análisis de laboratorio, permisos de funcionamiento (RISE). Contemplado los ingresos y egresos se tiene un total de ganancias de \$ 24711,76 por lo que se determina que la inversión se recuperará en 1 año y 1 mes de trabajo, tomando en cuenta que solo se trabajará febrero-marzo, noviembre-diciembre y mayo-junio que son los meses de temporada de producción de pitahaya. Se analiza los resultados de VAN \$ 11027,6 y TIR 79,1%, y muestran que el proyecto es factible y rentable una vez que se ponga en marcha.

CONCLUSIONES

- Se caracterizó la fruta de pitahaya (*Hylocereus triangularis*) conforme a la norma NTE INEN 2003:2015. obteniéndose valores referentes de; acidez titulable 1,19x10⁻⁴ %, sólidos solubles 17,54 %, relación masa-pulpa 0,28 kg-52,36 % y materia seca 19,5 % cuyos resultados se consideraron favorables, por consiguiente, la fruta es aceptada como materia prima apta para la producción de pulpa.
- Las variables de proceso, operaciones y parámetros óptimos para una base 300 kg de materia prima son; 21°Bx, calidad de fruta grado 1, gasto de hipoclorito de sodio 0,023 kg, tiempo de lavado 44,46 min, temperatura de escaldado 67,5 °C por 5 min, flujo másico de fruta pelada 129,26 kg/h y tiempo del retiro de cáscara 1 hora; 33,38 min, flujo másico de pulpa 68,19 kg/h y tiempo de despulpado 1 h; 43,18 min, flujo másico de edulcorante y sorbato de potasio 32,81 kg/h, tiempo de homogeneizado 10 min, envasado a 500 g y temperatura de almacenado -10 °C.
- La producción tiene un rendimiento de 41,63 % considerando el proceso total y un rendimiento de 61,01 % considerando solo las operaciones unitarias, lo cual se considera un rendimiento aceptable, debido a que la mayor cantidad de flujo másico perdido es en la etapa de corte y pelado por la naturaleza de cascará gruesa de la pitahaya, cabe recalcar que la cáscara no será eliminada, sino usada en otros procesos.
- Las dimensiones de la mesa de trabajo de acero inoxidable 304 son: 1,60 m de largo; 0,80 m de ancho; 0,15 m de altura de la caja; 0,90 m de altura desde el piso para trabajo liviano.
- Se diseñó un tanque de escaldado con chaqueta de acero inoxidable 304, cuyas dimensiones son: volumen 0,85 m³; altura del tanque 0,89 m; diámetro del tanque 1,1 m.
- Las dimensiones de la despulpadora en acero inoxidable 304 son: volumen 0,22 m³; longitud de la despulpadora 0,8 m; diámetro de la despulpadora 0,6 m, longitud del tanque tamiz 0,78 m; diámetro del tanque tamiz 0,42 m; radio del rotor 0,225 m; frecuencia de rotación 112 rpm.
- Las dimensiones del homogeneizador de acero inoxidable 304 son: volumen 0,132 m³, diámetro del homogeneizador 0,5 m; altura del homogeneizador 0,67 m; longitud del

brazo agitador 0,31 m; diámetro del agitador 0,3 m; altura de la paleta 0,03 m y potencia del motor de 0,25 Hp.

- Se validó el proceso industrial para la producción de pulpa de pitahaya por medio de los análisis efectuados al producto final en el laboratorio acreditado LACONAL y se evidenció que hubo cumplimiento de la norma NTE INEN 2337:2008. por lo tanto, el diseño del proceso es válido para la Asociación de productores y comercializadores de pitahaya y otros productos "Palora".
- La relación costo-beneficio para una producción de 490 fundas de 500 g de pitahaya para un tiempo total de producción 8 horas 32,04 min, genera en el primer año de producción una ganancia de \$ 24711,76, estableciendo que el producto será vendido a \$ 2,5; considerando que su precio está relacionado con el de otras pulpas en el mercado, la inversión que se realiza para poner en marcha la nueva línea de producción se recuperará en 1 año y 1 mes de trabajo, por lo que el proyecto es económicamente rentable para la asociación.

RECOMENDACIONES

- Se recomienda que los trabajadores de la planta reciban cursos acerca de manejo de alimentos para asegurar la inocuidad del producto final.
- Se recomienda que los trabajadores reciban unos cursos de capacitación de la norma NTE INEN 2003: 2015 ya que ésta establece lineamientos de selección importantes para la clasificación de la fruta, estos parámetros son esenciales en la primera etapa del proceso.
- Se recomienda que la empresa ponga en marcha simultáneamente los proyectos para obtención de té y colorante a partir de la cáscara para aprovechar todos los aspectos de la fruta y no se produzcan perdidas.

BIBLIOGRAFIA

ANDRADE CHÁVEZ, Mauricio R. Obtención de láminas deshidratadas a partir de pulpa de pitahaya Hylocereus Undatus. [En línea]. (Tesis). Universidad Técnica del Norte. Ibarra – Ecuador. 2015. p. 28. [Consulta: 12 diciembre 2018]. Disponible en: http://repositorio.utn.edu.ec/bitstream/123456789/4455/1/03%20EIA%20374%20TESIS.pdf

ANDRADE, José & RICALDE, María. *La pitahaya una delicia tropical.* [En línea]. Mexico DF — Mexico. 2009. pp.1-2. [Consulta: 12 de diciembre 2018]. Disponible en: https://www.amc.edu.mx/revistaciencia/images/revista/60_3/PDF/05-488-La-pitahaya.pdf

Badui, S. Química de los alimentos. México D.F. - México: Pearson, 2006, pp. 20-35.

CAJAS, F. *Diseño de una planta piloto para la industrialización de Stevia en la comunidad Cueva de los Monos, cantón Sacha, provincia de Orellana.* [En línea]. (Tesis). Escuela Politécnica Nacional, Quito – Ecuador. 2011. pp. 30-35. [Consulta: 15 abril 2018]. Disponible en: http://bibdigital.epn.edu.ec/bitstream/15000/4379/1/cd-3987.pdf

Cengel, Y. Transferencia de Calor y Masa. Un enfoque práctico. México D.F. - México: McGraw-Hill, 2007, pp. 30-70.

CHACÓN, Silvia. Manual de procesamiento de frutas tropicales a escala artesanal, en el Salvador. [En línea]. Ministerio de Agricultura y Ganadería. La Libertad- El Salvador, 2006, p. 28. [Consulta: 20 diciembre 2018]. Disponible en: http://repiica.iica.int/docs/B0635e/B0635e.pdf

DE LA ROSA FIGEROA, Diana K. & REYES ZAMBRANO, Jefferson E. *Análisis de factibilidad para la elaboración y comercialización de mermelada hecha a base de pitahaya para la ciudad de Guayaquil.* [En línea]. (Tesis). Universidad de Guayaquil. Guayaquil— Ecuador. 2016. pp. 33-34. [Consulta: 14 diciembre 2018]. Disponible en: http://repositorio.ug.edu.ec/bitstream/redug/11027/1/TESIS%20DE%20GRADO%20JEFFERS ON%20REYES%20Y%20DIANA%20DE%20LA%20ROSA%20APROBADO.pdf

DIAZ, Valentin. Frutas tropicales eleboracion de pulpas, jugos y deshidratados. Cuadernillo Tecnológico Nº12. Delegacion de la Comisión Europea. Buenos Aires- Argentina, 2015. pp. 11-15.

FALCONI, Puig. *Pitahaya de Palora*. 5ta Denominación. [En línea]. Quito-Ecuador, 2018, pp.2-3. [Consulta: 12 de diciembre 2018]. Disponible en: https://www.origin-gi.com/es/i-gi-origin-worldwide-gicompilationuk/download/1182/14277/24.html?method=view

FONSECA, María; et al. RODRIGUEZ. "Pitahaya (*Hylocereus spp.*) un recurso Fitogenético con historia y futuro para el trópico seco mexicano". *Revista Scielo* [en línea], 2015, (Mexico), pp. 4-7. [Consulta: 14 diciembre 2018]. Disponible en: http://scielo.sld.cu/pdf/ctr/v36s1/ctr07s115.pdf

Geankoplis, C. Procesos De Transporte Y Operaciones Unitarias. Minnesota-EEUU: University of Minnesota, 1998, pp. 40-56.

GOBIERNO AUTÓNOMO DESCENTRALIZADO MUNICIPAL DEL CANTÓN PALORA. Plan de Desarrollo y Ordenamiento Territorial del cantón Palora [en línea], Palora-Ecuador, 2015, p. 126. [Consulta: 9 enero 2019]. Disponible en: http://app.sni.gob.ec/sni-link/sni/PORTAL_SNI/data_sigad_plus/sigadplusdiagnostico/1460000530001_Volumen%20I%20Diagnostico%20Palora_15-01-2015_22-32-12.pdf

GÓMEZ, M., & VELASCO, H. Diseño y Construcción de una Planta Prototipo Procesadora de Frutas. (Tesis). Universidad Industrial de Santander, Facultad de Ingenierías Físico-Mecánicas, Escuela de Ingeniería Mecánica. Bucaramanga-Colombia. 2010. Pp. 72-158

HERNÁNDEZ, A. & ALFARA L. Microbiología de los alimentos. México D.F. - México, 2003, p.267.

JN aceros. Acero inoxidable 304 y 316: Distintos grados ofrece resistencia única a la corrosión. [En línea]. [Consulta: 15 de marzo de 2019]. Disponible en: http://www.jnaceros.com.pe/blog/acero-inoxidable-304-316-resistencia-corrosion/

JORDAN MOLINA, Diana.; VASCONEZ CRUZ, José S. & VELIZ QUINTO, Christian D. *Producción y Exportación de la Pitahaya hacia el mercado europeo.* [En línea]. (Tesis). Escuela Superior Politécnica del Litoral. Guayaquil— Ecuador. 2009. pp. 14. [Consulta: 14 diciembre 2018]. Disponible en: http://www.dspace.espol.edu.ec/handle/123456789/6307

McCabe, W.; Smith, J., & Harriot, P. Operaciones Unitarias en Ingeniería Química. México D.F.: McGraw-Hill, 2007, pp. 45-68.

MEDINA RIVADENEIRA, Pablo E. & MENDOZA ANGULO Freddy H. Elaboración de mermelada y néctar a partir de la pulpa de pitahaya y determinación de capacidad antioxidante por el método DPPH (1,1 Difenil-2- Picril Hidrazila). [En línea]. (Tesis). Universidad de Guayaquil. Guayaquil— Ecuador. 2011. pp. 14-17. [Consulta: 14 diciembre 2018]. Disponible en: http://repositorio.ug.edu.ec/handle/redug/2142

MEJÍA, Danilo. Conservación de Frutas y Hortalizas mediante tecnologías combinadas. Manual de capacitación, Organización de las Naciones Unidas para la Agricultura y la Alimentación. FAO. 2004. p.16

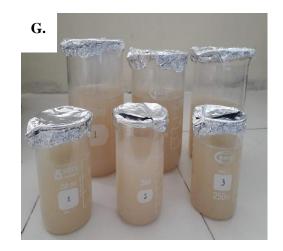
MINISTERIO DE AGRICULTURA Y GANADERIA - MAG. Palora, en Morona Santiago, despacha pitahaya a tres continentes. [En línea]. [Consulta: 15 de marzo de 2019]. Disponible en: https://www.elcomercio.com/actualidad/palora-exportacion-pitahaya-agricultura-fruta.html

NTE INEN 1750. Hortalizas y frutas frescas. Muestreo. Quito-Ecuador.2012.

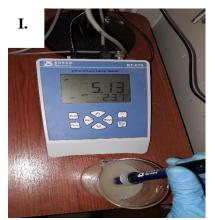
NTE INEN 2003. Frutas frescas. Pitahaya. Requisitos. Quito-Ecuador.2015

NTE INEN 2337. Jugos, pulpas, concentrados, néctares, bebidas de frutas y vegetales. Requisitos. Quito - Ecuador. 2008.

ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA AGRICULTURA Y LA ALIMENTACION - FAO. Productos frescos de frutas. Fichas Técnicas. Disponible en: http://www.fao.org/3/a-au173s.pdf


PARRA, Edison & NOBOA, Marcelo. *Industrialización de productos a partir de pitahaya*. [En línea]. (Tesis). Universidad de las Americas. Quito - Ecuador. 2010. p. 49. [Consulta: 25 de octubre de 2018]. Disponible en: http://dspace.udla.edu.ec/handle/33000/758

SANTARROSA, Verónica. Evaluación nutricional comparativa de pitahaya (Hylocereus triangularis) deshidratada en deshidratador de badejas con la liofilizada. [En línea]. (Tesis). Escuela Superior Politecnica de Chimborazo. Riobamba - Ecuador. 2013. p. 61. [Consulta: 25 de octubre de 2018]. Disponible en: http://dspace.espoch.edu.ec/handle/123456789/3087


ANEXOS

Anexo A: Proceso de producción de pulpa de pitahaya a nivel de laboratorio

NOTAS	CATEGORIA DEL		ESCUELA			
		DIAGRAMA	SUPERIOR	PROCESO	DE PRODU	JCCIÓN DE
A. Lavado		CERTIFICADO	POLITÉCNICA DE	PULPA DE	PITAHAY.	A A NIVEL
B. Escaldado		APROBADO	CHIMBORAZO	DE I	ABORATO	ORIO
C. Despulpado		POR APROBAR	FACULTAD DE			
D. Diámetro semilla	X	POR CALIFICAR	CIENCIAS	ESCALA	FECHA	LÁMINA
E. Pesaje de Sorbato		POR VERIFICAR	ESCUELA DE		_	LAMINA
de Potasio]	INGENIERÍA	1:1	2018	1
F. Homogeneizado			QUÍMICA			
G. Pruebas piloto						
H. Medición °Bx			REALIZADO POR:			
I. Medición pH			BALCÁZAR JOSÉ			
J. Medición						
viscosidad						
K. Pulpa final						

UNIVERSIDAD TECNICA DE AMBATO

FACULTAD DE CIENCIA E INGENIERIA EN ALIMENTOS LABORATORIO DE CONTROL Y ANALISIS DE ALIMENTOS

Dir: Av. Los Chasquis y Rio Payamino, Huachi, Telf.: 2 400987 ext. 5517, e-mail:laconal@uta.edu.ec Ambato-Ecuador

C	ERTIFICA	ADO DE ANALISIS	S DE LABORATORIO					
	Cei	rtificado No:18-273			R01-5.10 08			
73					Pag. 1 de			
2 de diciembre de :	2018		Fecha de ejecución de ensay	os: 17 de diciem	bre de 2018			
liente:								
		C.I./RUC: 1600626665						
Luis Balcázar Calle		TIf: 0992628842						
			Email: jose.balcazar@espoch.ec	lu.ec				
muestras:								
sco de pitahaya, H	ylocereus tria	angularis	Peso: 500g					
/a		Tipo de envase: una						
		No de muestras: una						
			F. Exp.: n/a					
iente: X Refrigera	ción: Conge	lación:	Almac, en Lab: 7 días					
Ninguno: X Intact	os: Rotos:		Muestreo por el cliente: 12 d	le diciembre de 2	2018			
	RES	ULTADOS O	BTENIDOS					
Código del laboratorio	Código cliente	Ensayos solicitados / Técnica	Métodos utilizados	Unidades	Resultados			
27218402	Niamon	Acidez, Potenciometria	INEN-ISO 750	mg/100g ácido cítrico	0,119			
2/318002	Ninguno	Humedad, Gravimetria	AOAC 920 151. Fd 20, 2016	%	80,5			
nsferencia electrónica	a de resultados	20000	Ing Gladys Risueño Directora de Calidad	- Control of the cont	STEW STEW			
		20000			300			
	2 de diciembre de diciemte: Luis Balcázar Calle de diciemte: Luis	Ze de diciembre de 2018 liente: Luis Balcázar Calle imuestras: seco de pitahaya, Hylocereus tria //a piente: X Refrigeración: Conge Ninguno: X Intactos: Rotos: RES Código del Código laboratorio cliente 27318602 Ninguno s: 20,4 °C; 43%HR	Certificado No:18-273 2 de diciembre de 2018 liente: Luis Balcázar Calle Imuestras: Isso de pitahaya, Hylocereus triangularis Jainente: X Refrigeración: Congelación: Ninguno: X Intactos: Rotos: RESULTADOS O Código del Código cliente Código del Código cliente 27318602 Ninguno Acidez, Potenciometria Humedad, Gravimetria	2 de diciembre de 2018 Fecha de ejecución de ensay liente: C.1/RUC: 1600626665 Tif: 0992628842 Email: jose.balcazar@espoch.ec Inuestras: Seco de pitahaya, Hylocereus triangularis Peso: 500g Tipo de envase: una No de muestras: una F. Exp.: n/a Almac. en Lab: 7 días Ninguno: X Intactos: Rotos: Muestreo por el cliente: 12 co RESULTADOS OBTENIDOS Código del Código solicitados / Técnica Potenciometria Acidez, Potenciometria Humedad, Gravimetria Seco de pitahaya, Hylocereus triangularis Peso: 500g Tipo de envase: una No de muestras: una F. Exp.: n/a Almac. en Lab: 7 días Métodos utilizados Métodos utilizados Técnica INEN-ISO 750 Directora de Calidad Ing/Gladys Risueño Directora de Calidad	Certificado No:18-273 2 de diciembre de 2018 Fecha de ejecución de ensayos: 17 de diciem CL/RUC: 1600626665 Luis Balcázar Calle Tif: 0992628842 Email: jose balcazar@espoch.edu.ec Imuestras: Seco de pitahaya, Hylocereus triangularis Peso: 500g Tipo de envase: una No de muestras: una F. Exp.: n/a Almac. en Lab: 7 días Ninguno: X Intactos: Rotos: Muestreo por el cliente: 12 de diciembre de 2 RESULTADOS OBTENIDOS Código del Código cliente RESULTADOS OBTENIDOS Código del Código cliente 27318602 Ninguno Ninguno Acidez, Potenciometria Humedad, Gravimetria AOAC 920-451. Id 26, 2016 % Ingl'Gladys Risueño Directora de Calidad Nisferencia electrónica de resultados: Si			

Nota Los resultados consignados se retieren exclusivamente a la muestra recinola. El Laboratorio no es responsable por el uso incorrecto de espa certificado

No es un documento negociable. Sólo se permite su reproducción sin fines de lucro y haciendo referencia a la fuente

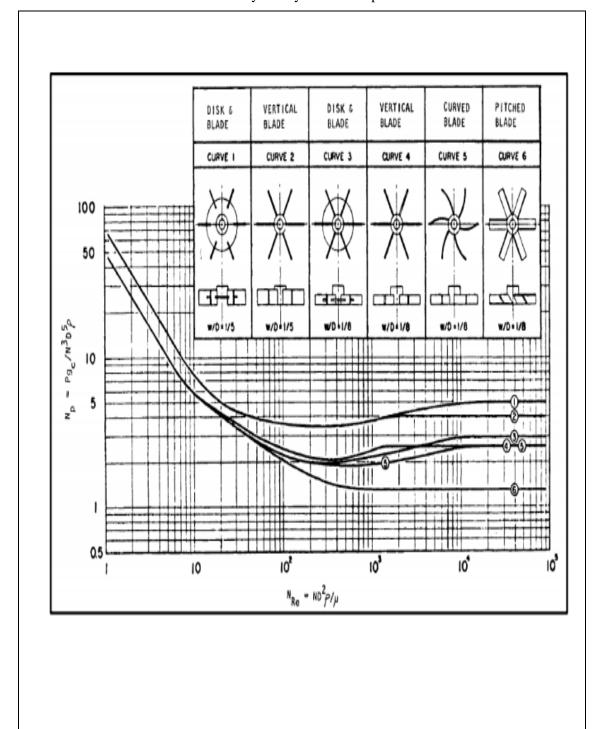
"La información que se está enviando es confidencial, exclusivamente para su destinatario, y no puede ser vinculante. Si usted no es el destinatario de recomendamos eliminarla immediatamente. La distribución o copia del mismo está prohibida y será sancionada según el proceso legal pertinente.

NOTAS	CA	CATEGORIA DEL DIAGRAMA CERTIFICADO APROBADO POR APROBAR ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE CIENCIAS ESCUELA DE INGENIERÍA QUÍMICA		ANÁLISIS FISICO- QUIMICO DE LA FRUTA				
				DE PITAHAYA				
	l	POR CALIFICAR	REALIZADO POR:	ESCALA	FECHA	LÁMINA		
	POR VERIFICAR		BALCAZÁR JOSÉ	1:1	2018	2		

NOTAS

POR VERIFICAR

UNIVERSIDAD TECNICA DE AMBATO FACULTAD DE CIENCIA E INGENIERIA EN ALIMENTOS

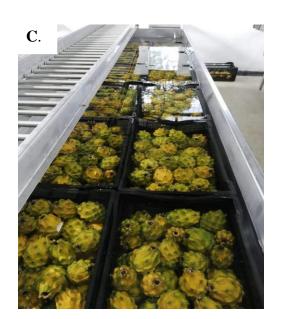

	CI	ERTIFICAT	O DE ANALI	ISIS DE LABORATORIO)		
			tificado No:18-2		9).	R01-5.10 08	
Solicitud Nº: 18-27:	5	1-91-02-				Pág.:1 de 1	
Fecha recepción: 17	de diciembre de 2	018		Fecha de ejecución de ensay	os: 17 al 21 de dicie	embre de 2018	
información del cli	ente:						
Empresa: Asociación o otros productos "Palor		nercializadores (de Pitahaya y	C.I./RUC: 1600626665			
Representante: José L	uis Balcázar Calle			Tlf: 0992628842			
Dirección: Riobamba				Email: jose.balcazar@espoch.ed	lu.ec		
Ciudad: Riobamba							
Descripción de las	muestras:						
Producto: Pulpa cor	ngelada de pitahaya	1		Peso: 500g			
Marca comercial: n/	'a			Tipo de envase: funda resella	able		
Lote: n/a				No de muestras: una			
F. Elb.: n/a				F. Exp.: n/a			
Conservación: Amb	iente: Refrigeració	on: Congelaci	ón: X	Almac, en Lab: 7 días			
Cierres seguridad: N	Ninguno: X Intacto			Muestreo por el cliente: 17 d	le diciembre de 201	8	
		RESU	JLTADOS	OBTENIDOS			
Muestras	Código del laboratorio	Código cliente	Ensayos solicitados/ Técnica	Métodos utilizado	s Unidade	es Resultados	
			Coliformes Totales, Compact Dry	PE01-5,4-MB AOAC R.I.: 110402. 1 2016	Ed 20, UFC/g	<10	
Pulpa congelada de pitahaya			E. Coli, Compact Dry	PE01-5.4-MB AOAC R.I.: 110402. I 2016	Ed 20, UFC/g	<10	
	27518605	Ninguno	*Aerobios Mesófilos, Petrifilm	PE03-5.4-MB AOAC 990.12. Ed 20.	2016 UFC/g	<10	
			Mohos, Petrifilm	PE-02-5.4-MB AOAC 997.02 Ed 20, 2010	UFC/g	<10	
			Levaduras, Petrifilm	PE-02-5 4-MB AOAC 997.02. Ed 20, 2016	UFC/g	<10	
Conds. Ambientales	s: 20,4 °C; 43%HR			1	•		
Nota: Los ensayos r				de la acreditación del SAE Ing. Gladys Risueño Directora de Calidac	Self dam	5A10 620	
Fecha de emisión del			1000		16	G GR	
	Los resultados consignados	se refieren exclusivar		da. El Laboratorio no es responsable por el u		do 51/5	
"La información que se e:	stà enviando es confidenciai	exclusivamente para	su destinatario, y no pu	acción sin fines de lucro y haciendo referencia rede ser vinculante. Si usted no es el destina	tario de esta informácion rec	omendamos élafánarla	
	inmediatamente	La distribución o co	via del mismo està prohi	bida y será sancionada segim el proceso leg	al pertmente".	(91)(5)	
			T 000	GYINVIN YOU			
	ORIA DEL			A SUPERIOR CCNICA DE		ANÁLISI	
1	RAMA		_	CNICA DE BORAZO	MICRO)BIOLÓG	ICO I
	IFICADO	F		DE CIENCIAS]	LA PULP	A
	BADO		SCUELA D	E INGENIERÍA	-		
POR A	APROBAR		QU	ÍMICA			
X POR C	CALIFICAR			F			

REALIZADO POR: BALCÁZAR JOSÉ

1:1

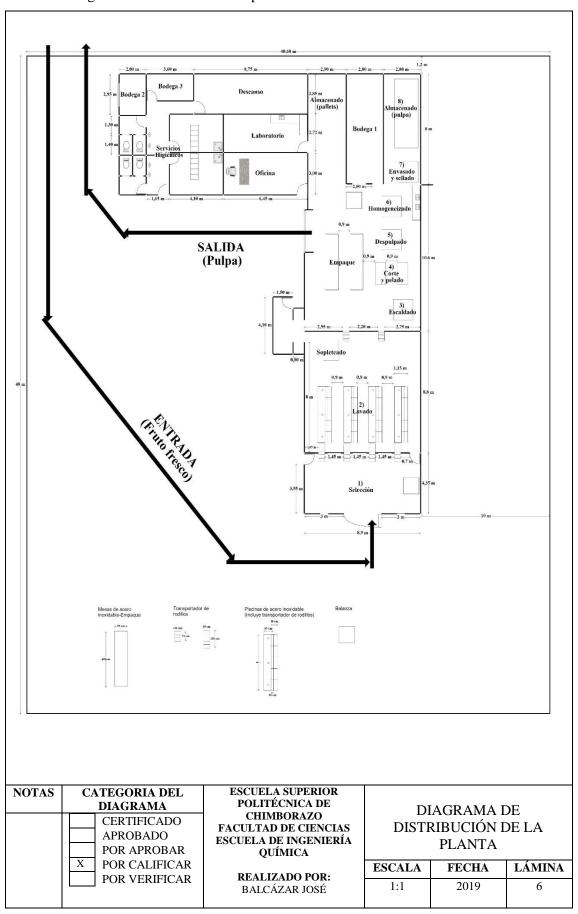
2018

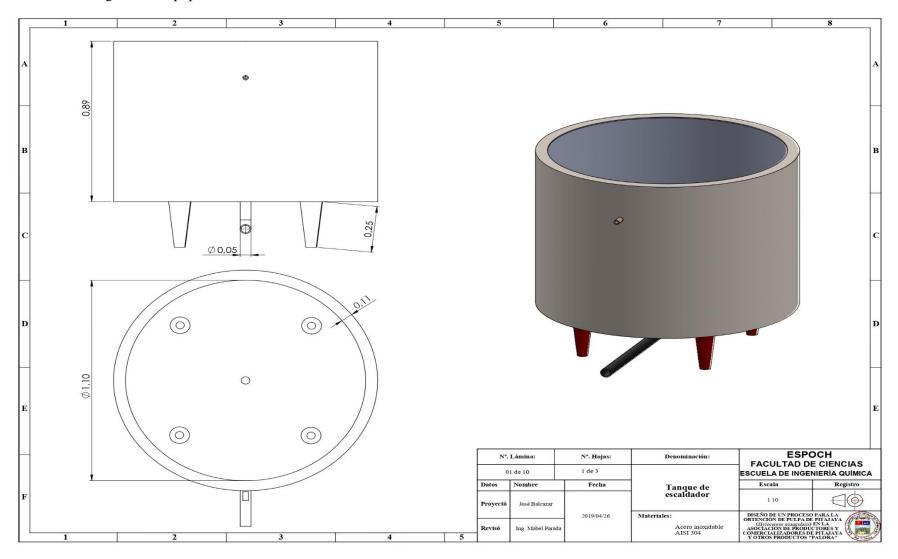
Anexo D: Tabla relación número de Reynolds y número de potencia

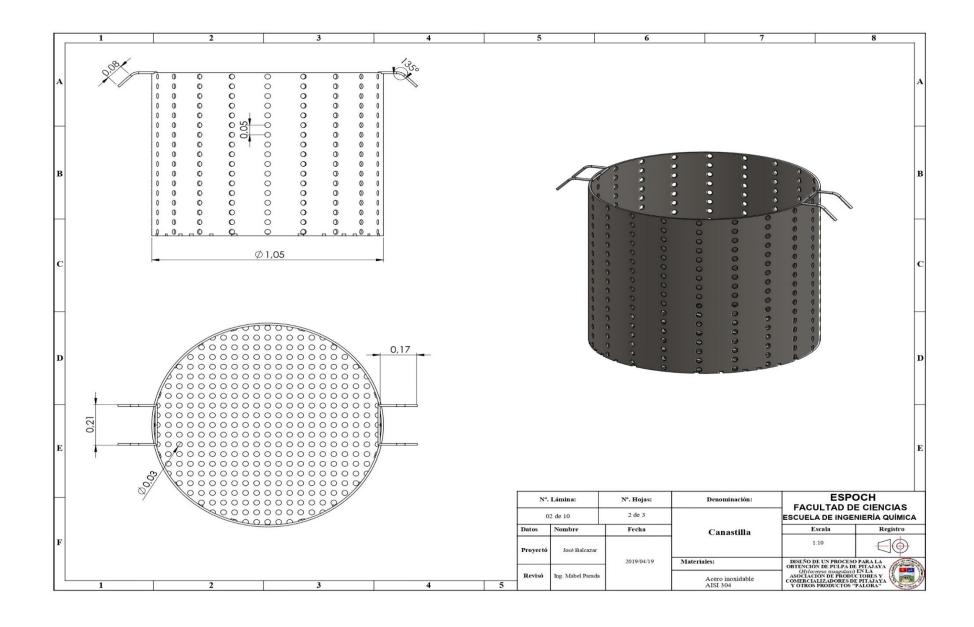


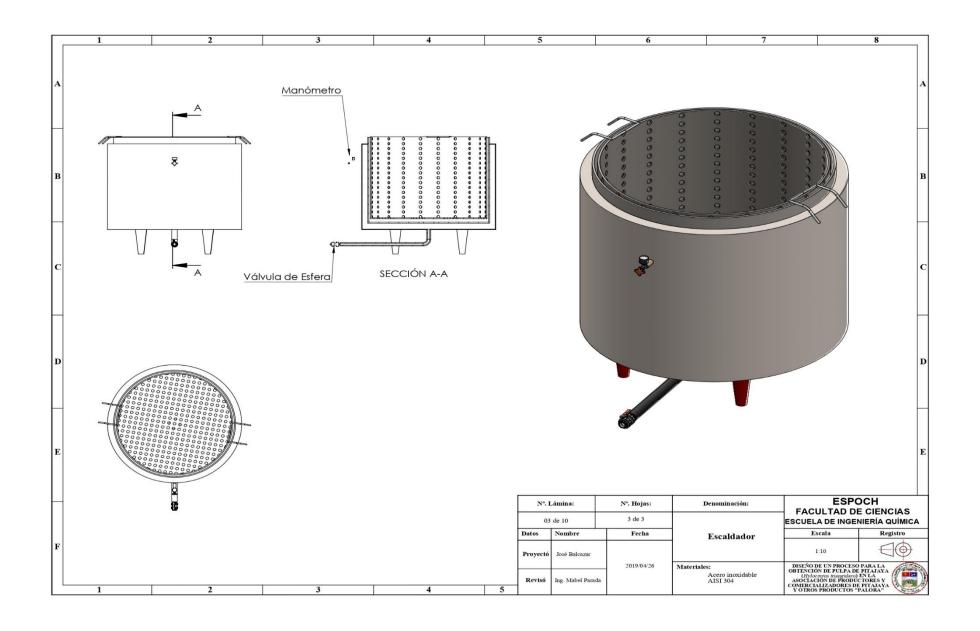
NOTAS	CA	ATEGORIA DEL DIAGRAMA CERTIFICADO APROBADO POR APROBAR	ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE CIENCIAS ESCUELA DE INGENIERÍA QUÍMICA		TABLA RELACIÓN NÚMERO DE REYNOLDS Y NÚMERO DE POTENCIA				
	X	POR CALIFICAR	REALIZADO POR:	ESCALA	FECHA	LÁMINA			
	POR VERIFICAR	BALCÁZAR JOSÉ	1:1	2019	4				

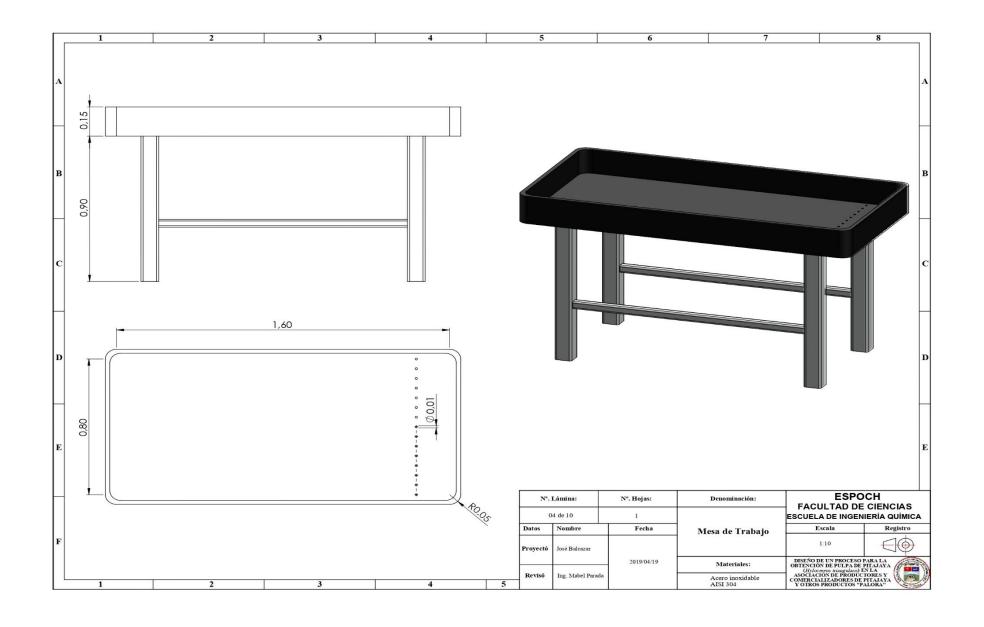
Anexo E: Asociación de productores y comercializadores de pitahaya y otros productos "Palora"

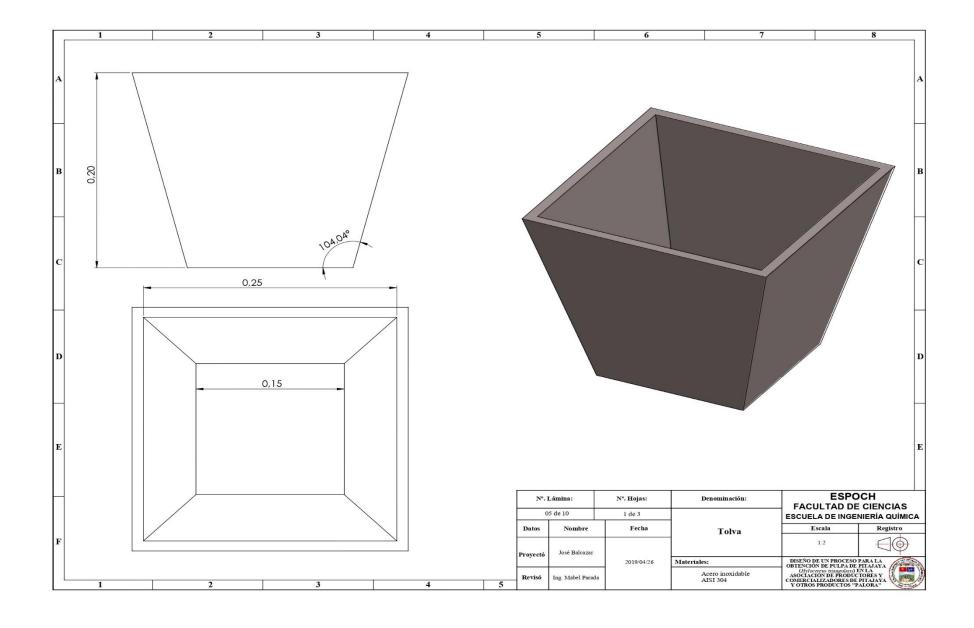


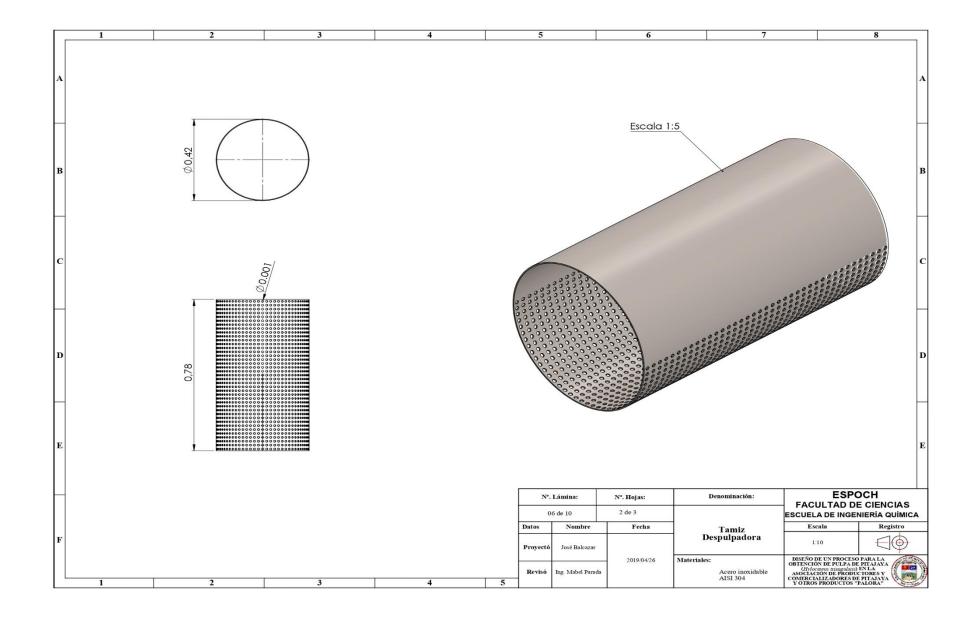


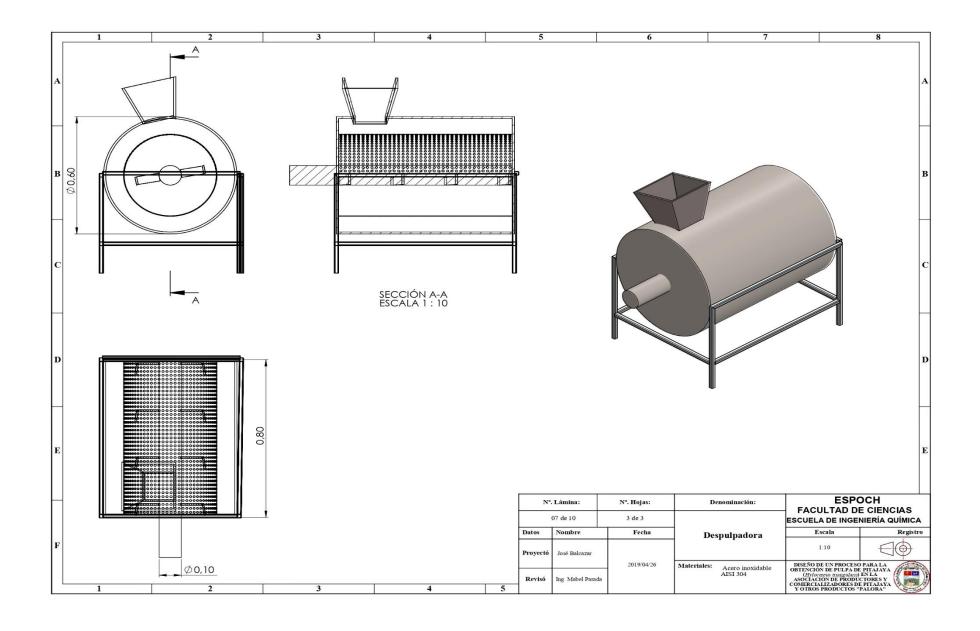

NOTAS	CATEGORIA DEL	ESCUELA SUPERIOR	ASOCIACI	ASOCIACION DE PRODUCTORES				
	DIAGRAMA	POLITÉCNICA DE	Y COME	Y COMERCIALIZADORES D				
A. Área de selección B. Área de	CERTIFICADO APROBADO POR APROBAR	CHIMBORAZO FACULTAD DE CIENCIAS ESCUELA DE		MAYA Y OT UCTOS "PAI				
pesaje C. Tanque de	X POR CALIFICAR	INGENIERÍA QUÍMICA	ESCALA	FECHA	LÁMINA			
lavado con bandas transportadora s D. Área de lavado	POR VERIFICAR	REALIZADO POR: BALCÁZAR JOSÉ	1:1	2019	5			

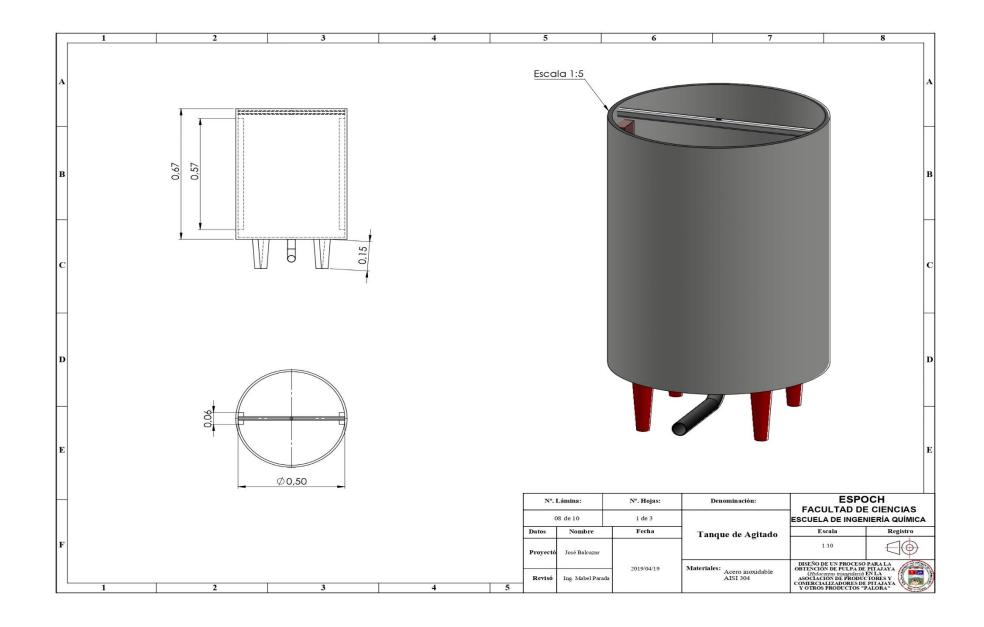

Anexo F: Diagrama de distribución de la planta

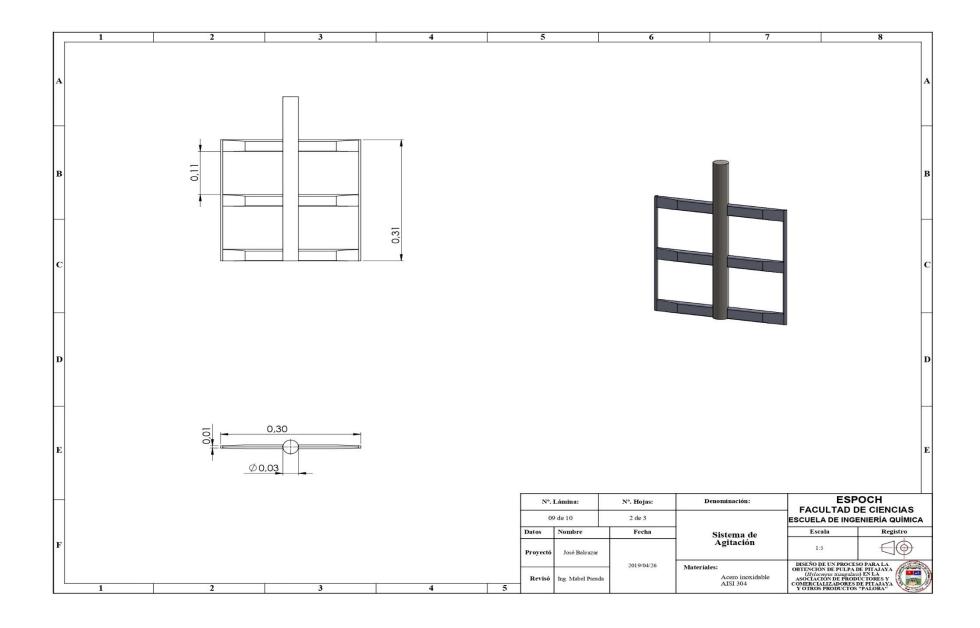


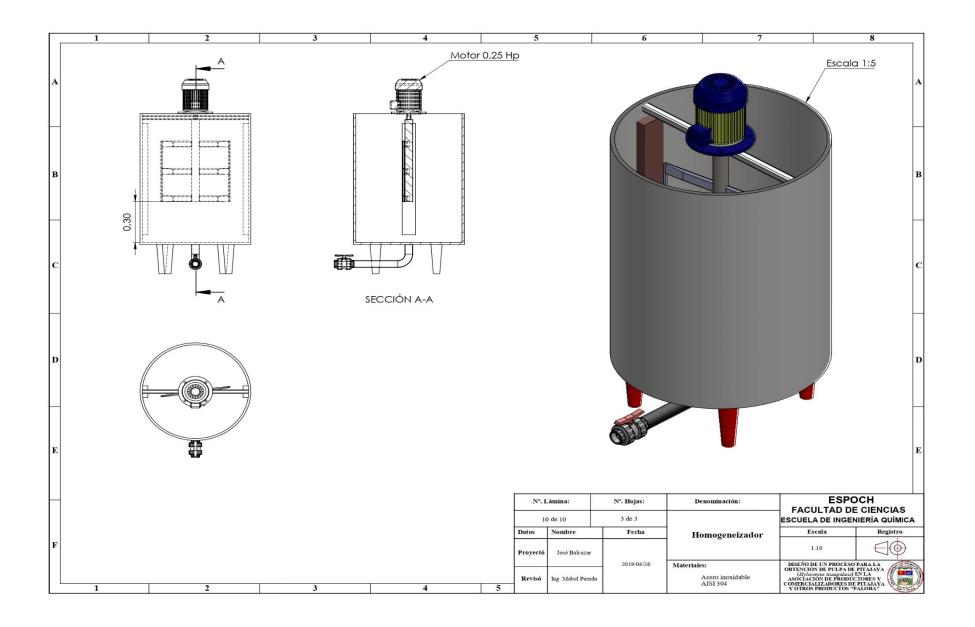

Anexo G: Diagrama de equipos











Anexo H: NTE INEN 2337:2008. Jugos, pulpas, concentrados, néctares, bebidas de frutas y vegetales. Requisitos.

CDU: 663.8 ICS: 67.080.20

CIIU:3113 AL 02.03-465

Norma Técnica	JUGOS, PULPAS, CONCENTRADOS,	NTE INEN
Ecuatoriana	NECTARES, BEBIDAS DE FRUTAS Y VEGETALES.	2 337:2008
Voluntaria	REQUISITOS.	2008-12
voiuntaria	REQUISITOS.	

1. OBJETO

1.1 Esta norma establece los requisitos que deben cumplir los jugos, pulpas, concentrados, néctares, bebidas de frutas y vegetales.

2. ALCANCE

2.1 Esta norma se aplica a los productos procesados que se expenden para consumo directo; no se aplica a los concentrados que son utilizados como materia prima en las industrias.

3. DEFINICIONES

- **3.1 Jugo (zumo) de fruta.** Es el producto líquido sin fermentar pero susceptible de fermentación, obtenido por procedimientos tecnológicos adecuados, conforme a prácticas correctas de fabricación; procedente de la parte comestible de frutas en buen estado, debidamente maduras y frescas o, a partir de frutas conservadas por medios físicos.
- **3.2 Pulpa (puré) de fruta.-** Es el producto carnoso y comestible de la fruta sin fermentar pero susceptible de fermentación, obtenido por procesos tecnológicos adecuados por ejemplo, entre otros: tamizando, triturando o desmenuzando, conforme a buenas prácticas de manufactura; a partir de la parte comestible y sin eliminar el jugo, de frutas enteras o peladas en buen estado, debidamente maduras o, a partir de frutas conservadas por medios físicos.
- **3.3** Jugo (zumo) concentrado de fruta.- Es el producto obtenido a partir de jugo de fruta (definido en 3.1), al que se le ha eliminado físicamente una parte del agua en una cantidad suficiente para elevar los sólidos solubles (° Brix) en, al menos, un 50% más que el valor Brix establecido para el jugo de la fruta.
- **3.4** Pulpa (puré) concentrada de fruta.- Es el producto (definido en 3.2) obtenido mediante la eliminación física de parte del agua contenida en la pulpa.
- **3.5 Jugo y pulpa concentrado edulcorado.** Es el producto definido en 3.3 y 3.4 al que se le ha adicionado edulcorantes para ser reconstituido a un néctar o bebida, el grado de concentración dependerá de los volúmenes de agua a ser adicionados para su reconstitución y que cumpla con los requisitos de la tabla 1, ó el numeral 5.4.1
- **3.6 Néctar de fruta.-** Es el producto pulposo o no pulposo sin fermentar, pero susceptible de fermentación, obtenido de la mezcla del jugo de fruta o pulpa, concentrados o sin concentrar o la mezcla de éstos, provenientes de una o más frutas con agua e ingredientes endulzantes o no.
- **3.7 Bebida de fruta.-** Es el producto sin fermentar, pero fermentable, obtenido de la dilución del jugo o pulpa de fruta, concentrados o sin concentrar o la mezcla de éstos, provenientes de una o más frutas con agua, ingredientes endulzantes y otros aditivos permitidos.

4. DISPOSICIONES ESPECÍFICAS

- **4.1** El jugo y la pulpa debe ser extraído bajo condiciones sanitarias apropiadas, de frutas maduras, sanas, lavadas y sanitizadas, aplicando los Principios de Buenas Prácticas de Manufactura.
- **4.2** La concentración de plaguicidas no deben superar los límites máximos establecidos en el Codex Alimentario (Volumen 2) y el FDA (Part. 193).

(Continúa)

DESCRIPTORES: Tecnología de los alimentos, bebidas no alcohólicas, jugos, pulpas, concentrados, néctares, requisitos.

4.3 Los principios de buenas prácticas de manufactura deben propender reducir al mínimo la presencia de fragmentos de cáscara, de semillas, de partículas gruesas o duras propias de la fruta.

- 4.4 Los productos deben estar libres de insectos o sus restos, larvas o huevos de los mismos.
- 4.5 Los productos pueden llevar en suspensión parte de la pulpa del fruto finamente dividida.
- **4.6** No se permite la adición de colorantes artificiales y aromatizantes (con excepción de lo indicado en 4.7 y 4.9), ni de otras sustancias que disminuyan la calidad del producto, modifiquen su naturaleza o den mayor valor que el real.
- **4.7** Únicamente a las bebidas de fruta se pueden adicionar colorantes, aromatizantes, saborizantes y otros aditivos tecnológicamente necesarios para su elaboración establecidos en la NTE INEN 2 074.
- 4.8 Como acidificante podrá adicionarse jugo de limón o de lima o ambos hasta un equivalente de 3 g/l como ácido cítrico anhidro.
- **4.9** Se permite la restitución de los componentes volátiles naturales, perdidos durante los procesos de extracción, concentración y tratamientos térmicos de conservación, con aromas naturales.
- 4.10 Se permite utilizar ácido ascórbico como antioxidante en límites máximos de 400 mg/kg.
- **4.11** Se puede adicionar enzimas y otros aditivos tecnológicamente necesarios para el procesamiento de los productos, aprobados en la NTE INEN 2 074, Codex Alimentario, o FDA o en otras disposiciones legales vigentes.
- **4.12** Se permite la adicción de los edulcorantes aprobados por la NTE INEN 2 074, Codex Alimentario, y FDA o en otras disposiciones legales vigentes.
- 4.13 Sólo a los néctares de fruta pueden añadirse miel de abeja y/o azúcares derivados de frutas.
- **4.14** Se pueden adicionar vitaminas y minerales de acuerdo con lo establecido en la NTE INEN 1 334-2 y en las otras disposiciones legales vigentes.
- **4.15** La conservación del producto por medios físicos puede realizarse por procesos térmicos: pasteurización, esterilización, refrigeración, congelación y otros métodos adecuados para ese fin; se excluye la radiación ionizante.
- **4.16** La conservación de los productos por medios químicos puede realizarse mediante la adición de las sustancias indicadas en la tabla 15 de la NTE INEN 2 074.
- 4.17 Los productos conservados por medios químicos deben ser sometidos a procesos térmicos.
- **4.18** Se permite la mezcla de una o más variedades de frutas, para elaborar estos productos y el contenido de sólidos solubles (°Brix), será ponderado al aporte de cada fruta presente.
- **4.19** Puede añadirse jugo obtenido de la mandarina *Citrus reticulata* y/o híbridos al jugo de naranja en una cantidad que no exceda del 10% de sólidos solubles respecto del total de sólidos solubles del jugo de naranja.
- **4.20** Puede añadirse jugo de limón (*Citrus limon* (L.) Burm. *f. Citrus limonum* Rissa) o jugo de lima (*Citrus aurantifolia* (Christm.), o ambos, al jugo de fruta hasta 3 g/l de equivalente de ácido cítrico anhidro para fines de acidificación a jugos no endulzados.
- **4.21** Puede añadirse jugo de limón o jugo de lima, o ambos, hasta 5 g/l de equivalente de ácido cítrico anhidro a néctares de frutas.
- **4.22** Puede añadirse al jugo de tomate (*Lycopersicum esculentum* L) sal y especias así como hierbas aromáticas (y sus extractos naturales).

4.23 Se permite la adición de dióxido de carbono, mayor a 2 g/kg, para que al producto se lo considere como gasificado.

4.24 A las bebidas de frutas cuando se les adicione gas carbónico se las considerará bebidas gaseosas y deberán cumplir los requisitos de la NTE INEN 1 101.

5. REQUISITOS

5.1 Requisitos específicos para los jugos y pulpas de frutas

- **5.1.1** El jugo puede ser turbio, claro o clarificado y debe tener las características sensoriales propias de la fruta de la cual procede.
- 5.1.2 La pulpa debe tener las características sensoriales propias de la fruta de la cual procede.
- **5.1.3** El jugo y la pulpa debe estar exento de olores o sabores extraños u objetables.
- 5.1.4 Requisitos físico- químico
- **5.1.4.1** Los jugos y las pulpas ensayados de acuerdo a las normas técnicas ecuatorianas correspondientes, deben cumplir con las especificaciones establecidas en la tabla 1.

5.2 Requisitos específicos para los néctares de frutas

- **5.2.1** El néctar puede ser turbio o claro o clarificado y debe tener las características sensoriales propias de la fruta o frutas de las que procede.
- **5.2.2** El néctar debe estar exento de olores o sabores extraños u objetables.
- 5.2.3 Requisitos físico químicos
- 5.2.3.1 El néctar de fruta debe tener un pH menor a 4,5 (determinado según NTE INEN 389).
- **5.2.3.2** El contenido mínimo de sólidos solubles (°Brix) presentes en el néctar debe corresponder al mínimo de aporte de jugo o pulpa, referido en la tabla 2 de la presente norma.

TABLA 1. Especificaciones para los jugos o pulpas de fruta

FRUTA	Nombre Botánico	Sólidos Solubles ^{a)} Mínimo NTE INEN 380	
Acerola	Malphigia sp	6,0	
Albaricoque (Damasco)	Prunus armeniaca L.	11,5	
Arándano (mirtilo)	Vaccinium myrtillus L. Vaccinium corymbosum L. Vaccinium angustifolium	10,0	
Arazá	Eugenia stipitata	4.8	
Babaco	Carica pentagona Heilb	5,0	
Banano	Musa, spp	21,0	
Borojo	Borojoa spp	7,0	
Carambola (Grosella china)	Averrhoa carambola	5,0	
Claudia ciruela	Prunus domestica L.	12.0	
Coco (1)	Cocos nucifera L.	5,0	
Coco (2)	Cocos nucifera L.	4,0	
Durazno (Melocotón)	Prunus pérsica L.	9,0	
Frutilla	Fragaria spp	6.0	
Frambuesa roja	Rubus idaeus L.	7,0	
Frambuesa negra	Rubus occidentalis L.	11.0	
Guanábana	Anona muricata L.	11.0	
Guayaba	Psidium guajava L.	5,0	
Kiwi	Actinidia deliciosa	8.0	
Litchi	Litchi chinensis	11,0	
Lima	Citrus aurantifolia	4,5	
Limón	Citrus limon L.	4,5	
Mandarina	Citrus reticulata	10,0	
Mango	Mangifera indica L.	11,0	
Manzana	Malus domestica Borkh	6,0	
Maracuyá (Parchita)	Passiflora edulis Sims	12.0	
Marañón	Anacardium occidentale L.	11,5	
Melón	Cucumis melo L.	5,0	
Mora	Rubus spp.	6,0	
Naranja	Citrus sinnensis	9,0	
Naranjilla (Lulo)	Solanum quitoense	6,0	
Papaya (Lechosa)	Carica papaya	8,0	
Pera	Pyrus communis L.	10,0	
Piña	Ananas comosus L.	10,0	
Sandia	Citrullus lanatus Thunb	6,0	
Tamarindo	Tamarindus indica L.	18,0*	
Tomate de árbol	Cyphomandra betacea	8,0	
Tomate	Lycopersicum esculentum L.	4,5	
Toronja (Pomelo)	Citrus paradisi	8,0	
Uva	Vitis spp	11,0	

a) En grados Brix a 20 °C (con exclusión de azúcar)

NOTA 1. Para las frutas que no se encuentran en la tabla el mínimo de grados Brix será el Brix del jugo o pulpa obtenido directamente de la fruta

Este producto se conoce como "agua de coco" el cual se extrae directamente del fruto sin exprimir la pulpa.

⁽²⁾ Es la emulsión extraída del endosperma (almendra) maduro del coco, con o sin adición de agua de

Para extraer el jugo del tamarindo debe hacérselo en extracción acuosa, lo cual baja el contenido de sólidos solubles desde 60 °Brix, que es su Brix natural, hasta los 18 °Brix en el extracto.

TABLA 2. Especificaciones para el néctar de fruta

FRUTA	Nombre Botánico	% Aporte de jugo de fruta	Sólidos Solubles ^{a)} Mínimo NTE INEN 380	
Acerola	Malphigia sp	25	1,5	
Albaricoque	Prunus armeniaca L	40	4,6	
(Damasco)				
Arándano (mirtilo,)	Vaccinium myrtillus L.	40	4,0	
	Vaccinium corymbosum L.			
	Vaccinium angustifolium			
Arazá	Eugenia stipitata	*	*	
Babaco	Carica pentagona Heilb	25	1,25	
Banano	Musa, spp	25	5,25	
Borojo	Borojoa spp	25	1,75	
Carambola(Grosella	Averrhoa carambola	25	1,25	
china)				
Claudia ciruela	Prunus domestica L.	50	6,0	
Coco (1)	Cocos nucifera L.	25	1,25	
Coco (2)	Cocos nucifera L.	25	1,0	
Durazno (Melocotón)	Prunus pérsica L.	40	3,6	
Frutilla	Fragaria spp	40	2,4	
Frambuesa roja	Rubus idaeus L.	40	2,8	
Frambuesa negra	Rubus occidentalis L.	25	2,75	
Guanábana	Anona muricata L.	25	2,75	
Guayaba	Psidium guajava L.	25	1,25	
Kiwi	Actinidia deliciosa	*	*	
Litchi	Litchi chinensis	20	2,24	
Lima	Citrus aurantifolia	25	1,13	
Limón	Citrus limon L.	25	1,13	
Mandarina	Citrus reticulata	50	5,0	
Mango	Mangifera indica L.	25	2,75	
Manzana	Malus domestica Borkh	50	3,0	
Maracuyá (Parchita)	Passiflora edulis Sims	*	*	
Marañón	Anacardium occidentale L.	25	2,88	
Melón		35	1,75	
Mora	Cucumis melo L.	30		
	Rubus spp		1,8	
Naranja	Citrus sinnensis	50 *	4,5 *	
Naranjilla (Lulo)	Solanum quitoense			
Papaya (Lechosa)	Carica papaya	25	2,0	
Pera	Pyrus communis L.	40	4,0	
Piña	Ananas comosus L.	40	4,0	
Sandia	Citrullus lanatus Thunb	40	2,4	
Tamarindo	Tamarindus indica L.	*		
Tomate de árbol	Cyphomandra betacea	25	2,0	
Tomate	Lycopersicum esculentum L.	50	2,25	
Toronja (Pomelo)	Citrus paradisi	50	4,0	
Uva	Vitis spp	50	5,5	
Otros: - Alto contenido de		25		
pulpa o aroma fuerte				
 Baja acidez , bajo contenido de pulpa o aroma bajo a medio 		50		

Elevada acidez , la cantidad suficiente para lograr una acidez mínima de 0,5 % (como ácido cítrico) En grados Brix a 20°C (con exclusión de azúcar)

5.3 Requisitos específicos para los jugos y pulpas concentradas.

- **5.3.1** El jugo concentrado puede ser turbio, claro o clarificado y debe tener las características sensoriales propias de la fruta de la cual procede.
- **5.3.2** La pulpa concentrada debe tener las características sensoriales propias de la fruta de la cual procede.
- **5.3.3** El jugo y pulpa concentrado, con azúcar o no, debe estar exento de olores o sabores extraños u objetables.
- **5.3.4** El contenido de sólidos solubles (°Brix a 20 °C con exclusión de azúcar) en el jugo concentrado será por lo menos, un 50% más que el contenido de sólidos solubles en el jugo original (Ver tabla 1 de esta norma).

5.4 Requisitos específicos para las bebidas de frutas

- **5.4.1** En las bebidas el aporte de fruta no podrá ser inferior al 10 % m/m, con excepción del aporte de las frutas de alta acidez (acidez superior al 1,00 mg/100 cm³ expresado como ácido cítrico anhidro) que tendrán un aporte mínimo del 5% m/m
- 5.4.2 El pH será inferior a 4,5 (determinado según NTE INEN 389)
- **5.4.3** Los grados brix de la bebida serán proporcionales al aporte de fruta, con exclusión del azúcar añadida.

5.5 Requisitos microbiológicos

- **5.5.1** El producto debe estar exento de bacterias patógenas, toxinas y de cualquier otro microorganismo causante de la descomposición del producto.
- **5.5.2** El producto debe estar exento de toda sustancia originada por microorganismos y que representen un riesgo para la salud.
- **5.5.3** El producto debe cumplir con los requisitos microbiológicos establecidos en la tabla 3, tabla 4, o con el numeral 5.5.4

TABLA 3. Requisitos microbiológicos para productos congelados

	n	m	M	С	Método de ensayo
Coliformes NMP/cm ³	3	< 3		0	NTE INEN 1529-6
Coliformes fecales NMP/cm ³	3	< 3		0	NTE INEN 1529-8
Recuento de esporas clostridium sulfito reductoras UFC/cm ^{3 1)}	3	< 10		0	NTE INEN 1529-18
Recuento estándar en placa REP UFC/cm ³	3	1,0x10 ²	1,0x10 ³	1	NTE INEN 1529-5
Recuento de mohos y levaduras UP/ cm ³	3	1,0x10 ²	1,0x10 ³	1	NTE INEN 1529-10

Para productos enlatados.

TABLA 4. Requisitos microbiológicos para los productos pasteurizados

	n	m	М	С	Método de ensayo
Coliformes NMP/cm ³	3	< 3		0	NTE INEN 1529-6
Coliformes fecales NMP/cm ³	3	< 3		0	NTE INEN 1529-8
Recuento estándar en placa REP UFC/cm ³	3	< 10	10	1	NTE INEN 1529-5
Recuento de mohos y levaduras UP/ cm ³	3	< 10	10	1	NTE INEN 1529-10

En donde:

NMP = número más probable

UFC = unidades formadoras de colonias

UP = unidades propagadoras n = número de unidades m = nivel de aceptación M = nivel de rechazo

c = número de unidades permitidas entre m y M

5.5.4 Los productos envasados asépticamente deben cumplir con esterilidad comercial de acuerdo a la NTE INEN 2 335

5.6 Contaminantes

5.6.1 Los límites máximos de contaminantes no deben superar lo establecido en la tabla 5

TABLA 5. Límites máximos de contaminantes

	Límite máximo	Método de ensayo
Arsénico, As mg/kg	0,2	NTE INEN 269
Cobre, Cu mg/kg	5,0	NTE INEN 270
Estaño, Sn mg/kg *	200	NTE INEN 385
Zinc, Zn mg/kg	5,0	NTE INEN 399
Hierro, Fe mg/kg	15,0	NTE INEN 400
Plomo, Pb mg/kg	0,05	NTE INEN 271
Patulina (en jugo de manzana)**, mg/kg	50	AOAC 49.7.01
Suma de Cu, Zn, Fe mg/kg	20	

^{*} En el producto envasado en recipientes estañados

5.7 Requisitos Complementarios

- **5.7.1** El espacio libre tendrá como valor máximo el 10 % del volumen total del envase (ver NTE INEN 394).
- **5.7.2** El vació referido a la presión atmosférica normal, medido a 20 °C, no debe ser menor de 320 hPa (250 mm Hg) en los envases de vidrio, ni menor de 160 hPa (125 mm Hg) en los envases metálicos. (ver NTE INEN 392).

^{**} La patulina es una micotoxina formada por una lactona hemiacetálica, producida por especies del género Aspergillus, Penicillium y Byssoclamys.

6. INSPECCIÓN

- 6.1 Muestreo. El muestreo debe realizarse de acuerdo a la NTE INEN 378.
- **6.2** Aceptación o Rechazo. Se aceptan los productos si cumplen con los requisitos establecidos en esta norma, caso contrario se rechaza.

7. ENVASADO Y EMBALADO

- **7.1** El material de envase debe ser resistente a la acción del producto y no debe alterar las características del mismo.
- **7.2** Los productos se deben envasar en recipientes que aseguren su integridad e higiene durante el almacenamiento, transporte y expendio.
- 7.3 Los envases metálicos deben cumplir con la NTE INEN 190, Codex Alimentario y FDA.

8. ROTULADO

- **8.1** El rotulado debe cumplir con los requisitos establecidos en la NTE INEN 1 334-1 y 1 334-2, y en otras disposiciones legales vigentes.
- 8.2 En el rotulado debe estar claramente indicada la forma de reconstituir el producto.
- **8.3** No debe tener leyendas de significado ambiguo, ni descripción de características del producto que no puedan se comprobadas.

(Continúa)

-8- 2009-016